

2333-29

Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May)

11 April - 1 May, 2012

GPS Positioning Errors in Solar Cycle 24

GROVES Keith W. McNeil C. Carrano and R. Caton Institute for Scientific Research, Boston College St. Clement's Hall, 140 Commonwealth Avenue CHESTNUT HILL MA 02467-3862 Massachusetts U.S.A.

Boston College

GPS Positioning Errors in Solar Cycle 24

Keith Groves, William McNeil, Charles Carrano and Ron Caton

keith.groves@bc.edu

Outline

- Solar cycle review
- Solar cycle changes in ionospheric parameters and bubbles
- Position errors during past and present solar cycles
- Summary

Birth of Solar Cycle 24 Jan 4, 2008

STEREO EUV Image NASA

NOAA Solar Cycle Data & Projection

If the projections are correct, we would expect the next three years to be similar to conditions in 1998-99 and 2003-04

Effect of Electron Density on S4

- Significant relative density fluctuations will not cause scintillation if the background electron density is too low
- Must exceed ~1e5/cc for VHF, ~1e6 for GPS (~50 TEC units)
- Density during postmidnight hours frequently too low

$$N\sigma_{N/\Delta N} = S_4^{thresh} \left\{ 2\pi r_e^2 \lambda^2 \ q_0 L \sec \theta \left(rac{\lambda z_R \sec \theta}{4\pi}
ight)
ight\}^{-1/2}$$

Weak Scatter Approximation

Solar Flux and Electron Density

- FOF2 increases linearly with increasing sunspot number ($Ne \propto f_p^2$)
- Hypothesis that scintillation (S4) also increases \sim linearly with f_p increase (i.e., $\Delta N \sim Ne$)
- Effects on GPS will be latitude-dependent (weaker at magnetic equator, stronger at anomaly peaks

From Liu et al., JGR, 2003

Cuiaba, Brazil Solar Cycle Variations in GPS Scintillations

Total Electron Content Variations with Solar Cycle

Total Electron Content Variations with Solar Cycle

GPS scintillation turns on when TEC exceeds ~50 TECU

Cuiaba, Brazil UHF & GPS Comparison

- Virtually no GPS scintillations were observed worldwide from 2007-2009
- Moderate GPS scintillations began in 2010 thru mid 2011
- The last half of 2011 GPS scintillation increased markedly
- We expect these levels to increase further in 2012-2014

More Evidence from Other Sites

- Marked "turn-on" in GPS scintillations in the latter half of 2011
- Driven completely by increasing solar flux responsible for increased electron density

- For scintillation activity to reach Ascension Island, bubbles must rise to more than 1000 km altitude, spreading to over 3000 km N-S extent
- During solar minimum, almost no bubbles reach these altitudes; N-S extent typically ~ 2000 km

Relative Occurrence of Bubbles Exceeding 1000 km Altitude

 Sites at different latitudes see different levels of activity depending on bubble altitude

Cape Verde East UHF Scintillation Index : 2011

Position Errors at Ascension Island A statistical perspective

- Equinox 2012 (SSN ~ 64) errors increased significantly during nighttime periods
- Equinox 2002 (SSN ~ 96) illustrates results from last solar maximum

Examples from March 2012

- Considering specific days we see direct correlation between scintillation and horizontal position errors approaching 10 meters
- But the number and severity of links affected is less overall relative to the previous solar maximum period

Nairobi, Kenya Paul Baki Pl

- Errors in Nairobi smaller on average than Ascension Island in current solar cycle
- Correspondingly weaker scintillation levels; magnetic latitude is about 8 deg S

Position Errors at Nairobi 17 April 2012

- Although numerous GPS satellites are affected the observed errors are relatively modest
- A small increase in solar flux will likely yield a non-linear increase in GPS position errors in Kenya

Position Errors at Kinshasa, DRC Bruno Kahindo, Pl

- Scintillation levels at Kinshasa appear moderately stronger as expected due to higher magnetic latitude than Nairobi
- Statistical distribution does not show larger errors (note this is for April 2012)

Example from Kinshasa in 2011

- Scintillation widespread on Sep 23 2011with corresponding positioning errors
- TEC shows clear evidence of strong equatorial anomaly (large N-S gradients)

Possible Sites for More Investigation

- More comprehensive analysis is needed, both statistically and day-to-day to understand relationship between scintillation and positioning errors
- Other parameters (e.g, phase variations) may be important to understand impacts more fully

Summary

- Ionospheric scintillation has recently entered the solar maximum phase
- Users should expect more severe impacts on GNSS systems through 2014
- It is expected that effects on performance will not be as severe in solar cycle 24 as they were in the previous solar cycle
- A thorough comparison of scintillation activity, ionospheric parameters and positioning errors as a function of latitude and longitude would be of great interest to the user community

SCINDA Sites Map

Existing and expected sites through 2012