Birkhoff sums for interval exchange maps: the Kontsevich-Zorich cocycle (II)

Carlos Matheus / Jean-Christophe Yoccoz

CNRS (Paris 13) / Collège de France

ICTP, May 22, 2012

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

▲御▶ ▲理▶ ▲理▶

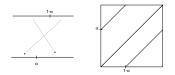
The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes

・ロト ・四ト ・ヨト ・ヨト

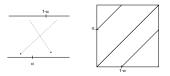
The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes



The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes

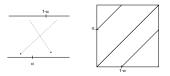


Conversely, given two positive numbers λ_A , $\lambda_B > 0$, the map T_{λ_A,λ_B} defined on $(0, \lambda_A + \lambda_B)$ by

(日)

The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes

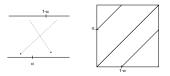


Conversely, given two positive numbers $\lambda_A, \lambda_B > 0$, the map T_{λ_A, λ_B} defined on $(0, \lambda_A + \lambda_B)$ by $T(x) = x + \lambda_B$ for $x \in [0, \lambda_A)$,

(本部) (本語) (本語) (二語)

The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes

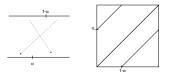


Conversely, given two positive numbers $\lambda_A, \lambda_B > 0$, the map T_{λ_A, λ_B} defined on $(0, \lambda_A + \lambda_B)$ by $T(x) = x + \lambda_B$ for $x \in [0, \lambda_A)$, $T(x) = x - \lambda_A$ for $x \in [\lambda_A, \lambda_A + \lambda_B)$

▲□ → ▲ □ → ▲ □ → □ □

The circle is in one-to-one correspondence with the interval [0, 1) (through the exponential map $x \mapsto \exp 2i\pi x$).

Through this correspondence, the rotation R_{α} (for $\alpha \neq 0$) becomes



Conversely, given two positive numbers $\lambda_A, \lambda_B > 0$, the map T_{λ_A, λ_B} defined on $(0, \lambda_A + \lambda_B)$ by $T(x) = x + \lambda_B$ for $x \in [0, \lambda_A)$, $T(x) = x - \lambda_A$ for $x \in [\lambda_A, \lambda_A + \lambda_B)$ is a scaled version of the rotation R_α on \mathbb{T} , with $\alpha := \frac{\lambda_B}{\lambda_A + \lambda_B}$.

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$.

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

・白・・ヨ・・ モー

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$. Let $\lambda_* := \max(\lambda_A, \lambda_B)$. Denote by \widetilde{T} the return map of T_{λ} on $[0, \lambda_*)$.

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$. Let $\lambda_* := \max(\lambda_A, \lambda_B)$. Denote by \widetilde{T} the return map of T_{λ} on $[0, \lambda_*)$.

• When $\lambda_A = \lambda_B$, \tilde{T} is the identity map.

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$. Let $\lambda_* := \max(\lambda_A, \lambda_B)$. Denote by \widetilde{T} the return map of T_{λ} on $[0, \lambda_*)$.

- When $\lambda_A = \lambda_B$, \tilde{T} is the identity map.
- When $\lambda_A > \lambda_B$, \tilde{T} is equal to $T_{(\lambda_A \lambda_B, \lambda_B)}$.

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$. Let $\lambda_* := \max(\lambda_A, \lambda_B)$. Denote by \widetilde{T} the return map of T_{λ} on $[0, \lambda_*)$.

- When $\lambda_A = \lambda_B$, \tilde{T} is the identity map.
- When $\lambda_A > \lambda_B$, \tilde{T} is equal to $T_{(\lambda_A \lambda_B, \lambda_B)}$.
- When $\lambda_A < \lambda_B$, \tilde{T} is equal to $T_{(\lambda_A, \lambda_B \lambda_A)}$.

Let $\lambda = (\lambda_A, \lambda_B) \in \mathbb{R}^2_+$ and let T_{λ} be the associated transformation of $(0, \lambda_A + \lambda_B)$. Let $\lambda_* := \max(\lambda_A, \lambda_B)$. Denote by \widetilde{T} the return map of T_{λ} on $[0, \lambda_*)$.

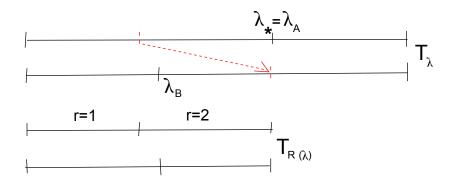
- When $\lambda_A = \lambda_B$, \tilde{T} is the identity map.
- When $\lambda_A > \lambda_B$, \tilde{T} is equal to $T_{(\lambda_A \lambda_B, \lambda_B)}$.
- When $\lambda_A < \lambda_B$, \tilde{T} is equal to $T_{(\lambda_A, \lambda_B \lambda_A)}$.

We can thus define a *renormalization map*: $\Re : \mathbb{R}^2_+ - \{\lambda_A = \lambda_B\} \to \mathbb{R}^2_+$

$$\Re(\lambda_{\mathcal{A}}, \lambda_{\mathcal{B}}) = \begin{cases} (\lambda_{\mathcal{A}} - \lambda_{\mathcal{B}}, \lambda_{\mathcal{B}}) & \text{if } \lambda_{\mathcal{A}} > \lambda_{\mathcal{B}}, \\ (\lambda_{\mathcal{A}}, \lambda_{\mathcal{B}} - \lambda_{\mathcal{A}}) & \text{if } \lambda_{\mathcal{A}} < \lambda_{\mathcal{B}}. \end{cases}$$

伺 ト イ ヨ ト イ ヨ ト

The case $\lambda_A > \lambda_B$



We have seen that $T_{(\lambda_A,\lambda_B)}$ is a scaled version of R_{α} , $\alpha = \frac{\lambda_B}{\lambda_A + \lambda_B}$.

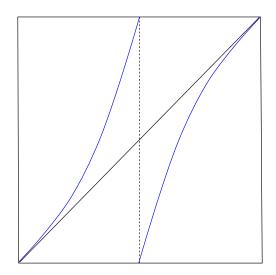
▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

We have seen that $T_{(\lambda_A,\lambda_B)}$ is a scaled version of R_{α} , $\alpha = \frac{\lambda_B}{\lambda_A + \lambda_B}$. Then $T_{\mathcal{R}(\lambda)}$ is a scaled version of $R_{\mathcal{R}(\alpha)}$, with

< □ > < □ > < □ > . □ =

We have seen that $T_{(\lambda_A,\lambda_B)}$ is a scaled version of R_{α} , $\alpha = \frac{\lambda_B}{\lambda_A + \lambda_B}$. Then $T_{\mathcal{R}(\lambda)}$ is a scaled version of $R_{\mathcal{R}(\alpha)}$, with

$$\Re(\alpha) = \begin{cases} \frac{\alpha}{1-\alpha} & \text{if } \alpha \in (0, \frac{1}{2}), \\ \frac{2\alpha-1}{\alpha} & \text{if } \alpha \in (\frac{1}{2}, 1). \end{cases}$$



• \Re is chaotic from the topological point of view:

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

R is chaotic from the topological point of view: it is a 2-to-one map essentially conjugated to the full shift on two symbols.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- ➤ ℜ is chaotic from the topological point of view: it is a 2-to-one map essentially conjugated to the full shift on two symbols.
- ► The points 0 and 1 are *parabolic* fixed points (i.e $\Re'(0) = \Re'(1) = 1$).

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

- ➤ ℜ is chaotic from the topological point of view: it is a 2-to-one map essentially conjugated to the full shift on two symbols.
- ► The points 0 and 1 are *parabolic* fixed points (i.e R'(0) = R'(1) = 1). This implies that , although there are plenty of R-invariant probability measures, none is absolutely continuous w.r.t. Lebesgue measure!

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

- ➤ ℜ is chaotic from the topological point of view: it is a 2-to-one map essentially conjugated to the full shift on two symbols.
- ► The points 0 and 1 are *parabolic* fixed points (i.e R'(0) = R'(1) = 1). This implies that , although there are plenty of R-invariant probability measures, none is absolutely continuous w.r.t. Lebesgue measure! However, there exists an (unique) absolutely continuous R-invariant measure with infinite mass.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

- ➤ ℜ is chaotic from the topological point of view: it is a 2-to-one map essentially conjugated to the full shift on two symbols.
- ► The points 0 and 1 are *parabolic* fixed points (i.e R'(0) = R'(1) = 1). This implies that , although there are plenty of R-invariant probability measures, none is absolutely continuous w.r.t. Lebesgue measure! However, there exists an (unique) absolutely continuous R-invariant measure with infinite mass.
- The map \Re commutes with the involution $\iota(x) = 1 x$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

In view of the symmetry of \mathcal{R} , it is sufficient to consider the map $G_0 := \iota \circ E_{\mathcal{R}}$ from $(0, \frac{1}{2})$ to itself,

< 国 > < 国 > < 国 > -

In view of the symmetry of \Re , it is sufficient to consider the map $G_0 := \iota \circ E_{\Re}$ from $(0, \frac{1}{2})$ to itself, where E_{\Re} is the *first entry map* of \Re into $(\frac{1}{2}, 1)$: for $x \in (0, \frac{1}{2})$

$$egin{array}{rll} E_{\mathcal{R}}(x)&:=&\mathcal{R}^{e(x)}(x),\ e(x)&:=&\min\{j\geq 0,\mathcal{R}^{j}(x)\in (rac{1}{2},1)\}. \end{array}$$

In view of the symmetry of \Re , it is sufficient to consider the map $G_0 := \iota \circ E_{\Re}$ from $(0, \frac{1}{2})$ to itself, where E_{\Re} is the *first entry map* of \Re into $(\frac{1}{2}, 1)$: for $x \in (0, \frac{1}{2})$

$$egin{array}{rll} E_{\mathcal{R}}(x) &:= & \mathcal{R}^{e(x)}(x), \ e(x) &:= & \min\{j\geq 0, \mathcal{R}^{j}(x)\in (rac{1}{2},1)\}. \end{array}$$

Actually, it is classical and more convenient to transfer G_0 to (0, 1) through the conjugacy $h(x) = \frac{x}{1-x}$: the map $G := h \circ G_0 \circ h^{-1}$ is the *Gauss map*

(日本)(日本)(日本)(日本)

In view of the symmetry of \Re , it is sufficient to consider the map $G_0 := \iota \circ E_{\Re}$ from $(0, \frac{1}{2})$ to itself, where E_{\Re} is the *first entry map* of \Re into $(\frac{1}{2}, 1)$: for $x \in (0, \frac{1}{2})$

$$egin{array}{rll} E_{\mathcal{R}}(x) &:= & \mathcal{R}^{e(x)}(x), \ e(x) &:= & \min\{j\geq 0, \mathcal{R}^{j}(x)\in (rac{1}{2},1)\}. \end{array}$$

Actually, it is classical and more convenient to transfer G_0 to (0, 1) through the conjugacy $h(x) = \frac{x}{1-x}$: the map $G := h \circ G_0 \circ h^{-1}$ is the *Gauss map*

$$G(x) = \{\frac{1}{x}\}, \forall x \in (0, 1).$$

(日本)(日本)(日本)(日本)

Graph of the Gauss map



< 回 > < 回 > < 回 > -

크

For an irrational number $x \in (0, 1)$ and $n \ge 0$, we set $x_n := G^n(x)$ and $a_{n+1} = \lfloor \frac{1}{x_n} \rfloor$, so that $x_n = \frac{1}{a_{n+1}+x_{n+1}}$.

<回> < 回> < 回> < 回> = □

For an irrational number $x \in (0, 1)$ and $n \ge 0$, we set $x_n := G^n(x)$ and $a_{n+1} = \lfloor \frac{1}{x_n} \rfloor$, so that $x_n = \frac{1}{a_{n+1}+x_{n+1}}$. One has $p_n + p_{n-1}x_n \qquad q_nx - p_n$

$$x = \frac{p_n + p_{n-1} x_n}{q_n + q_{n-1} x_n}, \quad x_n = -\frac{q_n x - p_n}{q_{n-1} x - p_{n-1}},$$
(1)

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

For an irrational number $x \in (0, 1)$ and $n \ge 0$, we set $x_n := G^n(x)$ and $a_{n+1} = \lfloor \frac{1}{x_n} \rfloor$, so that $x_n = \frac{1}{a_{n+1}+x_{n+1}}$. One has $p_n + p_{n-1}x_n \qquad \qquad q_n x - p_n$

$$x = \frac{p_n + p_{n-1} x_n}{q_n + q_{n-1} x_n}, \quad x_n = -\frac{q_n x - p_n}{q_{n-1} x - p_{n-1}},$$
(1)

where p_n , q_n are inductively defined by the recurrence relation

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}$$
 (2)

▲母▶▲国▶▲国▶ 国 のQで

For an irrational number $x \in (0, 1)$ and $n \ge 0$, we set $x_n := G^n(x)$ and $a_{n+1} = \lfloor \frac{1}{x_n} \rfloor$, so that $x_n = \frac{1}{a_{n+1}+x_{n+1}}$. One has $p_n + p_{n-1}x_n \qquad q_n x - p_n$

$$x = \frac{p_n + p_{n-1} x_n}{q_n + q_{n-1} x_n}, \quad x_n = -\frac{q_n x - p_n}{q_{n-1} x - p_{n-1}},$$
(1)

where p_n , q_n are inductively defined by the recurrence relation

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}$$
 (2)

and the initial conditions

$$p_{-1} = q_0 = 1, \quad p_0 = q_{-1} = 0.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

For an irrational number $x \in (0, 1)$ and $n \ge 0$, we set $x_n := G^n(x)$ and $a_{n+1} = \lfloor \frac{1}{x_n} \rfloor$, so that $x_n = \frac{1}{a_{n+1}+x_{n+1}}$. One has $p_n + p_{n-1}x_n \qquad q_n x - p_n$

$$x = \frac{p_n + p_{n-1} x_n}{q_n + q_{n-1} x_n}, \quad x_n = -\frac{q_n x - p_n}{q_{n-1} x - p_{n-1}},$$
(1)

where p_n , q_n are inductively defined by the recurrence relation

$$p_n = a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}$$
 (2)

and the initial conditions

$$p_{-1} = q_0 = 1, \quad p_0 = q_{-1} = 0.$$

The rational numbers $\left(\frac{p_n}{q_n}\right)$ are called the *convergents* of *x*.

Theorem: Let x be an irrational number in (0, 1). Let n be a nonnegative integer.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem: Let *x* be an irrational number in (0, 1). Let *n* be a nonnegative integer. For any positive integer $0 < q < q_{n+1}$ and any integer *p*, we have

$$|qx-p|\geq |q_nx-p_n|,$$

<回>< E> < E> < E> = E

Theorem: Let *x* be an irrational number in (0, 1). Let *n* be a nonnegative integer. For any positive integer $0 < q < q_{n+1}$ and any integer *p*, we have

$$|qx-p|\geq |q_nx-p_n|,$$

and equality holds iff $q = q_n$, $p = p_n$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Absolutely continuous invariant measure for the Gauss map

Proposition: The probability measure $(\log 2)^{-1} \frac{dx}{1+x}$ on (0, 1) is invariant under *G*.

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

< □ > < □ > < □ > □ =

Absolutely continuous invariant measure for the Gauss map

Proposition: The probability measure $(\log 2)^{-1} \frac{dx}{1+x}$ on (0, 1) is invariant under *G*. It is ergodic.

< □ > < □ > < □ > □ =

$$|x-rac{p}{q}|\geq rac{\gamma}{q^{2+ au}}.$$

▲□ → ▲ □ → ▲ □ → □

$$|x-\frac{p}{q}|\geq \frac{\gamma}{q^{2+\tau}}.$$

Equivalently, the convergents of *x* satisfy $q_{n+1} = O(q_n^{1+\tau})$.

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

$$|x-\frac{p}{q}|\geq rac{\gamma}{q^{2+ au}}.$$

Equivalently, the convergents of *x* satisfy $q_{n+1} = O(q_n^{1+\tau})$. We denote by *DC* the set of diophantine numbers.

(日本)(日本)(日本)(日本)

$$|x-\frac{p}{q}|\geq rac{\gamma}{q^{2+ au}}.$$

Equivalently, the convergents of x satisfy $q_{n+1} = O(q_n^{1+\tau})$.

We denote by *DC* the set of diophantine numbers.

It has full Lebesgue measure in \mathbb{R} (or \mathbb{T}).

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ 臣 ● � � � �

Birkhoff sums of smooth functions for diophantine rotations

Theorem: Let α be a diophantine number in \mathbb{T} and let $\varphi \in C^{\infty}(\mathbb{T})$. There exists a smooth function $\psi \in C^{\infty}(\mathbb{T})$ such that

$$arphi = \int_{\mathbb{T}} arphi(t) \, dt + \psi \circ \pmb{R}_{lpha} - \psi \; .$$

<回><モン<

Birkhoff sums of smooth functions for diophantine rotations

Theorem: Let α be a diophantine number in \mathbb{T} and let $\varphi \in C^{\infty}(\mathbb{T})$. There exists a smooth function $\psi \in C^{\infty}(\mathbb{T})$ such that

$$arphi = \int_{\mathbb{T}} arphi(t) \, dt + \psi \circ {\it R}_lpha - \psi \; .$$

Corollary: The Birkhoff sums of φ w.r.t. R_{α} satisfy

$$S_n \varphi(x) = n \int_{\mathbb{T}} \varphi(t) dt + O(1) ,$$

uniformly in $x \in \mathbb{T}$.

▲□ → ▲ □ → ▲ □ → □

Consider as above a scaled version T_{λ} of a rotation, determined by parameters $\lambda_A, \lambda_B > 0$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

< 国 > < 国 > < 国 > -

Define $\zeta_A := (\lambda_A, \tau_A), \zeta_B := (\lambda_B, \tau_B), \zeta := (\zeta_B, \zeta_A).$

Define $\zeta_A := (\lambda_A, \tau_A), \zeta_B := (\lambda_B, \tau_B), \zeta := (\zeta_B, \zeta_A)$. We view ζ as an element of $GL(2, \mathbb{R})$ (ζ_B, ζ_A being the column vectors of the corresponding matrix) with positive determinant.

▲母▶▲国▶▲国▶ 国 のQで

Define $\zeta_A := (\lambda_A, \tau_A), \zeta_B := (\lambda_B, \tau_B), \zeta := (\zeta_B, \zeta_A)$. We view ζ as an element of $GL(2, \mathbb{R})$ (ζ_B, ζ_A being the column vectors of the corresponding matrix) with positive determinant.

Let L_{ζ} be the lattice in \mathbb{R}^2 spanned by ζ_A, ζ_B .

Define $\zeta_A := (\lambda_A, \tau_A), \zeta_B := (\lambda_B, \tau_B), \zeta := (\zeta_B, \zeta_A)$. We view ζ as an element of $GL(2, \mathbb{R})$ (ζ_B, ζ_A being the column vectors of the corresponding matrix) with positive determinant.

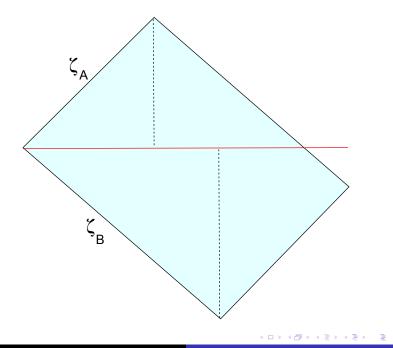
Let L_{ζ} be the lattice in \mathbb{R}^2 spanned by ζ_A, ζ_B . Denote by \mathbb{T}_{ζ} the 2-dimensional torus \mathbb{R}^2/L_{ζ} .

Define $\zeta_A := (\lambda_A, \tau_A), \zeta_B := (\lambda_B, \tau_B), \zeta := (\zeta_B, \zeta_A)$. We view ζ as an element of $GL(2, \mathbb{R})$ (ζ_B, ζ_A being the column vectors of the corresponding matrix) with positive determinant.

Let L_{ζ} be the lattice in \mathbb{R}^2 spanned by ζ_A, ζ_B . Denote by \mathbb{T}_{ζ} the 2-dimensional torus \mathbb{R}^2/L_{ζ} .

The return map on the horizontal segment $(0, \lambda_A + \lambda_B)$ of the flow on \mathbb{T}_{ζ} generated by the vertical vectorfield $\frac{\partial}{\partial y}$ is the transformation T_{λ} .

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @



Definition: A lattice $L \subset \mathbb{R}^2$ is *irrational* if it intersects the vertical and horizontal axes only at the origin.

Definition: A lattice $L \subset \mathbb{R}^2$ is *irrational* if it intersects the vertical and horizontal axes only at the origin.

Lemma: Let *L* be an irrational lattice of covolume 1 in \mathbb{R}^2 . There exists a **unique** basis $\zeta_A = (\lambda_A, \tau_A), \zeta_B = (\lambda_B, \tau_B)$ of *L* such that either $\lambda_A \ge 1 > \lambda_B > 0$, $0 < \tau_A < -\tau_B$ or $\lambda_B \ge 1 > \lambda_A > 0$, $0 < -\tau_B < \tau_A$.

伺 ト イ ヨ ト イ ヨ ト 二 ヨ

Definition: A lattice $L \subset \mathbb{R}^2$ is *irrational* if it intersects the vertical and horizontal axes only at the origin.

Lemma: Let *L* be an irrational lattice of covolume 1 in \mathbb{R}^2 . There exists a **unique** basis $\zeta_A = (\lambda_A, \tau_A), \zeta_B = (\lambda_B, \tau_B)$ of *L* such that either $\lambda_A \ge 1 > \lambda_B > 0$, $0 < \tau_A < -\tau_B$ or $\lambda_B \ge 1 > \lambda_A > 0$, $0 < -\tau_B < \tau_A$.

The proof is left as an exercise.

伺 ト イ ヨ ト イ ヨ ト 二 ヨ

▲御▶ ▲臣▶ ▲臣▶ 三臣

The quotient $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$ is then identified with the unit tangent bundle of the modular surface $\mathbb{H}/SL(2, \mathbb{Z})$.

The quotient $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$ is then identified with the unit tangent bundle of the modular surface $\mathbb{H}/SL(2, \mathbb{Z})$. It is also identified with the space of lattices of covolume 1.

The quotient $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$ is then identified with the unit tangent bundle of the modular surface $\mathbb{H}/SL(2, \mathbb{Z})$. It is also identified with the space of lattices of covolume 1.

The action by left multiplication of the diagonal one-parameter subgroup $g^t := \operatorname{diag}(e^t, e^{-t})$ on $SL(2, \mathbb{R})/SL(2, \mathbb{Z})$ is the geodesic flow on the modular surface, endowed with its metrics of constant negative curvature inherited from \mathbb{H} .

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Let L_0 be an irrational lattice of covolume 1.

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

▲□ → ▲ □ → ▲ □ →

Let L_0 be an irrational lattice of covolume 1.

For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1.

Carlos Matheus / Jean-Christophe Yoccoz Birkhoff sums for interval exchange maps: the Kontsevich-Z

< □ > < □ > < □ > .

Let L_0 be an irrational lattice of covolume 1.

For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1.

Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma.

Let L_0 be an irrational lattice of covolume 1.

For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1.

Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma.

How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ?

< □ > < □ > < □ > □ =

Let L_0 be an irrational lattice of covolume 1. For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1. Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma. How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ? Assume for instance that $\zeta = (\zeta_A, \zeta_B)$ satisfies

$$\lambda_A \geq 1 > \lambda_B > 0, \ 0 < \tau_A < -\tau_B$$

(the other case is symmetric).

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ つくで

Let L_0 be an irrational lattice of covolume 1. For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1. Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma. How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ? Assume for instance that $\zeta = (\zeta_A, \zeta_B)$ satisfies

 $\lambda_A \geq 1 > \lambda_B > 0, \ 0 < \tau_A < -\tau_B$

(the other case is symmetric).

For $0 \leq t < t^* := -\log \lambda_B$, one has $e^t \lambda_B < 1$ and thus $\zeta(t) = g^t \zeta$.

Let L_0 be an irrational lattice of covolume 1. For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1. Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma. How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ? Assume for instance that $\zeta = (\zeta_A, \zeta_B)$ satisfies

$$\lambda_A \geq 1 > \lambda_B > 0, \ 0 < \tau_A < -\tau_B$$

(the other case is symmetric).

For $0 \leq t < t^* := -\log \lambda_B$, one has $e^t \lambda_B < 1$ and thus $\zeta(t) = g^t \zeta$. On the other hand, for $t = t^*$, one has

$$\begin{aligned} \zeta_A(t^*) &= g^{t^*}(\zeta_A - m\zeta_B), \\ \zeta_B(t^*) &= g^{t^*}(\zeta_B), \end{aligned}$$

Let L_0 be an irrational lattice of covolume 1. For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1. Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma. How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ? Assume for instance that $\zeta = (\zeta_A, \zeta_B)$ satisfies

$$\lambda_A \geq 1 > \lambda_B > 0, \ 0 < \tau_A < -\tau_B$$

(the other case is symmetric).

For $0 \leq t < t^* := -\log \lambda_B$, one has $e^t \lambda_B < 1$ and thus $\zeta(t) = g^t \zeta$. On the other hand, for $t = t^*$, one has

$$\begin{aligned} \zeta_A(t^*) &= g^{t^*}(\zeta_A - m\zeta_B), \\ \zeta_B(t^*) &= g^{t^*}(\zeta_B), \end{aligned}$$

where $m := \lfloor \frac{\lambda_A}{\lambda_B} \rfloor$.

Let L_0 be an irrational lattice of covolume 1. For all $t \in \mathbb{R}$, the lattice $L_t := g^t L$ is also irrational of covolume 1. Let $\zeta = (\zeta_A, \zeta_B)$ the basis of L_0 given by the lemma. How does the corresponding basis $\zeta(t)$ for L_t relate to ζ ? Assume for instance that $\zeta = (\zeta_A, \zeta_B)$ satisfies

 $\lambda_A \geq 1 > \lambda_B > 0, \ 0 < \tau_A < -\tau_B$

(the other case is symmetric).

For $0 \leq t < t^* := -\log \lambda_B$, one has $e^t \lambda_B < 1$ and thus $\zeta(t) = g^t \zeta$. On the other hand, for $t = t^*$, one has

$$\begin{aligned} \zeta_A(t^*) &= g^{t^*}(\zeta_A - m\zeta_B), \\ \zeta_B(t^*) &= g^{t^*}(\zeta_B), \end{aligned}$$

where $m := \lfloor \frac{\lambda_A}{\lambda_B} \rfloor$.

One recognizes a fast homogeneous version of the renormalization algorithm!