Birkhoff sums of i.e.t.'s: KZ cocycle (3rd lecture)

Carlos Matheus and Jean-Christophe Yoccoz

CNRS (Paris 13) and Collège de France
May 23, 2012

Table of contents

(1) Interval exchange transformations
(2) Suspension of i.e.t.'s and translation surfaces

Definition of i.e.t.

Definition

Let $I \subset \mathbb{R}$ be a bounded open interval. $T: D_{T} \rightarrow D_{T^{-1}}$ is an interval exchange transformation (i.e.t. for short) if

- $D_{T}, D_{T_{-1}} \subset I$,
- $\#\left(I-D_{T}\right)=\#\left(I-D_{T^{-1}}\right)=d-1<\infty$,
- T is injective, and
- the restriction of T to any connected component of D_{T} is a translation onto some connected component of D_{T-1}.

Some concrete examples

Figure: 3 examples of i.e.t.'s

Combinatorial data

A combinatorial marking for an i.e.t. T is an alphabet \mathcal{A} with $\# \mathcal{A}=d$ and bijections $\pi_{t}, \pi_{b}: \mathcal{A} \rightarrow\{1, \ldots, d\}$ s.t. $\forall \alpha \in \mathcal{A}$ the image under T of the connected comp. of D_{T} at position $\pi_{t}(\alpha)$ (from left to right) is the c.c. of $D_{T^{-1}}$ at position $\pi_{b}(\alpha)$.

Combinatorial data

A combinatorial marking for an i.e.t. T is an alphabet \mathcal{A} with $\# \mathcal{A}=d$ and bijections $\pi_{t}, \pi_{b}: \mathcal{A} \rightarrow\{1, \ldots, d\}$ s.t. $\forall \alpha \in \mathcal{A}$ the image under T of the connected comp. of D_{T} at position $\pi_{t}(\alpha)$ (from left to right) is the c.c. of $D_{T^{-1}}$ at position $\pi_{b}(\alpha)$.

We'll denote a comb. marking also as $\left(\begin{array}{ccc}\pi_{t}^{-1}(1) & \ldots & \pi_{t}^{-1}(d) \\ \pi_{b}^{-1}(1) & \ldots & \pi_{b}^{-1}(d)\end{array}\right)$.

Combinatorial data

A combinatorial marking for an i.e.t. T is an alphabet \mathcal{A} with $\# \mathcal{A}=d$ and bijections $\pi_{t}, \pi_{b}: \mathcal{A} \rightarrow\{1, \ldots, d\}$ s.t. $\forall \alpha \in \mathcal{A}$ the image under T of the connected comp. of D_{T} at position $\pi_{t}(\alpha)$ (from left to right) is the c.c. of $D_{T^{-1}}$ at position $\pi_{b}(\alpha)$.

We'll denote a comb. marking also as $\left(\begin{array}{ccc}\pi_{t}^{-1}(1) & \ldots & \pi_{t}^{-1}(d) \\ \pi_{b}^{-1}(1) & \ldots & \pi_{b}^{-1}(d)\end{array}\right)$.
Two comb. markings $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and $\left(\mathcal{A}^{\prime}, \pi_{t}^{\prime}, \pi_{b}^{\prime}\right)$ are equivalent when \exists bijection $i: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ s.t. $\pi_{t}^{\prime}=\pi_{t} \circ i, \pi_{b}^{\prime}=\pi_{b} \circ i$.

Combinatorial data

A combinatorial marking for an i.e.t. T is an alphabet \mathcal{A} with $\# \mathcal{A}=d$ and bijections $\pi_{t}, \pi_{b}: \mathcal{A} \rightarrow\{1, \ldots, d\}$ s.t. $\forall \alpha \in \mathcal{A}$ the image under T of the connected comp. of D_{T} at position $\pi_{t}(\alpha)$ (from left to right) is the c.c. of $D_{T^{-1}}$ at position $\pi_{b}(\alpha)$.

We'll denote a comb. marking also as $\left(\begin{array}{ccc}\pi_{t}^{-1}(1) & \ldots & \pi_{t}^{-1}(d) \\ \pi_{b}^{-1}(1) & \ldots & \pi_{b}^{-1}(d)\end{array}\right)$.
Two comb. markings $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and $\left(\mathcal{A}^{\prime}, \pi_{t}^{\prime}, \pi_{b}^{\prime}\right)$ are equivalent when \exists bijection $i: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ s.t. $\pi_{t}^{\prime}=\pi_{t} \circ i, \pi_{b}^{\prime}=\pi_{b} \circ i$.

Clearly, an i.e.t. T determines a equiv. class of comb. markings called the combinatorial data of T.

Combinatorial markings for 3 i.e.t.'s

The 3 i.e.t.'s below

have combinatorial markings

$$
\left(\begin{array}{cc}
A & B \\
B & A
\end{array}\right),\left(\begin{array}{lll}
A & B & C \\
C & B & A
\end{array}\right),\left(\begin{array}{cccc}
A & B & C & D \\
D & C & B & A
\end{array}\right)
$$

Why not using only a permutation as combinatorial data?

One could "simplify" the def. of comb. data by keeping only the permutation $\pi_{b} \circ \pi_{t}^{-1}:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$.

Why not using only a permutation as combinatorial data?

One could "simplify" the def. of comb. data by keeping only the permutation $\pi_{b} \circ \pi_{t}^{-1}:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$.

But, we'll not do so because this breaks the natural symmetry between T and T^{-1}, i.e., the past and future, or top and bottom lines, as $\pi_{b} \circ \pi_{t}^{-1}$ implicitly "prefers" to number the top line as $1, \ldots, d$.

Why not using only a permutation as combinatorial data?

One could "simplify" the def. of comb. data by keeping only the permutation $\pi_{b} \circ \pi_{t}^{-1}:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$.

But, we'll not do so because this breaks the natural symmetry between T and T^{-1}, i.e., the past and future, or top and bottom lines, as $\pi_{b} \circ \pi_{t}^{-1}$ implicitly "prefers" to number the top line as $1, \ldots, d$.

Also, by simplifying it here, we pay a price later when doing computations with i.e.t.'s because every time we have to present the comb. data, we must firstly renumber the top line as $1, \ldots, d$ before calculating the bottom line.

Irreducible combinatorial data

A combinatorial marking $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ is irreducible when

$$
\pi_{t}^{-1}(\{1, \ldots, k\}) \neq \pi_{b}^{-1}(\{1, \ldots, k\})
$$

for each $1 \leq k<d$.

Irreducible combinatorial data

A combinatorial marking $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ is irreducible when

$$
\pi_{t}^{-1}(\{1, \ldots, k\}) \neq \pi_{b}^{-1}(\{1, \ldots, k\})
$$

for each $1 \leq k<d$.
This condition is invariant under equiv. of comb. markings, so that it makes sense to talk about irreducible combinatorial data.

Irreducible combinatorial data

A combinatorial marking $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ is irreducible when

$$
\pi_{t}^{-1}(\{1, \ldots, k\}) \neq \pi_{b}^{-1}(\{1, \ldots, k\})
$$

for each $1 \leq k<d$.
This condition is invariant under equiv. of comb. markings, so that it makes sense to talk about irreducible combinatorial data.

From the dynamical point of view, it suffices to consider i.e.t.'s T with irred. comb. data: indeed, an i.e.t. T with reducible data, say $\pi_{t}^{-1}(\{1, \ldots, k\})=\pi_{b}^{-1}(\{1, \ldots, k\})$, is the juxtaposition of two i.e.t.'s, one with k intervals, and another with $d-k$ intervals.

Some i.e.t.'s admitting reducible combinatorial data

Length data

Let $T: D_{T} \rightarrow D_{T^{-1}}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$.

Length data

Let $T: D_{T} \rightarrow D_{T^{-1}}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$.
The singularities of $T^{ \pm 1}$ are $\left\{u_{1}^{t, b}<\cdots<u_{d-1}^{t, b}\right\}=I-D_{T^{ \pm 1}}$.

Length data

Let $T: D_{T} \rightarrow D_{T^{-1}}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$. The singularities of $T^{ \pm 1}$ are $\left\{u_{1}^{t, b}<\cdots<u_{d-1}^{t, b}\right\}=I-D_{T^{ \pm 1}}$.

For each $\alpha \in \mathcal{A}$, let $I_{\alpha}^{t, b}$ be the c.c. of $D_{T^{ \pm 1}}$ in position $\pi_{t, b}(\alpha)$, and let $\lambda_{\alpha}=\left|I_{\alpha}^{t, b}\right|$ be the (common) length of $I_{\alpha}^{t, b}$.

Length data

Let $T: D_{T} \rightarrow D_{T-1}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$. The singularities of $T^{ \pm 1}$ are $\left\{u_{1}^{t, b}<\cdots<u_{d-1}^{t, b}\right\}=I-D_{T^{ \pm 1}}$.

For each $\alpha \in \mathcal{A}$, let $I_{\alpha}^{t, b}$ be the c.c. of $D_{T^{ \pm 1}}$ in position $\pi_{t, b}(\alpha)$, and let $\lambda_{\alpha}=\left|I_{\alpha}^{t, b}\right|$ be the (common) length of $I_{\alpha}^{t, b}$.

The row vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}} \in \mathbb{R}^{\mathcal{A}}$ is the length data (or length vector) of T.

Length data

Let $T: D_{T} \rightarrow D_{T^{-1}}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$. The singularities of $T^{ \pm 1}$ are $\left\{u_{1}^{t, b}<\cdots<u_{d-1}^{t, b}\right\}=I-D_{T^{ \pm 1}}$.

For each $\alpha \in \mathcal{A}$, let $I_{\alpha}^{t, b}$ be the c.c. of $D_{T^{ \pm 1}}$ in position $\pi_{t, b}(\alpha)$, and let $\lambda_{\alpha}=\left|I_{\alpha}^{t, b}\right|$ be the (common) length of $I_{\alpha}^{t, b}$.

The row vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}} \in \mathbb{R}^{\mathcal{A}}$ is the length data (or length vector) of T.

For each $\alpha \in \mathcal{A}$, let δ_{α} be the real number such that $I_{\alpha}^{b}=I_{\alpha}^{t}+\delta_{\alpha}$. The column vector $\delta=\left(\delta_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is the translation vector of T.

Length data

Let $T: D_{T} \rightarrow D_{T^{-1}}$ i.e.t. with comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right), \# \mathcal{A}=d$. The singularities of $T^{ \pm 1}$ are $\left\{u_{1}^{t, b}<\cdots<u_{d-1}^{t, b}\right\}=I-D_{T^{ \pm 1}}$.

For each $\alpha \in \mathcal{A}$, let $I_{\alpha}^{t, b}$ be the c.c. of $D_{T^{ \pm 1}}$ in position $\pi_{t, b}(\alpha)$, and let $\lambda_{\alpha}=\left|I_{\alpha}^{t, b}\right|$ be the (common) length of $I_{\alpha}^{t, b}$.

The row vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}} \in \mathbb{R}^{\mathcal{A}}$ is the length data (or length vector) of T.

For each $\alpha \in \mathcal{A}$, let δ_{α} be the real number such that $I_{\alpha}^{b}=I_{\alpha}^{t}+\delta_{\alpha}$. The column vector $\delta=\left(\delta_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is the translation vector of T.

A combinatorial data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and a length data $\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$ determine an unique i.e.t. on $I=(0,|\lambda|)$ where $|\lambda|=\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha}$.

Length data, translation vector and the matrix Ω

The length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and the translation vector $\delta=\left(\delta_{\alpha}\right)_{\alpha \in \mathcal{A}}$ are related by the following formula

$$
\delta_{\alpha}=\sum_{\pi_{b}(\beta)<\pi_{b}(\alpha)} \lambda_{\beta}-\sum_{\pi_{t}(\beta)<\pi_{t}(\alpha)} \lambda_{\beta}=\sum_{\beta} \Omega_{\alpha \beta} \lambda_{\beta}
$$

Length data, translation vector and the matrix Ω

The length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and the translation vector $\delta=\left(\delta_{\alpha}\right)_{\alpha \in \mathcal{A}}$ are related by the following formula

$$
\delta_{\alpha}=\sum_{\pi_{b}(\beta)<\pi_{b}(\alpha)} \lambda_{\beta}-\sum_{\pi_{t}(\beta)<\pi_{t}(\alpha)} \lambda_{\beta}=\sum_{\beta} \Omega_{\alpha \beta} \lambda_{\beta}
$$

where $\Omega=\left(\Omega_{\alpha \beta}\right)$ is the antisymmetric matrix

$$
\Omega_{\alpha \beta}=\left\{\begin{array}{cc}
+1, & \text { if } \pi_{b}(\beta)<\pi_{b}(\alpha) \text { and } \pi_{t}(\beta)>\pi_{t}(\alpha) \\
-1, & \text { if } \pi_{b}(\beta)>\pi_{b}(\alpha) \text { and } \pi_{t}(\beta)<\pi_{t}(\alpha) \\
0, & \text { otherwise }
\end{array}\right.
$$

Suspension data

Definition

Let $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ be a combinatorial data of an i.e.t. $T: D_{T} \rightarrow D_{T^{-1}}$. We say that $\tau \in \mathbb{R}^{\mathcal{A}}$ is a suspension data (or suspension vector) if

$$
\sum_{\pi_{t}(\alpha) \leq k} \tau_{\alpha}>0 \quad \text { and } \quad \sum_{\pi_{b}(\alpha) \leq k} \tau_{\alpha}<0
$$

for every $1 \leq k<d$.

Suspension data

Definition

Let $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ be a combinatorial data of an i.e.t.
$T: D_{T} \rightarrow D_{T^{-1}}$. We say that $\tau \in \mathbb{R}^{\mathcal{A}}$ is a suspension data (or suspension vector) if

$$
\sum_{\pi_{t}(\alpha) \leq k} \tau_{\alpha}>0 \quad \text { and } \quad \sum_{\pi_{b}(\alpha) \leq k} \tau_{\alpha}<0
$$

for every $1 \leq k<d$.

Example (Canonical suspension data)

$\tau_{\alpha}^{c a n}:=\pi_{b}(\alpha)-\pi_{t}(\alpha)$ is a susp. vector iff the comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ is irred.. Also, the set of susp. vectors is empty when the comb. data is reducible.

Masur's suspension construction I

Let T an i.e.t. with irred. comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$, and let $\tau=\left(\tau_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a susp. vector. Set $\zeta_{\alpha}=\lambda_{\alpha}+i \tau_{\alpha} \in \mathbb{C} \simeq \mathbb{R}^{2}$.

Masur's suspension construction I

Let T an i.e.t. with irred. comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$, and let $\tau=\left(\tau_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a susp. vector. Set $\zeta_{\alpha}=\lambda_{\alpha}+i \tau_{\alpha} \in \mathbb{C} \simeq \mathbb{R}^{2}$.

We suspend T using τ as follows: starting from $0 \in \mathbb{C} \simeq \mathbb{R}^{2}$, we construct a "top", "bottom" polygonal line by connecting the points $0, \zeta_{\pi_{t, b}^{-1}(1)}, \zeta_{\pi_{t, b}^{-1}(1)}+\zeta_{\pi_{t, b}^{-1}(2)}, \ldots, \zeta_{\pi_{t, b}^{-1}(1)}+\cdots+\zeta_{\pi_{t, b}^{-1}(d)}$.

Masur's suspension construction I

Let T an i.e.t. with irred. comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$, and let $\tau=\left(\tau_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a susp. vector. Set $\zeta_{\alpha}=\lambda_{\alpha}+i \tau_{\alpha} \in \mathbb{C} \simeq \mathbb{R}^{2}$.

We suspend T using τ as follows: starting from $0 \in \mathbb{C} \simeq \mathbb{R}^{2}$, we construct a "top", "bottom" polygonal line by connecting the points $0, \zeta_{\pi_{t, b}^{-1}(1)}, \zeta_{\pi_{t, b}^{-1}(1)}+\zeta_{\pi_{t, b}^{-1}(2)}, \ldots, \zeta_{\pi_{t, b}^{-1}(1)}+\cdots+\zeta_{\pi_{t, b}^{-1}(d)}$.

Remark

These polygonal lines have the same endpoints (namely $\sum_{\alpha \in \mathcal{A}} \zeta_{\alpha}$).

Masur's suspension construction I

Let T an i.e.t. with irred. comb. data $\left(\mathcal{A}, \pi_{t}, \pi_{b}\right)$ and length vector $\lambda=\left(\lambda_{\alpha}\right)_{\alpha \in \mathcal{A}}$, and let $\tau=\left(\tau_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a susp. vector. Set $\zeta_{\alpha}=\lambda_{\alpha}+i \tau_{\alpha} \in \mathbb{C} \simeq \mathbb{R}^{2}$.

We suspend T using τ as follows: starting from $0 \in \mathbb{C} \simeq \mathbb{R}^{2}$, we construct a "top", "bottom" polygonal line by connecting the points $0, \zeta_{\pi_{t, b}^{-1}(1)}, \zeta_{\pi_{t, b}^{-1}(1)}+\zeta_{\pi_{t, b}^{-1}(2)}, \cdots, \zeta_{\pi_{t, b}^{-1}(1)}+\cdots+\zeta_{\pi_{t, b}^{-1}(d)}$.

Remark

These polygonal lines have the same endpoints (namely $\sum_{\alpha \in \mathcal{A}} \zeta_{\alpha}$).

Remark

Since τ is a suspension vector, the intermediary points of top, bottom polygonal line stays in the upper, lower half-plane.

Masur's suspension construction II

If these lines don't intersect except at endpoints, one has a (compact, orient.) surface M by gluing ζ_{α}-sides of the top and bottom lines by an adequate translation by $\theta_{\alpha} \in \mathbb{C}=\mathbb{R}^{2}$:

Masur's suspension construction II

If these lines don't intersect except at endpoints, one has a (compact, orient.) surface M by gluing ζ_{α}-sides of the top and bottom lines by an adequate translation by $\theta_{\alpha} \in \mathbb{C}=\mathbb{R}^{2}$:

Exercise

The θ_{α} 's above satisfy $\theta=\delta$ - ih where θ is the column vector of coord. θ_{α}, h is the column vector $h=-\Omega^{t} \tau$, and δ is the (column) transl. vector $\delta=\Omega^{t} \lambda$.

Masur's suspension construction III

The top and bottom lines don't intersect if $\sum_{\alpha} \tau_{\alpha}=0$ (hence for
$\tau=\tau^{c a n}$) or $\lambda_{\pi_{t}^{-1}(d)}=\lambda_{\pi_{b}^{-1}(d)}$, but they may intersect in general.

Masur's suspension construction III

The top and bottom lines don't intersect if $\sum_{\alpha} \tau_{\alpha}=0$ (hence for $\tau=\tau^{\text {can }}$) or $\lambda_{\pi_{t}^{-1}(d)}=\lambda_{\pi_{b}^{-1}(d)}$, but they may intersect in general.

For instance, this happens for: comb. data $\left(\begin{array}{cccc}A & B & D & C \\ D & A & C & B\end{array}\right)$, $\zeta_{A}=1+i, \zeta_{B}=3+3 i, \zeta_{C}=\varepsilon+i, \zeta_{D}=3-3 i$, and $0<\varepsilon<1$:

Masur's suspension construction IV

A way of getting around this difficulty is by stopping before the self-intersection and gluing it at an appropriate place:

Veech's zippered rectangles construction I

Another way of overcoming this problem is via Veech's zippered rectangles construction. One considers

- $R_{\alpha}^{t, b}=I_{\alpha}^{t, b} \times\left[0, h_{\alpha}\right]$;
- $S_{i}^{t, b}=\left\{u_{i}^{t, b}\right\} \times\left[0, \sum_{\pi_{t, b}(\alpha) \leq i} \tau_{\alpha}\right)$;
- $C_{0}=\left(u_{0}, 0\right), C_{d}=\left(u_{d}, \sum_{\alpha} \tau_{\alpha}\right), C_{i}^{t, b}=C_{0}+\sum_{\pi_{t, b}(\alpha) \leq i} \zeta_{\alpha} ;$
- S^{*} is the vertical segment joining $\left(u_{d}, 0\right)$ and C_{d}, and one builds a surface M by gluing these elements with the following rules.

Veech's zippered rectangles construction II

- R_{α}^{t} and $R_{\alpha}^{b}=R_{\alpha}^{b}+\theta_{\alpha}$;
- $C_{\pi_{t}(\alpha)}^{t}$ and $C_{\pi_{b}(\alpha)}^{b}=C_{\pi_{t}(\alpha)}^{t}+\theta_{\alpha}$;
- if $\sum_{\alpha} \tau_{\alpha}>0$, we glue the top part of $S_{\pi_{t} \pi_{b}^{-1}(d)}^{t}$ with S^{*} by $\theta_{\pi_{b}^{-1}(d)}$, and if $\sum_{\alpha} \tau_{\alpha}<0$, we glue S^{*} with the bottom part of $S_{\pi_{b} \pi_{t}^{-1}(d)}^{t}$ with S^{*} by $\theta_{\pi_{t}^{-1}(d)}$

The following picture shows in a nutshell the main features of Veech's construction:

Veech's zippered rectangles construction III

A word on the nomenclature "suspension"

The name "suspension" for the transl. surf. M coming from an i.e.t. T and a susp. vector τ is motivated by the fact that T is naturally the first return map of the vertical vector field Y on an adequate transversal:

A word on the nomenclature "suspension"

The name "suspension" for the transl. surf. M coming from an i.e.t. T and a susp. vector τ is motivated by the fact that T is naturally the first return map of the vertical vector field Y on an adequate transversal:

In other words, it is natural to study the dynamics of the i.e.t. T and the translation (vertical) flow Y together.

Translation surfaces |

Let M be a susp. of an i.e.t. T say by Masur's construction (i.e., the top and bottom polygonal lines don't intersect).

Translation surfaces I

Let M be a susp. of an i.e.t. T say by Masur's construction (i.e., the top and bottom polygonal lines don't intersect).

The surface M comes with:

- a special finite set $\Sigma=\left\{A_{1}, \ldots, A_{s}\right\}$ corresponding to the intermediary points on the polygonal lines, and
- a (maximal) atlas ξ on $M-\Sigma$ such that the changes of charts are translations of $\mathbb{C} \simeq \mathbb{R}^{2}$.
- moreover, for each $1 \leq i \leq s$, one can find a nbd. $V_{i} \subset M$ of A_{i}, a nbd. $W_{i} \subset \mathbb{R}^{2}$ of 0 and $\pi:\left(V_{i}, A_{i}\right) \rightarrow\left(W_{i}, 0\right)$ a ramified covering of finite degree $\kappa_{i} \geq 1$ such that every injective restriction of π is a chart of ξ.

Translation surfaces II

The data of a compact orientable topological surface M of genus $g \geq 1$, a finite set $\Sigma=\left\{A_{1}, \ldots, A_{s}\right\} \subset M$, a list $\kappa=\left(\kappa_{1}, \ldots, \kappa_{s}\right)$ of ramification indices and a (max.) atlas ξ with the properties described in the last slide is a translation surface structure.

Translation surfaces II

The data of a compact orientable topological surface M of genus $g \geq 1$, a finite set $\Sigma=\left\{A_{1}, \ldots, A_{s}\right\} \subset M$, a list $\kappa=\left(\kappa_{1}, \ldots, \kappa_{s}\right)$ of ramification indices and a (max.) atlas ξ with the properties described in the last slide is a translation surface structure.

Hence, we just saw that susp.'s of i.e.t.'s are transl. surfaces.

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};
- an area form on M obtained by pull-back of $d x \wedge d y$ on \mathbb{R}^{2};

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};
- an area form on M obtained by pull-back of $d x \wedge d y$ on \mathbb{R}^{2};
- a canonical choice of vertical vector field Y on $M-\Sigma$ obtained by pull-back of $\partial / \partial y$ on \mathbb{R}^{2};

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};
- an area form on M obtained by pull-back of $d x \wedge d y$ on \mathbb{R}^{2};
- a canonical choice of vertical vector field Y on $M-\Sigma$ obtained by pull-back of $\partial / \partial y$ on \mathbb{R}^{2};
- a Riemann surface (complex) structure because translations are holomorphic;

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};
- an area form on M obtained by pull-back of $d x \wedge d y$ on \mathbb{R}^{2};
- a canonical choice of vertical vector field Y on $M-\Sigma$ obtained by pull-back of $\partial / \partial y$ on \mathbb{R}^{2};
- a Riemann surface (complex) structure because translations are holomorphic;
- a non-trivial Abelian differential (holomorphic 1-form) ω obtained by pull-back of $d z$ on \mathbb{C}

Translation surfaces III

Any translation surface (M, Σ, κ, ξ) comes equipped with

- a flat metric on $M-\Sigma$ obtained by pull-back of the Euclidean metric $d x^{2}+d y^{2}$ on \mathbb{R}^{2};
- an area form on M obtained by pull-back of $d x \wedge d y$ on \mathbb{R}^{2};
- a canonical choice of vertical vector field Y on $M-\Sigma$ obtained by pull-back of $\partial / \partial y$ on \mathbb{R}^{2};
- a Riemann surface (complex) structure because translations are holomorphic;
- a non-trivial Abelian differential (holomorphic 1-form) ω obtained by pull-back of $d z$ on \mathbb{C}
because the corresponding objects are transl.-inv. on $\mathbb{C} \simeq \mathbb{R}^{2}$.

Translation surfaces IV

In fact, a transl. surf. is completely determined by a non-trivial Ab. diff. ω on a Riemann surf. M : indeed, by letting Σ be the finite set of zeroes of ω and by taking local primitives $z \mapsto \int_{p}^{z} \omega$ of ω near a point $p \in M-\Sigma$, we get a translation surface structure.

Translation surfaces IV

In fact, a transl. surf. is completely determined by a non-trivial Ab. diff. ω on a Riemann surf. M : indeed, by letting Σ be the finite set of zeroes of ω and by taking local primitives $z \mapsto \int_{p}^{z} \omega$ of ω near a point $p \in M-\Sigma$, we get a translation surface structure.

Also, by the Poincaré-Hopf formula (or Gauss-Bonnet theorem, Riemann-Hurwitz theorem or your preferred index theorem) the genus g of the Riemann surface M can be recovered from the orders d_{i} of the zeroes of an Ab. diff. ω via:

$$
2 g-2=\sum_{i} d_{i}
$$

Translation surfaces IV

In fact, a transl. surf. is completely determined by a non-trivial Ab. diff. ω on a Riemann surf. M : indeed, by letting Σ be the finite set of zeroes of ω and by taking local primitives $z \mapsto \int_{p}^{z} \omega$ of ω near a point $p \in M-\Sigma$, we get a translation surface structure.

Also, by the Poincaré-Hopf formula (or Gauss-Bonnet theorem, Riemann-Hurwitz theorem or your preferred index theorem) the genus g of the Riemann surface M can be recovered from the orders d_{i} of the zeroes of an Ab. diff. ω via:

$$
2 g-2=\sum_{i} d_{i}
$$

Moreover, the ramification indices κ_{i} relate to the orders of zeroes d_{i} via $\kappa_{i}=d_{i}+1$.

Translation surfaces V

So far, transl. surf.s came from susp.s constructions, but they naturally appear in other contexts, e.g. in the study of billiards in rational polygons (a subject itself motivated by Boltzmann gases).

However, due to the usual space-time limitations, we'll not discuss this here: instead we refer to surveys written by Zorich, and Masur and Tabachnikov.

Translation surfaces V

So far, transl. surf.s came from susp.s constructions, but they naturally appear in other contexts, e.g. in the study of billiards in rational polygons (a subject itself motivated by Boltzmann gases).

However, due to the usual space-time limitations, we'll not discuss this here: instead we refer to surveys written by Zorich, and Masur and Tabachnikov.

Now, let's come back to transl. surf. obtained by susp. of i.e.t.'s.

Ramification indices for suspensions of i.e.t.'s I

In the notation of Veech's construction, let $\mathcal{C}=\left\{C_{i}^{t, b}: 0<i<d\right\}$. It has cardinality $2 d-2$. Turning around anticlockwise in the suspension M correspond to the successor map $\sigma: \mathcal{C} \rightarrow \mathcal{C}$:

- $\sigma\left(C_{i}^{t}\right)=C_{\pi_{b} \pi_{t}^{-1}(i)}^{b}$ except for $\pi_{b} \pi_{t}^{-1}(i)=1$ when

$$
\sigma\left(C_{i}^{t}\right)=C_{\pi_{b} \pi_{t}^{-1}(1)-1}^{b}
$$

- $\sigma\left(C_{j}^{b}\right)=C_{\pi_{t} \pi_{b}^{-1}(j)}^{t}$ except for $\pi_{t} \pi_{b}^{-1}(j)=d$ when

$$
\sigma\left(C_{i}^{b}\right)=C_{\pi_{t} \pi_{b}^{-1}(d)}^{t}
$$

Ramification indices for suspensions of i.e.t.'s la

Ramifications indices for suspensions of i.e.t.'s II

Since σ exchange C_{i}^{t} and C_{j}^{b}, its cycles have even length.
Furthermore, the marked points Σ of the translation structure are in bijection with the cycles of σ. In particular,

- the number $s=\# \Sigma$ of marked pts is the nb. of cycles of σ,

Ramifications indices for suspensions of i.e.t.'s II

Since σ exchange C_{i}^{t} and C_{j}^{b}, its cycles have even length.
Furthermore, the marked points Σ of the translation structure are in bijection with the cycles of σ. In particular,

- the number $s=\# \Sigma$ of marked pts is the nb. of cycles of σ,
- the ramif. ind. κ_{i} are $1 / 2$ of the sizes of cycles, so that

$$
d-1=\sum_{i}\left(\kappa_{i}-1\right)
$$

Ramifications indices for suspensions of i.e.t.'s II

Since σ exchange C_{i}^{t} and C_{j}^{b}, its cycles have even length.
Furthermore, the marked points Σ of the translation structure are in bijection with the cycles of σ. In particular,

- the number $s=\# \Sigma$ of marked pts is the nb. of cycles of σ,
- the ramif. ind. κ_{i} are $1 / 2$ of the sizes of cycles, so that

$$
d-1=\sum_{i}\left(\kappa_{i}-1\right) .
$$

Hence, the genus g of the transl. surf. M relates to the size d of the alphabet \mathcal{A} of the i.e.t. and the number s of marked points by:

$$
d=2 g+s-1
$$

Homology of suspensions of i.e.t.'s I

We denote by $H_{1}(M, \mathbb{Z}), H_{1}(M-\Sigma, \mathbb{Z}), H_{1}(M, \Sigma, \mathbb{Z})$ the homology groups of M (for instance, by Hurewicz theorem we can think of $H_{1}(M, \mathbb{Z})$ as the Abelianization of the fundamental group $\left.\pi_{1}(M)\right)$.

For example, in genus 1 :

Homology of suspensions of i.e.t.'s la

These groups are related by a short exact sequence $H_{1}(M-\Sigma, \mathbb{Z}) \rightarrow H_{1}(M, \mathbb{Z}) \rightarrow H_{1}(M, \Sigma, \mathbb{Z})$, and we have a natural basis $\left[\theta_{\alpha}\right]$ of $H_{1}(M-\Sigma, \mathbb{Z})$ and $\left[\zeta_{\alpha}\right]$ of $H_{1}(M, \Sigma, \mathbb{Z})$ when M is a suspension of an i.e.t.:

Homology of suspensions of i.e.t.'s II

The natural intersection form $\langle.,$.

$$
-1
$$

establishes a duality between $H_{1}(M-\Sigma, \mathbb{Z})$ and $H_{1}(M, \Sigma, \mathbb{Z})$.

Homology of suspensions of i.e.t.'s II

The natural intersection form $\langle.,$.

$$
+1
$$

$$
-1
$$

establishes a duality between $H_{1}(M-\Sigma, \mathbb{Z})$ and $H_{1}(M, \Sigma, \mathbb{Z})$.
By direct inspection, one sees that

$$
\left\langle\left[\theta_{\alpha}\right],\left[\zeta_{\beta}\right]\right\rangle=\delta_{\alpha \beta},
$$

i.e., the basis $\left(\left[\theta_{\alpha}\right]\right)_{\alpha \in \mathcal{A}}$ and $\left(\left[\zeta_{\beta}\right]\right)_{\beta \in \mathcal{A}}$ are dual of each other.

Homology of suspensions of i.e.t.'s III

Consider now $\left[\theta_{\alpha}\right] \in H_{1}(M, \mathbb{Z})$. Then, $\left\langle\left[\theta_{\alpha}\right],\left[\theta_{\beta}\right]\right\rangle=\Omega_{\beta \alpha}$ because the image $\left[\theta_{\alpha}\right]$ of $\left[\theta_{\alpha}\right]$ in $H_{1}(M, \Sigma, \mathbb{Z})$ is

$$
\overline{\left[\theta_{\alpha}\right]}=\sum_{\beta} \Omega_{\alpha \beta}\left[\zeta_{\beta}\right]
$$

Homology of suspensions of i.e.t.'s III

Consider now $\left[\theta_{\alpha}\right] \in H_{1}(M, \mathbb{Z})$. Then, $\left\langle\left[\theta_{\alpha}\right],\left[\theta_{\beta}\right]\right\rangle=\Omega_{\beta \alpha}$ because the image $\left[\overline{\theta_{\alpha}}\right]$ of $\left[\theta_{\alpha}\right]$ in $H_{1}(M, \Sigma, \mathbb{Z})$ is

$$
\overline{\left[\theta_{\alpha}\right]}=\sum_{\beta} \Omega_{\alpha \beta}\left[\zeta_{\beta}\right]
$$

In particular, we have that the antisymmetric matrix Ω has rank

$$
\operatorname{rank}(\Omega)=2 g=\operatorname{dim}_{\mathbb{Z}} H_{1}(M, \mathbb{Z}) .
$$

Cohomology of suspensions of i.e.t.'s I

We have a short exact sequence of cohomology groups

$$
H^{1}(M, \Sigma, \mathbb{Z} / \mathbb{R} / \mathbb{C}) \rightarrow H^{1}(M, \mathbb{Z} / \mathbb{R} / \mathbb{C}) \rightarrow H^{1}(M-\Sigma, \mathbb{Z} / \mathbb{R} / \mathbb{C})
$$

Cohomology of suspensions of i.e.t.'s I

We have a short exact sequence of cohomology groups

$$
H^{1}(M, \Sigma, \mathbb{Z} / \mathbb{R} / \mathbb{C}) \rightarrow H^{1}(M, \mathbb{Z} / \mathbb{R} / \mathbb{C}) \rightarrow H^{1}(M-\Sigma, \mathbb{Z} / \mathbb{R} / \mathbb{C})
$$

The Abelian differential ω associated to the translation surface M gives rise to $[\omega] \in H^{1}(M, \Sigma, \mathbb{C})$ and

$$
\left\langle[\omega],\left[\zeta_{\alpha}\right]\right\rangle=\zeta_{\alpha}, \quad\left\langle\overline{[\omega]},\left[\theta_{\alpha}\right]\right\rangle=\theta_{\alpha}
$$

where $\overline{[\omega]}$ is the image of $[\omega]$ in $H^{1}(M-\Sigma, \mathbb{C})$.

Cohomology of suspensions of i.e.t.'s II

In this way, we can interpret the vectors λ and τ as elements of $H^{1}(M, \Sigma, \mathbb{R}), \zeta=\lambda+i \tau$ as an element of $H^{1}(M, \Sigma, \mathbb{C}), \delta, h$ as elements of $H^{1}(M-\Sigma, \mathbb{R})$ and $\theta=\delta-i h$ as an element of $H^{1}(M-\Sigma, \mathbb{C})$.

Cohomology of suspensions of i.e.t.'s II

In this way, we can interpret the vectors λ and τ as elements of $H^{1}(M, \Sigma, \mathbb{R}), \zeta=\lambda+i \tau$ as an element of $H^{1}(M, \Sigma, \mathbb{C}), \delta, h$ as elements of $H^{1}(M-\Sigma, \mathbb{R})$ and $\theta=\delta$-ih as an element of $H^{1}(M-\Sigma, \mathbb{C})$.

Finally, the area of the translation surface M is

$$
A=\sum_{\alpha} \lambda_{\alpha} h_{\alpha}=\tau \Omega^{t} \lambda
$$

