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Quick review from yesterday

Yesterday, we reduced Avila-Viana simplicity criterium for pinching
and twisting cocycle A over countable shifts to show that:

Proposition 3

νn(x) = A
`(x ,n)
∗ ν accum. some Dirac mass for µ−-a.e. x ∈ Σ−.

where

`(x , n) = (x−n, . . . , x−1) is the terminal word of length n of
x = (. . . , x−n, . . . , x−1) ∈ Σ−;

ν = r∗m̂,

m̂ is a u-state, and

r : Σ̂× G (k)→ G (k) is the can. proj. to the Grass. G (k).
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Pinching and twisting

Recall that a cocycle A is:

pinching if ∃ `∗ word s.t. P := A`
∗

is a matrix whose eigenv.
are all real and of distinct modulus, i.e., P is a pinching
matrix;

twisting if ∀ 1 ≤ k ≤ d/2, ∃ `(k) s.t. T0 := A`(k) is twisting
wrt pinching matrix P, i.e.,

T0(F ) ∩ F ′ = {0}

for every P-inv. F ∈ G (k) and F ′ ∈ G (d − k).

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (10th lecture)



End of proof of Avila-Viana simplicity criterium
Lyap. exp. of KZ cocycles wrt other measures?

EKZ formula for sums of Lyap. exp.
Final words

Pinching and twisting

Recall that a cocycle A is:

pinching if ∃ `∗ word s.t. P := A`
∗

is a matrix whose eigenv.
are all real and of distinct modulus, i.e., P is a pinching
matrix;

twisting if ∀ 1 ≤ k ≤ d/2, ∃ `(k) s.t. T0 := A`(k) is twisting
wrt pinching matrix P, i.e.,

T0(F ) ∩ F ′ = {0}

for every P-inv. F ∈ G (k) and F ′ ∈ G (d − k).

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (10th lecture)



End of proof of Avila-Viana simplicity criterium
Lyap. exp. of KZ cocycles wrt other measures?

EKZ formula for sums of Lyap. exp.
Final words

Pinching and twisting

T0

T0

P
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Why νn(x) accumulate Dirac masses? I

We start the proof of Prop. 3 by noticing that pinching and
twisting for A implies a uniform twisting:

(ut) ∃ `1, . . . , `m ∈ Ω and δ > 0 s.t. ∀ F ′ ∈ G (d − k) ∃ i with

A`i (F+(P)) ∩ F ′ = {0} and ∠(A`i (F+(P)),F ′) ≥ δ

Here, F+(P) is the subsp. of kth largest eigenvalues of P.

Remark

Here, the compactness of G (k) (and Leb. cov. lemma) were used.

Notation

Let Ti := A`i be the matrices appearing in item (ut).
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Why νn(x) accumulate Dirac masses? II

The key lemma for Prop. 3 is:

Lemma 1

Let ε > 0 and ρ prob. meas. on G(k). ∃ n0 = n0(ρ, ε) and, for
each ˜̀ ∈ Ω, there exists i = i (̃`) ∈ {1, . . . ,m} s.t., for n ≥ n0, we
have

A
`
∗(ρ)(B) = (A

è
TiP

nT0Pn)∗(ρ)(B) > 1− ε

where
` := (`∗)n`(k)(`∗)n`i

˜̀
(here (`∗)n := `∗ . . . `∗︸ ︷︷ ︸

n

) and B is the ball of radius ε > 0 centered

at ξ`.
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Why νn(x) accumulate Dirac masses? III

The previous lemma is harder to state than to explain. It says that

∀ long word ˜̀ one picks,

∃ approp. “start” s (̃`) := (`∗)n`(k)(`∗)n`i s.t.

the “corrected” word ` = s (̃`)̃` obtained by the concat. of
s (̃`) and ˜̀ has the property that

A` concentrates the most of the mass of any prob. meas. ρ
on G(k) on a tiny ball B.
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Why νn(x) accumulate Dirac masses? IV

What’s the enemy against Lemma 1?

Well,

if ρ has a “reasonable” amount of mass uniformly far from

F−(A
è
), and

if ˜̀ is sufficiently long,

by applying A
è

one sees that the mass of ρ starts to concentrate

near F+(A
è
) ...

However, if ρ charges a lot a neighb. of F−(A
è
), we run in trouble

and this is the enemy we should fight by choosing a convenient
“start word” s (̃`)...
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Why νn(x) accumulate Dirac masses? V

Formally, the proof of Lemma 1 goes as follows. Apply Pn to ρ. In
this way, ρ′ := Pn

∗ρ concent. its mass near a P-inv. pt. of G (k).

Now, use T0 from def. of twisting to get ρ′′ := (T0)∗ρ
′ concent.

near a generic pt of G (k).

Next, we re-apply Pn to get ρ′′′ = Pn
∗ρ
′′ concentrated nearby the

point F+(P).

Here we see a subtle but crucial gain of info.:

in 1st appl. of Pn, we get near some P-inv. k-plane, but

after adjusting with the “twisting” T0, in 2nd appl. of Pn, we
get near the very specific k-plane F+(P) (assoc. to the k
largest eigenv. of P).
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Why νn(x) accumulate Dirac masses? VI

Continuing the argument, we take F ′ = F−(A
è
) (our enemy) and,

by item (ut) above, we select i = i (̃`) s.t.

∠(Ti (F+(P)),F ′) ≥ δ

That is, by applying Ti , we get prob. meas. ρ′′′′ = A`iρ′′′ concent.

near a pt unif. transv. to the enemy F ′ = F−(A
è
).

Thus, if ˜̀ is long word, we have that prob. meas. ρ(v) = A
è
ρ′′′′ is

concentrated nearby ξ`, where

` = (`∗)n`(k)(`∗)n`i
˜̀ := s (̃`)̃`.

This completes the proof of Lemma 1.
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è
) (our enemy) and,

by item (ut) above, we select i = i (̃`) s.t.

∠(Ti (F+(P)),F ′) ≥ δ

That is, by applying Ti , we get prob. meas. ρ′′′′ = A`iρ′′′ concent.

near a pt unif. transv. to the enemy F ′ = F−(A
è
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Why νn(x) accumulate Dirac masses? VII

Finally, we’re tempted to derive Prop. 3 directly from Lemma 1
with ρ = ν.

However, by inspecting the statements, one sees that such a direct
application of Lemma 1 is not possible as it deals only with words
of the form

s (̃`)̃`.

But, by arguments similar to the proof of ergodicity of Bernoulli
shifts, one can show that for µ−-a.e. x ∈ Σ−

`(x ,N) has the form s (̃`)̃`

for infinitely many (“times”) N.

At this point, it is safe to use Lemma 1 to conclude Prop. 3!
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What lies beyond Masur-Veech measures? I

After studying the Lyap. exp. of KZ cocycle wrt Masur-Veech
measures µMV and its applications to the dynamics of almost every
i.e.t., one can ask

What about other measures?

Indeed, besides the intrinsic interest, this question is motivated e.g.
by the fact that rational billiards are not detected by µMV (and so
Lyap. exp. of µMV don’t help in this situation).
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What lies beyond Masur-Veech measures? II

On the other hand, it is not a good idea to try to attack all
Teichmüller flow gt erg. inv. prob. at once.

Indeed, since gt is a non-unif. hyp. flow, it has plenty of inv. meas.
(e.g., the ones supported on periodic orbits) and it might be tricky
to check whether the Lyap. exp. of KZ cocycle are simple wrt such
meas. (cf. 1st exercise in the slides of yesterday’s lecture).
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What lies beyond Masur-Veech measures? III

Fortunately, gt is part of a SL(2,R)-action and, since the
celebrated works of M. Ratner, one has the feeling that
SL(2,R)-orbits tend to behave better than gt-orbits.

Remark (for experts)

It was recently announced by A. Eskin and M. Mirzakhani that
“the SL(2,R)-action on moduli spaces of translation surfaces
behave as “predicted” by Ratner’s theory”...
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What lies beyond Masur-Veech measures? IV

So, from now on, µ is a SL(2,R)-inv. gt-ergodic prob. on a (c.c.
of a) stratum of the moduli space of transl. surf.

Such µ’s are not very difficult to find: for instance, SL(2,R)-orbits
of square-tiled surfaces (i.e., transl. surfaces obtained as finite
ram. cov. of T2 branched only at 0 ∈ T2 – see figure below) are
closed and they support an unique SL(2,R)-inv. prob.; moreover,
the class of square-tiled surfaces is dense in moduli spaces.
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EKZ formula
Siegel-Veech constants
Genus 2 case
Square-tiled surfaces
Does explicit knowledge of exponents help in applications?

EKZ formula I

In a recent work, A. Eskin, M. Kontsevich and A. Zorich completed
the proof of a formula (announced 15 years ago...) for the sum

λµ1 + · · ·+ λµg = 1 + λµ2 + · · ·+ λµg

of the top g Lyap. exp. of KZ cocycle wrt SL(2,R)-inv. µ.

It is beyond scope to present a proof of EKZ formula here: the
current version of EKZ paper has 106 pp. and it uses sophisticated
tools from Alg. Geom. such as Deligne-Mumford compactification,
Grothendieck-Hirzebruch-Riemann-Roch theorem, etc...

In some sense, EKZ paper is the hardest integration by parts
“exercise” ever...
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EKZ formula II

However, we can at least try to understand the terms in their
formula and give some applications of it.

To get started, here is a 1st order approximation to EKZ formula:

Theorem (EKZ formula)

Let µ be a SL(2,R)-inv. gt-ergodic prob. on a stratum
M(1)(k1, . . . , ks). Then,

λµ1 + · · ·+ λµg =
1

12

s∑
j=1

kj(kj + 2)

(kj + 1)
+ c(µ)

where c(µ) > 0 is a geometric quantity associated to µ called
Siegel-Veech constant.
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A technical remark

In fact, there is a subtlety about the assumptions on µ: in EKZ
paper, besides SL(2,R)-inv. (and gt-erg.), they require µ to be

“algebraic”, i.e., the support of µ is an affine orbifold (in
period coord.) and µ is the “Lebesgue” measure of this affine
orbifold, and
“regular” (a technical assumption for a certain integration by
parts argument to work).

Nevertheless, as we told, Eskin-Mirzakhani showed that any
SL(2,R)-inv. µ fit Ratner’s theory predictions and, in particular,
they’re alg. Also, all known examples of SL(2,R)-inv. prob. are
“regular” (in EKZ sense).

So, for today, let’s pretend that “µ is SL(2,R)-inv.” means

“µ is SL(2,R)-inv., gt-erg., algebraic and regular”.
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EKZ formula III

Even without knowing what are Siegel-Veech constants, we already
can extract consequences of EKZ formula:

Corollary

In genus g ≥ 7, any SL(2,R)-inv. µ satisfies

λµ2 > 0 (and actually λµ[(g−1)g/(6g−3)] > 0).

Proof

Since λµ1 = 1, it suffices to check that the r.h.s. of EKZ formula is
> 1 to get λµ2 > 0, and this follows from

1

12

∑ kj(kj + 2)

(kj + 1)
+ c(µ) >

1

12

∑
kj =

2g − 2

12
≥ 1 (as g ≥ 7)
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Siegel-Veech constants I

Given S a transl. surf. and γ a closed regular geodesic, we can
form a maximal cylinder C by collecting all closed regular
geodesics of S parallel to γ.

For instance, we see below a transl. surf. with two max. cylinders
C1 and C2 (assoc. to γ1 and γ2) in the horizontal direction.

γ1

γ2
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Siegel-Veech constants II

The width w(C ) of a cylinder is the length of its waist curve, its
height h(C ) is the distance across it, and its modulus mod(C ) is
h(C )/w(C ).

In the figure of previous slide (recalled below), w(C1) = 2,
h(C1) = 1 and mod(C1) = 1/2.

γ1

γ2
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Siegel-Veech constants III

Given L > 0, define

Narea(S , L) :=
∑

w(C)≤L

area(C )

area(S)

Roughly speaking, Narea(S , L) is measuring the fraction of the
transl. surf. S occupied by max. cyl. C of bdd. width w(C ) ≤ L.

Of course Narea(S , L) depends a lot on S and L, but W. Veech and
Ya. Vorobets proved that, for any SL(2,R)-inv. µ, the quantity

c(µ) :=
π

3L2

∫
Narea(S , L)dµ(S)

independs on L.
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Siegel-Veech constants IV

As you can guess, c(µ) is the Siegel-Veech constant: in some
sense, c(µ) measures how transl. surf. S ∈ supp(µ) are filled by
max. cyl. of bounded length in average.

In particular, c(µ) is a quantity related to the geometry of transl.
surf. in the support of µ.
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Siegel-Veech constants V

For Masur-Veech measures µ, Siegel-Veech constants were
computed by A. Eskin, H. Masur and A. Zorich, but we’ll not
discuss this here.

Instead, we present only two contexts where Siegel-Veech
constants for SL(2,R)-inv. µ are known:

for any µ in genus 2;

for µ supported on SL(2,R)-orbits of square-tiled surfaces.
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SV constants and individual values of exponents

In genus 2 there are two strata M(2) and M(1, 1). It was shown
by EKZ that

c(µ) =

{
10/9 if supp(µ) ⊂M(2)

15/12 if supp(µ) ⊂M(1, 1)

By EKZ formula, this means that we know all Lyap. exp. in genus
2:

1 + λµ2 = λµ1 + λµ2 =

{
4/3 if supp(µ) ⊂M(2)
3/2 if supp(µ) ⊂M(1, 1)

that is

λµ2 =

{
1/3 if supp(µ) ⊂M(2)
1/2 if supp(µ) ⊂M(1, 1)
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SV constants of square-tiled surfaces and sums of exp.

It was shown by EKZ that SV const. of µ associated to
SL(2,R)-orbits of a square-tiled surface M0 is given by

c(µ) =
1

#SL(2,Z) ·M0

∑
Mi∈SL(2,Z)·M0

∑
Mi =∪Cij

h(Cij)

w(Cij)

In particular, for a square-tiled surface M0 ∈M(1)(k1, . . . , ks), the
sum Λ(µ) = λµ1 + · · ·+ λµg of exponents is

1

12

s∑
j=1

kj(kj + 2)

(kj + 1)
+

1

#SL(2,Z) ·M0

∑
Mi∈SL(2,Z)·M0

∑
Mi =∪Cij

h(Cij)

w(Cij)
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Example I: a genus 2 square-tiled surface in M(2)

From this picture, we infer that the sum of Lyap. exp. is

Λ(µ) =
1

12

2 · 4
3

+
1

3

{(
1

3

)
+

(
1

1
+

1

2

)
+

(
1

1
+

1

2

)}
=

4

3
,

a fact that we already knew (from the genus 2 discussion above).
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Example II: a genus 3 square-tiled surface

This genus 3 square-tiled surface MEW ∈M(1, 1, 1, 1) satisfies
SL(2,Z) ·MEW = MEW , so that the sum of Lyap. exp. is

Λ(µ) =
1

12
4 · 1 · 3

2
+

1

1

(
1

4
+

1

4

)
= 1,

i.e., λµ2 = λµ3 = 0! So, there is no Avila-Viana thm for MEW at all!
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Example IIa: a genus 3 square-tiled surface

The square-tiled surface from previous slide was discovered by G.
Forni and it is called Eierlegende Wollmilchsau:
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Example III: a genus 4 square-tiled surface

This genus 4 square-tiled surface MEW ∈M(2, 2, 2) satisfies
SL(2,Z) ·MO = MO , so that the sum of Lyap. exp. is

Λ(µ) =
1

12
3 · 2 · 4

3
+

1

1

(
1

6
+

1

6

)
= 1,

i.e., λµ2 = λµ3 = λµ4 = 0!
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Example IIIa: a genus 4 square-tiled surface

The square-tiled surface from previous slide was discovered by G.
Forni and a coauthor, and it is called Ornithorynque:
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Why trying to get explicit values for these exponents?

The knowledge KZ cocycle has an exp. 2/3 > 1/2 in a certain
example recently allowed V. Delecroix, P. Hubert and S. Lelièvre to
confirm a prediction of the physicists J. Hardy and J. Weber that
the Ehrenfest wind-tree model:

has abnormal diffusion rate for typical choices of parameters, i.e.,

lim sup
t→∞

log d(x , φt
θ(x))

log t
= 2/3 > 1/2

for a.e. 0 < a, b < 1 (sizes of the rectangles), θ and x .
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