

2333-1

Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May)

11 April - 1 May, 2012

Evolution to Modernized GNSS Ionospheric Scintillation and TEC Monitoring

A. J. Van Dierendonck *AJ Systems/GPS Silicon Valley USA*

Evolution to Modernized GNSS Ionospheric Scintillation and TEC Monitoring

Dr. A.J. Van Dierendonck, AJ Systems

Tutorial Outline

Short Review of GPS Receivers

- Emphasizing what functions are affected by scintillation
- Emphasizing modifications implemented for measuring scintillation effects
- Amplitude and Phase Scintillation Measurements
- Measurement Limitations
 - Be How well does the receiver perform in a scintillation environment?
 - How can a GNSS receiver be designed to better operate in a scintillation environment?
- TEC Measurements
 - Measuring TEC or satellite and/or receiver inter-frequency biases?
- Example Measurements
 - GPS Satellites
 - SBAS Geostationary Satellites

Multiple Frequency GNSS Receiver Functional Block Diagram

GNSS Receiver Modifications for Scintillation Monitoring

Receiver Modifications to Measure TEC and Scintillation

Measuring Amplitude Scintillation

Typical Receiver Channel for Amplitude (Power) Measurements

African Workshop 2012

Signal Intensity Samples

- Signal Intensity samples are based upon Narrowband (NBP) and Wideband (WBP) Power Measurements (50 samples/second)
 - $SI_k = NBP_k WBP_k$
 - Difference between NBP and WBP is proportional to received signal power
 - Theoretically cancels noise power in the mean
 - Practically, it doesn't completely correction made later
- Samples collected and stored over 60 seconds
 - Thus, 3000 samples every minute
 - These 50 sps samples are available as an output

Computing S4 (1)

Total S4 is standard deviation of normalized Signal Intensity

$$S4_{Total} = \sqrt{\frac{\left\langle SI_{k}^{2} \right\rangle - \left\langle SI_{k} \right\rangle^{2}}{\left\langle SI_{k} \right\rangle^{2}}}$$

- Scale factor of Signal Intensity is ambiguous, but this normalization with average value over 60 seconds takes care of that
- Desirable to remove the effects of receiver noise, theoretically computed as

$$S4_{N_0} = \sqrt{\frac{100}{\hat{S}/N_0}} \left[1 + \frac{500}{19\,\hat{S}/N_0} \right]$$

This is square root of expected value of S4², given noise only
 \$\higstyle{S}/N_0\$ is average measured signal-to-noise density over 60 second period – also an output, as well as the above noise contribution

1

Computing S4 (2)

Noise contribution is removed as follows:

$$\$ S4_{Corrected} = \sqrt{\frac{\left\langle SI_k^2 \right\rangle - \left\langle SI_k \right\rangle^2}{\left\langle SI_k \right\rangle^2} - \frac{100}{\hat{S}/N_0} \left[1 + \frac{500}{19\,\hat{S}/N_0} \right]}$$

- If square-root argument is negative, set to 0 (means noise dominates any amplitude scintillation)
- This corrected value is computed off-line
- Option also exists to compute average value of SI_k as low-pass filtered value
 - This presents potentially unstable normalization because of filter delay – results in inflated S4 values

Low-Pass Filtering Introduces Delay in Normalization

- In low-passed version (denominator) does not line up with raw version, increasing the variance
- Possible to correct for the delay, but requires raw data buffering that is not desirable

INPUT & IIR LPF AMPLITUDE - ASCENSION ISLAND DATA, 11 NOV 98, PRN19

Measuring Amplitude Scintillation Summary

- Amplitude Scintillation
 - Measure GNSS signal-plus-noise power
 - Remove, as well as one can, noise power
 - Relatively straight-forward
 - Some "detrending" issues separating scintillation fades from multipath fading – a detrending bandwidth issue
 - Detrending using averaging proves to be more stable than filtering, but results in higher S4 due to multipath fading

Measuring Phase Scintillation

Some History Relative to Measuring Phase Scintillation Effects

- GPS Silicon Valley inherited commercialized scintillation monitoring technology from a US Air Force Small Business Innovation Research (SBIR) program
 - Toughest challenge on that program was measuring phase scintillation with standard GPS receivers using Temperature Compensated Crystal Oscillators (TCXOs)
 - TCXO phase noise masked phase scintillation effects
 - Problem solved using good Oven Controlled Oscillators (OCXOs)
- These upgraded receivers provide good phase scintillation measurements
 - Even then, there are limitations to operation in a scintillation environment

Measuring Phase Scintillation Effects

- To measure phase scintillation, GPS receiver must track signal phase using a phase lock loop (PLL)
 - Normally, weakest link in a GPS receiver
 - Measurements include perturbations of receiver and satellite oscillators
 - Mostly, these perturbations cannot be removed with "detrending"
 - Longer-term phase includes signal Doppler, multipath and ionosphere TEC (and oscillator frequency offset), mostly removed with "detrending"
- Typically, measurement bandwidth is the PLL loop bandwidth
 - Wide bandwidth makes loop more sensitive to amplitude fading, and thus, loss of lock
 - Narrow bandwidth makes loop more robust, but filters out higherfrequency phase scintillation effects
- Loop can be configured to have narrow loop bandwidth for robustness, but still provide wide bandwidth phase data

PLL Model with Wideband Phase

Estimator Thermal Noise B(s) = Predetection Filter of bandwidth B_s PLL Phase B(s)Discriminator δφ $\delta \phi_{osc}$ e F(s)+ Loop Filter Noise Bandwidth B_I ϕ_{track} NCO (Integrator) •Phase Discriminator measures current PLL $\phi_{estimate}$ 50-Hz phase error – added back onto phase estimate

4/18/2012

African Workshop 2012

Legacy Measurements of TEC

- Measure difference of GPS PN code phase on L1 and L2, smoothed against negative L1/L2 difference in carrier phase
 - Legacy monitors use "semi-codeless" technique to measure on L2
 - Does not enhance ability to measure scintillation
 - Semi-codeless L2 has 15 to 35 dB less signal power recovery than L1
 - However, can use very low bandwidth PLL, aided with L1 Doppler phase, regaining 14 to 17 dB, depending upon C/N $_0$

Limitations

- **Typically not available if L1 C/N₀ drops below 38 dB-Hz**
- Must contend with L1/L2 biases
 - Satellite biases (Tau_GD and C/A-to-P) and receiver and antenna L1/L2 biases
- Real-time accuracies on the order of 1 2 TECU, after calibration
 - Also, very much affected by multipath

Evolution to Modernized GNSS

Legacy GSV 4004B & Antenna

GSV4004B GPS IONOSPHERIC SCINTILLATION AND TEC MONITOR AND OPTIONAL GPS702GG ANTENNA

Features of GPStation-6 GISTM

Features	GISTM Receiver (Bold Red Indicates New Features)
Channel Configuration	120 independent channels
Signal Tracking	GPS (L1, semi-codeless L2P, L2C, L5) GLONASS (L1, L2-C/A, L2P) Galileo (E1, E5A/B, E5 Altboc) SBAS (L1, L5), Compass (Upgradable)
Ionospheric Measurments	50 Hz phase and amplitude data (raw or detrended-raw)
Scintillation Indices	GPS (L1 C/A, L2C, L5), GLONASS (L1, L2) Galileo (E1, E5), SBAS (L1, L5)
TEC (Code and Carrier)	GPS (L1/L2P, L1/L2C, L1/L5), GLONASS (L1/L2) Galileo (E1/E5A), SBAS (L1/L5) (1 Hz raw and 4/minute smoothed)
Communication Interface	USB/RS-232/RS-422, I/O (PPS, Event, Position Valid)

8.

Improvements by Adding L2C and L5

- Measured at Calgary, AB, Canada
- GPS Modernization improves Signal Quality C/N_0
- Adding Constellations increases Number of Ionospheric Pierce Points

Comparison of L1C/A - L2C and L1C/A - L2P(Y) for Measuring TEC

• Negative TEC because receiver is not delay calibrated

L2P(Y)/L2C TEC Performance

Differences

- Not much difference in displayed performance
 - 3 dB loss in L2C I/Q multiplexing
 - Wider tracking loop bandwidth on L2C
 - Multipath errors dominate lower chipping rate on L2C
- However, L2C tracking much more robust and less dependent on L1 aiding
- Larger TEC bias using L2P(Y) More filter delay of wideband signal

GPS Scintillation Measurement Comparisons

- Modernized

- Modernized
- Comparison shows excellent backward compatibility

Modernized Monitor Includes GLONASS

SBAS GEO Measurements

Legacy SBAS S4 Measurements in Non-Scintillating Environment

• Standing wave multipath detrends out very well

 Code/carrier divergence due to crossing Doppler of 2 GEOs

African Workshop 2012

Easy to Distinguish between Multipath and Amplitude Scintillation from GEOs

- No scintillation
- Slow varying standing wave multipath

African Workshop 2012

Modernized SBAS Measurements – Same Performance as Legacy Receiver

• S4

• Time difference is due to pierce point location difference

- σ_φ
 Noise is due to GEO payload transponder phase noise
- Some phase scintillation observable between 9 and 10 pm

Scintillation Monitoring Limitations That Apply to Both Legacy and Modernized Monitors

General GNSS Receiver Limitations in

Scintillation Environment

- Phase Scintillation
 - Generally, not a problem at L1 or L5, or on L2C
 - Unless a very narrow tracking bandwidth is used
 - No worse than low-grade TCXO typically found in GPS Receivers
 - Requires relative wide bandwidth PLL for phase tracking
 - Larger problem for "semi-codeless P(Y)" on L2
 - Very narrow bandwidth PLL coupled with erroneous (required) aiding with L1 phase (doesn't agree with Doppler aiding)
- Amplitude Scintillation
 - Primary culprit for loss of phase lock
 - Deep and long fades steal signal from PLL
 - Narrower bandwidth is better, but could require a better oscillator, and may lose lock due to strong phase scintillation
 - False alarms from lock detectors during fades (apparent loss of lock)
 - Loss of data (symbols) from SBAS signals

Phase Scintillation Limitations

GNSS Scintillation Monitor Limitations

in Phase Scintillation Environment

- Can't measure scintillation at "semi-codeless" L2 P(Y) – Loop bandwidths too narrow
- Deasurement limitations on coded signals (L1, L2C and L5) dominated by receiver oscillator
 - Typical receiver oscillator phase noise masks phase scintillation (See PSDs and plots in next charts)
 - Thermal Noise limitation is about 0.1 radian @ 30 dB-Hz
 - OCXO phase noise typically better than 0.05 radians
- Limitation can be overcome by differencing phase between satellites
 - Creates a requirement for high-rate data collection and substantial post processing

Phase Noise PSD Comparisons

34

Antofagosto Phase Scintillation vs. TCXO Phase Noise

4/18/2012

African Workshop 2012

Tradeoffs Regarding Using Low-Noise Oscillators (OCXOs)

- Cost of low-noise OCXOs has diminished somewhat over recent years
 - The cost driver is their packaging with the receiver (low-volume quantities)
 - This packaging must also meeting international radiation and conductive emission (CE) requirements
- As stated, TCXO noise can be eliminated by differencing phase across satellites
 - Creates a data storage and post-processing burden
 - Receiver tracking bandwidth must be kept high, preventing tracking in noisy conditions and during deep fades

Amplitude Scintillation Limitations

Scintillation Monitor Limitations in Amplitude Scintillation Environment

- Amplitude Scintillation
 - High S4 can cause loss of phase lock
 - S4 is still usually valid it is based upon non-coherent power measurements, at least for short to medium length fades
 - See state diagram
 - Multipath fading limits minimum S4 capability
 - Longer duration, but shallow fades
 - Can be detected and eliminated because multipath also causes code/carrier phase divergence scintillation does not

Fade Depths and Widths Using 50 Hz Amplitude Samples

African Workshop 2012

Distinguishing Between Amplitude Scintillation and Multipath Fading

- No Scintillation
- Varying Multipath
- All GPS Satellites

African Workshop 2012

Distinguishing Between Amplitude Scintillation and Multipath Fading

- Moderate
 Scintillation
- Varying Multipath
- All GPS Satellites

Multipath Fading Tracking SBAS Signals

No Scintillation, Slow Varying Multipath 2 SBAS Geostationary Satellites

Signal Tracking State Diagram

• Not necessarily implemented in all receivers, but is in Scintillation Monitors described here

4/18/2012

African Workshop 2012

Example Phase Measurements Collected in San Francisco Area

Non-Scintillation Environment

Typical Plot of 1, 3 and 10 Second Sigma-Phi from All Satellites in View

SBAS GEO Phase Measurements

- Phase Degraded by GEO Transponder Code/Carrier Control
- However, constant
 45 degree elevation no multipath effects

