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Introduction

1 midlatitude Pacific Decadal Variability (PDV) seems to be a
combination of stochastically driven, passive ocean response to the
atmosphere and a coupled mode of the ocean-atmosphere system
where ocean dynamics plays a critical role (Latif and Barnett, 1996;
Barnett et al., 1999a,b).

2 The PDO is believed to be associated with both tropical forcing,
through an atmospheric bridge of low-frequency ENSO signal, and
local extratropical atmospheric stochastic forcing (Liu and Alexander,
2007)

3 Origin of ENSO decadal variability: from the Pacific midlatitudes
(Barnett et al., 1999b, Yeh and Kirtman, 2005)? from the Atlantic?
role of tropical noise and mean state in low frequency ENSO
modulation? from Yeh and Kirtman (2009):

Decadal ENSO variability is directly affected by the low-frequency noise
over the western part of the tropical Pacific in a linear sense.
The impact of extratropical atmospheric noise on the ENSO variability
is weaker than the noise in the tropics
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Motivation

Tropical⇐⇒extratropical interactions

The ocean’s role in the tropical-extratropical 

interaction in an idealized AOGCM 

Neven S. Fučkar1, Shang-Ping Xie1,2, and Riccardo Farneti3 

International Pacific Research Center1 and Department of Meteorology2,  

School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, USA 

International Center for Theoretical Physics, Earth System Physics Section3, Trieste, Italy 

June 14, 2011 (11:30-11:45) AM, 18th AMS Conference on Atmospheric and Oceanic Fluid Dynamics, Spokane, Washington 
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1 PDV has been suggested to force decadal tropical variability (via
atmospheric bridge) (Barnett et al., 1999a)

2 and there is controversy on oceanic tunnel pathway of
tropical-subtropical connection in the Pacific (Schneider et al., 1999)
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Hypothesis

⇒Tropical forcing patterns can force extratropical flow responses
(e.g., the Cold Ocean Warm Land Pattern (COWL) reversal observed between
2000/2009 -1990/1999 (Molteni et al. 2010).

⇒Can the atmosphere feed back on the ocean, leading to a time-delayed

response of the tropical oceans?
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Hypothesis

A possible subtropical-tropical connection

SST

Upwelling
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The Models

Ocean model MOM

1 The ICTP-MOM configuration (publicly available; ask me if
interested!)

2 2◦resolution (∼1◦ at Equator), 30 levels, z∗ coordinate

3 NPES = 32 → ∼100 years / 24 hours

4 Surface salinity forcing is applied globally, with a piston velocity of
50m/275 days. (timescale of 60 days)

5 NO SST RESTORING

6 Initial Conditions: Levitus and Steele

Atmospheric Model SPEEDY

1 the ICTPAGCM SPEEDY (Molteni, 2003)

2 Spectral dynamical core, hydrostatic, σ -coordinate.

3 Horizontal resolution is T30, with 8 levels in the vertical.
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Forcing the Ocean Model

1 The Ocean Model is forced with the Coordinated Ocean-ice Reference
Experiment (CORE) Normal Year Forcing (NYF) described in Griffies
et al. (2009) for 600 years.

2 Fluxes for the CORE dataset include T, [U,V], Q, SLP, LW and SW,
Precip and Runoff. They all derive from a combination of NCEP
reanalysis and satellite data.
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The anomalous forcing

1 We ran a 10-member SST-forced SPEEDY ensemble with interannual
varying SST.

2 The forcing was applied only to the Pacific region and it derives from
the HadISST dataset.

3 Elsewhere, climatological, monthly varying SSTs are used.

4 From the ensemble mean, for all forcing fields used in the CORE
datatset, we calculated the monthly difference 2000/2009 minus
1990/1999.

5 The anomalies where then added to each climatological CORE forcing
field.
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The anomalous forcing

(a) (b)

(c)
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CTL and SPEEDY experiments

1 The Control (CTL) experiment is 600 years long.

2 A perturbation experiment (SPEEDY), 25 years long, was started at
year 350 of the CTL run.

3 Results seem robust and stable already after the first 10-15 years.
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Atmospheric response: MOC
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Atmsopheric response: Meridional Energy Fluxes
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(a) Atmospheric meridional energy
fluxes for the decade 1990-1999. The
total transport, or moist static
energy (MSE; bold solid line), dry
static energy (DSE; thin solid line)
and latent energy (LE; dashed grey
line) are represented.
(b) Anomalies in poleward fluxes,
computed as the ensemble mean
difference between the 2000-2009
decade and the 1990-1999 decade.
Units are PW (1 PW = 1015 W).
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The Ocean response: SST EOF-1

A PDO-like pattern is generated when the anomalous forcing is added
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The observed PDO looks like this ...

[jisao.washington.edu]

At decadal time scales, about a third of the PDO signal might be
remotely-driven, with the remaining variance explained by oceanic zonal
advection anomalies and variability of the Aleutian low (Schneider and
Cornuelle, 2005).
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PDO - ENSO indeces

Farneti et al. (ICTP) Pacific interdecadal variability November 14, 2012 15 / 28



The ocean response
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Sensitivity to location of the forcing

SPEEDY-NOTROP and SPEEDY-TROP experiments.

1 1
1
1
11

1
1

Wind stress (vectors; N m−2) and wind stress curl (shading; ×10−7 N
m−3) anomalies computed by the ocean model in the
(a) SPEEDY-NOTROP and (b) SPEEDY-TROP experiments.
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The ocean response: TROP
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The ocean response: NOTROP
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The ocean response: The EUC

Change in the equatorial undercurrent (EUC; in cm s−1)
for the SPEEDY-NOTROP experiment.
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A weakening of the EUC is consistent
with a weaker equatorward transport
of subducted subtropical waters (see
theory of Pedlosky, 1987).
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Heat Content anomalies
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An idealized model of the interactions between
ENSO, the Pacific sub-tropical gyre and the
sub-tropical cells

If T represents the SST anomaly in central equatorial Pacific, G and C are
indices of the anomalies in the intensity of the Pacific sub-tropical gyre
and cells respectively (based on the ENSO delayed oscillator ofSuarez and
Schopf (1988)):

dT
d t

= T −α T (t−δ )− r1(T −T0)3−E (G +G0) (1a)

dG
d t

=−ω C +E T + r2 (1b)

dC
d t

= ω G −k C , (1c)

where T0 =−βC .
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1 Time series for the three
variables T (ENSO SST) , G
(subtropical gyre) and C
(subtropical cells) in the
idealized model.

2 Decadal variability in T and C,
which are anticorrelated by
construction.
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If there is no direct interaction between T and G ...

dT
d t

= T −α T (t−δ )− r1(T −T0)3−������
E (G +G0) (2a)

dG
d t

=−ω C +��E T + r2 (2b)

dC
d t

= ω G −k C , (2c)
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1 Much reduced variability in C
and regular variations in T
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A coupled negative feedback

SST
SST

SST
SST
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Conclusions

1 The atmospheric response to tropical forcing has feedbacks on the
subtropical ocean, which is forcing an equatorial time-delayed
response, generating decadal SST anomalies

2 A possible mechanism for coupled ocean-atmosphere Pacific
multidecadal variability and ENSO decadal variability, involving both
the atmospheric bridge and the oceanic tunnel.

3 BUT: our results seem at odds with the theory of McCreary and Lu
(1994), where the strength of the STC is not directly related to
subtropical subduction.

4 BUT: our results seem at odds with the notion of no interdecadal
tropical predictability

5 CAVEATS: uncoupled and coarse model.
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