Birkhoff sums for interval exchange maps: the Kontsevich-Zorich cocycle (I)

Carlos Matheus / Jean-Christophe Yoccoz

CNRS (Paris 13) / Collège de France

ICTP, May 21, 2012

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} .

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

The Lebesgue measure on $\mathbb R$ induces a natural measure on $\mathbb T$, also called Lebesgue measure,

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

The Lebesgue measure on $\mathbb R$ induces a natural measure on $\mathbb T$, also called Lebesgue measure, which is the Haar measure on $\mathbb T$ viewed as a compact Lie group.

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

The Lebesgue measure on \mathbb{R} induces a natural measure on \mathbb{T} , also called Lebesgue measure, which is the Haar measure on \mathbb{T} viewed as a compact Lie group.

For $\alpha \in \mathbb{T}$, we denote by R_{α} the translation (rotation) $x \mapsto x + \alpha$ on \mathbb{T} .

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

The Lebesgue measure on $\mathbb R$ induces a natural measure on $\mathbb T$, also called Lebesgue measure, which is the Haar measure on $\mathbb T$ viewed as a compact Lie group.

For $\alpha \in \mathbb{T}$, we denote by R_{α} the translation (rotation) $x \mapsto x + \alpha$ on \mathbb{T} .

It is a Lebesgue measure preserving homeomorphism.

We denote by \mathbb{T} the quotient \mathbb{R}/\mathbb{Z} . It is an abelian group, and also a compact manifold of dimension 1.

The Lebesgue measure on $\mathbb R$ induces a natural measure on $\mathbb T$, also called Lebesgue measure, which is the Haar measure on $\mathbb T$ viewed as a compact Lie group.

For $\alpha \in \mathbb{T}$, we denote by R_{α} the translation (rotation) $x \mapsto x + \alpha$ on \mathbb{T} .

It is a Lebesgue measure preserving homeomorphism.

Rotations on \mathbb{T} form a group isomorphic to \mathbb{T} .

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer ≥ 1 .

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer \geq 1. Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer \geq 1. Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Definition: An element $\alpha \in \mathbb{T}$ is *rational* if it has finite order in \mathbb{T} , *irrational* otherwise.

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer ≥ 1 . Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Definition: An element $\alpha \in \mathbb{T}$ is *rational* if it has finite order in \mathbb{T} , *irrational* otherwise. A rotation R_{α} on \mathbb{T} is *rational* (resp. *irrational*) if α is rational (resp. irrational).

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer ≥ 1 . Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Definition: An element $\alpha \in \mathbb{T}$ is *rational* if it has finite order in \mathbb{T} , *irrational* otherwise. A rotation R_{α} on \mathbb{T} is *rational* (resp. *irrational*) if α is rational (resp. irrational).

Let $\alpha \in \mathbb{T}$ be rational;

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer ≥ 1 . Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Definition: An element $\alpha \in \mathbb{T}$ is *rational* if it has finite order in \mathbb{T} , *irrational* otherwise. A rotation R_{α} on \mathbb{T} is *rational* (resp. *irrational*) if α is rational (resp. irrational).

Let $\alpha \in \mathbb{T}$ be rational; denote its (exact) order by $q \geq 1$.

Fact: Let $\alpha \in \mathbb{T}$; let q be an integer ≥ 1 . Then α has order q in \mathbb{T} iff α is the image in \mathbb{T} of a rational number with denominator equal to q.

Definition: An element $\alpha \in \mathbb{T}$ is *rational* if it has finite order in \mathbb{T} , *irrational* otherwise. A rotation R_{α} on \mathbb{T} is *rational* (resp. *irrational*) if α is rational (resp. irrational).

Let $\alpha \in \mathbb{T}$ be rational; denote its (exact) order by $q \ge 1$. All orbits of the rotation R_{α} are periodic of exact period q.

Irrational rotations: Equidistribution of orbits

Theorem: Let $\alpha \in \mathbb{T}$ be irrational.

Irrational rotations: Equidistribution of orbits

Theorem: Let $\alpha \in \mathbb{T}$ be irrational. Then, every orbit of the rotation R_{α} is dense and *equidistributed* in \mathbb{T} :

Irrational rotations: Equidistribution of orbits

Theorem: Let $\alpha \in \mathbb{T}$ be irrational. Then, every orbit of the rotation R_{α} is dense and *equidistributed* in \mathbb{T} : for any continuous function $\varphi \in C(\mathbb{T})$, one has

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{0}^{n-1}\varphi(x+n\alpha)=\int_{\mathbb{T}}\varphi(t)\,dt\;,$$

uniformly in $x \in \mathbb{T}$.

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X.

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X. It can also be viewed, by the Riesz representation theorem, as the space of positive linear forms of norm 1 on C(X).

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X. It can also be viewed, by the Riesz representation theorem, as the space of positive linear forms of norm 1 on C(X). It is endowed with the weak topology, being thus a nonempty convex compact subset of the dual of C(X).

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X. It can also be viewed, by the Riesz representation theorem, as the space of positive linear forms of norm 1 on C(X).

It is endowed with the weak topology, being thus a nonempty convex compact subset of the dual of C(X).

For $\mu \in \mathcal{M}(X)$, we denote by $f^*\mu$ the *direct image* of μ under f, defined by

$$\int arphi \, d f^* \mu = \int arphi \circ f \, d \mu, \quad orall arphi \in {\it C}({\it X}).$$

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X. It can also be viewed, by the Riesz representation theorem, as the space of positive linear forms of norm 1 on C(X).

It is endowed with the weak topology, being thus a nonempty convex compact subset of the dual of C(X).

For $\mu \in \mathcal{M}(X)$, we denote by $f^*\mu$ the *direct image* of μ under f, defined by

$$\int arphi \, df^* \mu = \int arphi \circ f \, d\mu, \quad orall arphi \in {\it C}({\it X}).$$

Definition: The measure μ is *invariant* under f is $f^*\mu = \mu$.

Consider a compact metric space *X* and a continuous map *f* from *X* to itself.

Denote by $\mathfrak{M}(X)$ the space of Borel probability measures on X. It can also be viewed, by the Riesz representation theorem, as the space of positive linear forms of norm 1 on C(X).

It is endowed with the weak topology, being thus a nonempty convex compact subset of the dual of C(X).

For $\mu \in \mathcal{M}(X)$, we denote by $f^*\mu$ the *direct image* of μ under f, defined by

$$\int arphi \, df^* \mu = \int arphi \circ f \, d\mu, \quad orall arphi \in {\it C}({\it X}).$$

Definition: The measure μ is *invariant* under f is $f^*\mu = \mu$. Equivalently, for every Borel set $A \subset X$, we have $\mu(f^{-1}(A) = \mu(A)$.

Ergodicity

Proposition: The *f*-invariant measures form a nonempty convex compact subset $\mathcal{M}_f(X)$ of $\mathcal{M}(X)$.

Ergodicity

Proposition: The *f*-invariant measures form a nonempty convex compact subset $\mathcal{M}_f(X)$ of $\mathcal{M}(X)$.

Definition: A f-invariant measure μ is ergodic if , for every Borel f-invariant set $A \subset X$ (i.e such that $f^{-1}(A) = A$), one has $\mu(A) = 0$ or $\mu(A) = 1$.

Ergodicity

Proposition: The *f*-invariant measures form a nonempty convex compact subset $\mathcal{M}_f(X)$ of $\mathcal{M}(X)$.

Definition: A f-invariant measure μ is *ergodic* if , for every Borel f-invariant set $A \subset X$ (i.e such that $f^{-1}(A) = A$), one has $\mu(A) = 0$ or $\mu(A) = 1$.

The ergodic f-invariant measures are exactly the extremal points of $\mathcal{M}_f(X)$.

Birkhoff sums

Definition: For any function φ on X, the *Birkhoff sum* of order n of φ (relative to f) is defined by

$$S_n \varphi := \sum_{i=0}^{n-1} \varphi \circ f^i$$
.

Birkhoff sums

Definition: For any function φ on X, the *Birkhoff sum* of order n of φ (relative to f) is defined by

$$S_n \varphi := \sum_{i=0}^{n-1} \varphi \circ f^i$$
.

Birkhoff sums satisfy the cocycle rotation

$$S_{m+n}\varphi = S_m\varphi + S_n\varphi \circ f^m$$
.

Birkhoff sums

Definition: For any function φ on X, the *Birkhoff sum* of order n of φ (relative to f) is defined by

$$S_n\varphi:=\sum_{i=0}^{n-1}\varphi\circ f^i.$$

Birkhoff sums satisfy the cocycle rotation

$$S_{m+n}\varphi = S_m\varphi + S_n\varphi \circ f^m$$
.

When *f* is invertible, one can also define $S_n\varphi$ for n < 0 through

$$S_n\varphi=-\sum_{i=n}^{-1}\varphi\circ f^i$$
.

Birkhoff sums and invariant measures

For $x \in \mathbb{T}$, $n \ge 0$, denote by $\mu_{n,x}$ the barycentric combination of Dirac measures

$$\mu_{n,x} = \delta_x + \dots \delta_{f^{n-1}(x)}.$$

Birkhoff sums and invariant measures

For $x \in \mathbb{T}$, $n \ge 0$, denote by $\mu_{n,x}$ the barycentric combination of Dirac measures

$$\mu_{n,x} = \delta_x + \dots \delta_{f^{n-1}(x)}.$$

We thus have

$$S_n \varphi = \int \varphi \ d\mu_{n,x} \ .$$

Birkhoff sums and invariant measures

For $x \in \mathbb{T}$, $n \ge 0$, denote by $\mu_{n,x}$ the barycentric combination of Dirac measures

$$\mu_{n,x} = \delta_x + \dots \delta_{f^{n-1}(x)}.$$

We thus have

$$S_n \varphi = \int \varphi \ d\mu_{n,x} \ .$$

Let (x_n) be any sequence in X. Any accumulation point (for the weak topology) of the sequence (μ_{n,x_n}) is a f-invariant measure.

Birkhoff's ergodic theorem

Assume that μ is an **ergodic** f-invariant measure.

Theorem: (Birkhoff) Let φ be a μ -integrable function. For μ -almost all $x \in X$, we have

$$\lim_{n\to+\infty}\frac{1}{n}S_n\varphi(x)=\int\varphi\;d\mu\;.$$

For a proof, see for instance Milnor's notes www.math.sunysb.edu/ jack/DYNOTES/dn9.pdf

Definition: The continuous map *f* is said to be *uniquely ergodic* if there is only one *f*-invariant measure.

Definition: The continuous map f is said to be *uniquely ergodic* if there is only one f-invariant measure.

From the characterization of ergodicity in terms of extremal points, the only *f*-invariant measure of an uniquely ergodic transformation is ergodic.

Definition: The continuous map f is said to be *uniquely ergodic* if there is only one f-invariant measure.

From the characterization of ergodicity in terms of extremal points, the only *f*-invariant measure of an uniquely ergodic transformation is ergodic.

Proposition: The following are equivalent

1. *f* is uniquely ergodic;

Definition: The continuous map f is said to be *uniquely ergodic* if there is only one f-invariant measure.

From the characterization of ergodicity in terms of extremal points, the only *f*-invariant measure of an uniquely ergodic transformation is ergodic.

Proposition: The following are equivalent

- 1. f is uniquely ergodic;
- 2. for every continuous function φ , the Birkhoff averages $(\frac{1}{n}S_n\varphi)$ converge uniformly to a constant;

Definition: The continuous map f is said to be *uniquely ergodic* if there is only one f-invariant measure.

From the characterization of ergodicity in terms of extremal points, the only *f*-invariant measure of an uniquely ergodic transformation is ergodic.

Proposition: The following are equivalent

- 1. *f* is uniquely ergodic;
- 2. for every continuous function φ , the Birkhoff averages $(\frac{1}{n}S_n\varphi)$ converge uniformly to a constant;
- 3. for every continuous function φ and any $\varepsilon>0$, there exists a constant c and a continuous function ψ such that

$$||\varphi - \mathbf{c} - \psi \circ \mathbf{f} + \psi||_{\mathbf{C}^0} \leqslant \varepsilon$$
.

We can thus reformulate the equidistribution of orbits for irrational rotations by stating that:

We can thus reformulate the equidistribution of orbits for irrational rotations by stating that:

Theorem: Irrational rotations are uniquely ergodic.

Linear flows on \mathbb{T}^{2}

We denote by \mathbb{T}^2 the 2-dimensional torus $\mathbb{R}^2/\mathbb{Z}^2$.

Linear flows on \mathbb{T}^2

We denote by \mathbb{T}^2 the 2-dimensional torus $\mathbb{R}^2/\mathbb{Z}^2$.

For $\alpha=(\alpha_1,\alpha_2)\in\mathbb{R}^2$, consider the constant vectorfield $X_{\alpha}=\alpha_1\frac{\partial}{\partial x_1}+\alpha_2\frac{\partial}{\partial x_2}$ on \mathbb{T}^2 .

Linear flows on \mathbb{T}^2

We denote by \mathbb{T}^2 the 2-dimensional torus $\mathbb{R}^2/\mathbb{Z}^2$.

For $\alpha=(\alpha_1,\alpha_2)\in\mathbb{R}^2$, consider the constant vectorfield $X_{\alpha}=\alpha_1\frac{\partial}{\partial x_1}+\alpha_2\frac{\partial}{\partial x_2}$ on \mathbb{T}^2 .

It generates a flow (one-parameter group) $(\Phi_{\alpha}^t)_{t\in\mathbb{R}}$ given by

$$\Phi_{\alpha}^{t}(x_1, x_2) = (x_1 + t\alpha_1, x_2 + t\alpha_2) \mod \mathbb{Z}.$$

If $\alpha = (0,0)$, then Φ_{α}^t is the identity map on \mathbb{T}^2 for all $t \in \mathbb{R}$.

If $\alpha = (0,0)$, then Φ_{α}^t is the identity map on \mathbb{T}^2 for all $t \in \mathbb{R}$.

Assume from now that $\alpha \neq (0,0)$; assume for instance that $\alpha_2 > 0$.

If $\alpha = (0,0)$, then Φ_{α}^{t} is the identity map on \mathbb{T}^{2} for all $t \in \mathbb{R}$.

Assume from now that $\alpha \neq (0,0)$; assume for instance that $\alpha_2 > 0$.

Consider the *return map R* of the flow $(\Phi_{\alpha}^t)_{t\in\mathbb{R}}$ on the circle $\mathbb{T}\times\{0\}$:

$$R(x_1,0) = \Phi_{\alpha}^{r(x_1)}(x_1,0)$$
,

If $\alpha = (0,0)$, then Φ_{α}^t is the identity map on \mathbb{T}^2 for all $t \in \mathbb{R}$.

Assume from now that $\alpha \neq (0,0)$; assume for instance that $\alpha_2 > 0$.

Consider the *return map R* of the flow $(\Phi_{\alpha}^t)_{t\in\mathbb{R}}$ on the circle $\mathbb{T}\times\{0\}$:

$$R(x_1,0) = \Phi_{\alpha}^{r(x_1)}(x_1,0)$$
,

where

$$r(x_1) := \min\{t > 0, \Phi_{\alpha}^t(x_1, 0) \in \mathbb{T} \times \{0\}\}$$

is the return time to $\mathbb{T} \times \{0\}$.

From linear flows to rotations

An immediate computation gives, for all $x \in \mathbb{T}$

From linear flows to rotations

An immediate computation gives, for all $x \in \mathbb{T}$

$$r(x) = \alpha_2^{-1}, \quad R(x,0) = (x + \bar{\alpha}, 0)$$

with $\bar{\alpha} = \frac{\alpha_1}{\alpha_2}$.

From linear flows to rotations

An immediate computation gives, for all $x \in \mathbb{T}$

$$r(x) = \alpha_2^{-1}, \quad R(x,0) = (x + \bar{\alpha}, 0)$$

with $\bar{\alpha} = \frac{\alpha_1}{\alpha_2}$.

Definition The linear flow $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is *rational* if $\frac{\alpha_1}{\alpha_2} \in \mathbb{Q} \cup \{\infty\}$, *irrational* otherwise.

Theorem: Let $\alpha \in \mathbb{R}^2$ be $\neq (0,0)$.

Theorem: Let $\alpha \in \mathbb{R}^2$ be $\neq (0,0)$.

▶ If $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is rational, every orbit of the flow is periodic with the same period.

Theorem: Let $\alpha \in \mathbb{R}^2$ be $\neq (0,0)$.

- ▶ If $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is rational, every orbit of the flow is periodic with the same period.
- ▶ If $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is irrational, it is uniquely ergodic: every orbit of the flow is dense and equidistributed. For every continuous function φ on \mathbb{T}^2

Theorem: Let $\alpha \in \mathbb{R}^2$ be $\neq (0,0)$.

- ▶ If $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is rational, every orbit of the flow is periodic with the same period.
- ▶ If $(\Phi_{\alpha}^t)_{t \in \mathbb{R}}$ is irrational, it is uniquely ergodic: every orbit of the flow is dense and equidistributed. For every continuous function φ on \mathbb{T}^2

$$\lim_{T\to\infty}\int_0^T\varphi\circ\Phi_\alpha^t(x)\,dt=\int_{\mathbb{T}^2}\varphi(s_1,s_2)\,ds_1\,ds_2,$$

uniformly in $x = (x_1, x_2) \in \mathbb{T}^2$.

