

SMR 2333-34

Workshop on Science Applications of GNSS in Developing Countries (11-27 April), followed by the: Seminar on Development and Use of the Ionospheric NeQuick Model (30 April-1 May)

11 April - 1 May, 2012

AMBER Magnetometers Network and Longitudinal Differences of Equatorial Electrodynamics and Ionospheric Vertical Density Distribution

> YIZENGAW KASSIE Endawoke Institute for Scientific Research Boston College St. Clement's Hall 140 Commonwealth Avenue CHESTNUT HILL MA 02467-3862 Massachusetts U.S.A.

AMBER Magnetometers Network and Longitudinal Differences of Equatorial Electrodynamics and Ionospheric Vertical Density Distribution

Endawoke Yizengaw Institute for Scientific Research, Boston College

Special Thanks to: M. Moldwin (UM); E. Zesta (AFRL); B. Damtie (BDU, Ethiopia); A. Mebrhtu (MU, Ethiopia); C. Mabene (UY, Cameroon); B. Rabiu (NASRDA. Nigeria); C. Valladares (BC); and R. Pfaff (NASA Goddard)

Outline

Instruments Network: Present

Instrumentation in Africa: past and present

AMBER magnetometer array

EEJ (ExB drift) longitudinal difference

Vertical density structures using tomography

Day-to-day variability of the ionosphere

Future direction

Objective of AMBER magnetometer Array AMBER (African Meridian B-field Education and Research)

the processes governing electrodynamics of the equatorial ionosphere as a function of local time, longitude, magnetic activity, and season, and

→ ULF pulsation strength and its connection with equatorial electrojet strength at low/midlatitude regions.

Mag/Sensor Setup Diagram

Full Setup

Setup at the Site

→ Sensitivity: 0.01 nT
→ Time resolution: 0.5 sec

What does the magnetometer Observes?

Examples of AMBER data coverage

EEJ Estimation using magnetometers

Equatorial Electrojet (EEJ) formation

The solar-driven neutral wind results Sq current system and then east-west polarization E-field in the E-region.

At the magnetic dip equator, the resulting upward E x B drift moves negative charge at the top and a positive at the bottom of the E-region.

→ The resulting E-field prevents electrons to be drifted further upward, instead, they are propelled westward by the eastward E-field. This forms an eastward electric current flow within 3.0° of the magnetic equator, which is called the Equatorial Electrojet (EEJ)

Longitudinal EEJ Variations

Disturbances due to geomagnetic impact On H-components at the equator and off the equator

Disturbances due to EEJ Only on H-component at the equator

Comparison with other observationswith JULIAC/NOFS - AfricaC/NOFS - AfricaC/NOFS - America

ULF wave related equatorial vertical drift and density fluctuation study African sector Band-pass filtered drift shows ULF wave

Vertical Drift and Density Fluctuation

Equatorial Vertical Drift Fluctuation East Africa West America Filtered ExB drift on April 5, 2010 Filtered ExB drift on April 5, 2010 Δ Pc5 - ExB Drift (m/s) Pc5 - ExB Drift (m/s) 2 2 -2 -2 -4 -4 30 30 20 ExB Drift (m/s)

10

0

-10

0800 1000 1200 1400 1600

Local Time (hr)

Equatorial drift and Density fluctuation

Equatorial drift and Density fluctuation

Longitudinal EEJ Variations

East Africa

West Africa

West America

How does the ionospheric density respond to such drift differences?

Storm time electrojet and TEC & Occultation Density profile response

Computerized lonospheric Tomography (CIT)

- → Use radio signals from satellites
- → Needs a chain of ground stations
- → Use line integral of electron density (TEC) as input ingredients
- Invert data sets based on linear mathematical inversion technique
- → Obtain 2D image of electron density
- → Large-scale spatial structure of ionosphere

Resource for **Tomography**

Background profiles

Resource for **Tomography**

Harmonic background profiles

Background ionospheric electron density Used on October 10, 2008 at 14:00 UT

CIT Inversion technique > Divide the imaging region in to number of pixels

→ Fill each pixel with initial electron density guess, which can be obtained from model profiles.

→ Calculate TEC for the current raypaths through initial guess.

Using an iterative fashion, the vertical electron density profile then can be calculated as:

CIT Inversion technique

Computerized lonospheric Tomography (CIT)

- Use radio signals from satellites
- Needs a chain of ground stations
- Use line integral of electron density (TEC) as input ingredients
 - Invert data sets based on linear mathematical inversion technique
 - Obtain vertical structure of electron density <u>Large-scale spatial</u>
 - structure of ionosphere

Tomographically reconstructed
density profilesEast AfricaWest America

Reconstructed Electron Density (10⁵ el/cm³ at 21:00 UT on October 9, 2008 Reconstructed Electron Density (10⁵ el/cm³) at 05:00 UT on October 9, 2008

Tomography and ISR Density profiles comparison

Reconstructed Density on October 29, 2008 at Lat = −12.0°N and Lon = 290°E

Reconstructed Density on October 28, 2008 at Lat = −12.0°N and Lon = 290°E

Longitudinal Density profiles differences East Africa West America

Reconstructed Density on October 17, 2008 at Lat = 8.000°N and Lon = 290°E

Reconstructed Density on October 11, 2008 at Lat = 8.000°N and Lon = 290°E

Reconstructed Density on October 17, 2008 at Lat = -12.0°N and Lon = 290°E

Reconstructed Density on October 11, 2008 at Lat = -12.0°N and Lon = 290°E

2 4 6 8 10 0 12 14 16 18 20 22 UT (hr)

0

2 4 6 8 10 12 14 16 18 20 22 UT (hr)

10

UT (hr)

0 2 4 6 8

2

-20

12 14 16 18 20 22

UT (hr)

UT (hr)

UT (hr)

CNOF/SPLP and tomography density comparison

C/NOFS density distribution on October 5, 2008

Local-time distribution of C/NOFS density

Tomography density at 420 km

Future direction

Such ground-based magnetometer distribution will allow us to understand the physics behind the longitudinal variation of the EEJ and thus ionospheric irregularities.

Conclusion

The magnitude and direction of the vertical drift shows significant difference at different longitudinal sectors.

- The ionospheric density also responded differently at different longitudinal sectors, lower density in the east African sector than west American sector.
- The tomographically inverted density is important to monitor the day-to-day variability of the density at different altitudes, as well as for validation of the in-situ density observations onboard LEO satellites.

