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I.e.t.’s, translation flows and renormalization I

We saw (3rd lecture) that suspension constructions bring together
the dynamical study of i.e.t.’s and translation flows.

In this course we’ll see that i.e.t.’s and translation flows can be
efficiently investigated via a renormalization scheme sharing some
features of the continued fraction algorithm for circle rotations /
i.e.t.’s of 2 intervals (cf. first two lectures).

The general philosophy of renormalization dynamics (schemes) is
best described by the words of Adrien Douady: “to plough in
parameter space, and harvest in phase space”.
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Renormalization in a nutshell
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I.e.t.’s, translation flows and renormalization II

In our context:

the phase space is the interval I (for i.e.t.’s) or the translation
surface M (for translation flows),

the parameter space will be an adequate space describing
i.e.t’s or translations flows (roughly speaking, for i.e.t.’s it is
the space of combinatorial and length data), and

the renormalization dynamics will be a dynamical system in
parameter space: in particular, for i.e.t.’s, it will convert a pair
(combinatorial, length) data into another pair (combinatorial’,
length’) data.
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I.e.t.’s, translation flows and renormalization III

The magical fact is that the dynamical (e.g., recurrence,
non-uniform hyperbolicity) properties of the renormalization on
parameter space usually allow to deduce dynamical (e.g., unique
ergodicity, deviation spectrum of ergodic averages) properties of
generic (typical) i.e.t.’s and translation flows.

For a survey on the marvelous properties of renorm. dyn. in several
contexts, see Artur Avila’s article on ICM’2010 proceedings.

Unfortunately, it takes some time to setup the definitions and
notations to describe renorm. dyn. for i.e.t.’s and translation flows.
In particular, our plan will be as follows.
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Connections for i.e.t.’s

As it turns out, before defining the Rauzy-Veech (renormalization)
algorithm, we need the following concept:

Definition

A connection of an i.e.t. T : DT → DT−1 is a triple (m, ut , ub)
where ut ∈ I − DT is a singularity of T , ub ∈ I − DT−1 is a
singularity of T−1 and T m(ub) = ut .

A B C D

ABCD
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Connections for translation flows

Of course, we have an analogous concept for translation flows:

Definition

A connection of the vert. flow φt of a transl. surf. (M,Σ, κ) is a
trajectory starting and ending at Σ.

A

B
C

D

A

B
C

D

Remark

If T has a connection, then φt on a susp. has a connection as well.
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Keane’s theorem

Theorem (M. Keane)

T i.e.t. w/o connections =⇒ T is minimal: all half-orbit is dense.

The previous result has a version for translation flows:

“Keane’s theorem for translation flows”

φt transl. flow w/o conn. =⇒ φt minimal: all half-orbit is dense.

Remark

Keane’s thm for i.e.t.’s follows from Keane’s thm for transl. flows
(by rmk from the previous slide).

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

Keane’s theorem

Theorem (M. Keane)

T i.e.t. w/o connections =⇒ T is minimal: all half-orbit is dense.

The previous result has a version for translation flows:

“Keane’s theorem for translation flows”

φt transl. flow w/o conn. =⇒ φt minimal: all half-orbit is dense.

Remark

Keane’s thm for i.e.t.’s follows from Keane’s thm for transl. flows
(by rmk from the previous slide).

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

Keane’s theorem

Theorem (M. Keane)

T i.e.t. w/o connections =⇒ T is minimal: all half-orbit is dense.

The previous result has a version for translation flows:

“Keane’s theorem for translation flows”

φt transl. flow w/o conn. =⇒ φt minimal: all half-orbit is dense.

Remark

Keane’s thm for i.e.t.’s follows from Keane’s thm for transl. flows
(by rmk from the previous slide).

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

References for connections versus minimality

The proof of the results in the previous slide are not particularly
difficult, but we’ll not do it here as the discussion of Rauzy-Veech
algorithm is our top priority.

Instead, we refer the curious reader to J.-C. Yoccoz’s surveys

“Continued Fraction Algorithms for i.e.t.’s: an introduction”
(for a proof of Keane’s thm), and

“Interval exchange maps and translation surfaces” (for a proof
of Keane’s thm for transl. flows).

As a matter of fact, the proof of Keane’s theorem for transl. flows
in 2nd survey provide sufficient conditions for the representability
of transl. surf. as suspensions of i.e.t.’s.
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Representability of a translation surface as a suspension

Theorem

Let (M,Σ, κ) a transl. surf. with vert. flow φt w/o connections.
Then, inside any horizontal separatrix S∞ (i.e., a horiz. segment
starting at Σ), we can find an open bounded segment S ⊂ S∞ s. t.
(M,Σ, κ) is isomorphic to a susp. of the i.e.t. induced on S by φt .
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Sufficient criterion for no connections for i.e.t.’s

Keane’s thm for i.e.t.’s motivates the question: when does an i.e.t.
has no connections? The result below is an elementary answer.

Theorem

Assume that the coordinates λα of the length data λ = (λα) of an
i.e.t. T are rationally independent. Then, T has no connection.

Remark

This thm is quite natural: since sing. of the top and bottom lines
ut and ub are sums of certain λ′αs and the coord. of the transl.
vector δ of T (from which we can compute T m) are linear comb.
of λ′αs, a connection T m(ub) = ut would provide a (non-trivial)
rational relation between λ′αs.
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“Rational independence” is not necessary

Note that in general there is no converse to the previous statement:

Exercise

Show that:

for d = #A = 2, an i.e.t. T is minimal ⇐⇒ T has no
connection ⇐⇒ the coordinates of the length data are
rationally independent;

for d = #A ≥ 3, there are minimal i.e.t.’s T with
connections, and i.e.t.’s T with “rationally dependent” length
data but no connections.
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Review of notations

Let T : DT → DT−1 be an i.e.t. of an interval I = (u0, ud) with
comb. data (A, πt , πb), d = #A, and length data λ = (λα)α∈A.

As always, {ut,b
1 < · · · < ut,b

d−1} = I − DT±1 are the sing. of T±1.

For concreteness, in the sequel our “reference” i.e.t. Tref will be:

A B C D

ABCD

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

Review of notations

Let T : DT → DT−1 be an i.e.t. of an interval I = (u0, ud) with
comb. data (A, πt , πb), d = #A, and length data λ = (λα)α∈A.

As always, {ut,b
1 < · · · < ut,b

d−1} = I − DT±1 are the sing. of T±1.

For concreteness, in the sequel our “reference” i.e.t. Tref will be:

A B C D

ABCD

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

Review of notations

Let T : DT → DT−1 be an i.e.t. of an interval I = (u0, ud) with
comb. data (A, πt , πb), d = #A, and length data λ = (λα)α∈A.

As always, {ut,b
1 < · · · < ut,b

d−1} = I − DT±1 are the sing. of T±1.

For concreteness, in the sequel our “reference” i.e.t. Tref will be:

A B C D

ABCD

C. Matheus and J.-C. Yoccoz Birkhoff sums of i.e.t.’s: KZ cocycle (4th lecture)



Introduction
Minimal i.e.t.’s and translation flows

Rauzy-Veech algorithm for i.e.t.’s
Rauzy-Veech algorithm for suspensions

Basic step of Rauzy-Veech algorithm I

Suppose T has no conn.. In this case, denoting by αt,b = π−1
t,b (d),

the last int. I t
αt

and I b
αb

of the top and bottom lines have distinct

lengths λαt 6= λαb
as ut

d−1 6= ub
d−1.

We define Ĩ := (u0,max{ut
d−1, u

b
d−1}) and T̃ the return map of T

to Ĩ , i.e., T̃ (x) = T r(x)(x), where r(x) := min{r ≥ 1 : T r (x) ∈ Ĩ}.
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Basic step of Rauzy-Veech algorithm Ia

For the reference i.e.t. Tref , we have

A B C D

ABCD

A B C D

BCD

Ĩ

A

In particular, we see that T̃ref is also an i.e.t. on Ĩ with

combinatorial data

(
A B C D
D A B C

)
.
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Basic step of Rauzy-Veech algorithm II

In general, T̃ is also an i.e.t. explicitly computable in terms of T
depending whether we are in the

top case: ub
d−1 > ut

d−1, i.e., λαt > λαb

or bottom case: ub
d−1 < ut

d−1, i.e., λαt < λαb
.

For simplicity, we present the formulas for T̃ only in top case,
leaving the deduction of (symmetric) formulas in the bottom case
as an exercise.

Remark

Symm. formulas in the bottom case exist because our comb. data
is (πt , πb) but not the permutation πb ◦ π−1

t ! This justifies our
comment (yesterday) that (πt , πb) is “better” than πb ◦ π−1

t .
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Basic step of Rauzy-Veech algorithm III

In top case (λαt > λαb
), T̃ (x) =

{
T (x), x /∈ I t

αb

T 2(x), x ∈ I t
αb

, and we use

the same alphabet A to label the intervals Ĩ t,b
α exchanged by T̃ :

Ĩ t
α =

{
I t
α, if α 6= αt

I t
αt
∩ Ĩ , if α = αt

, Ĩ b
α =


I b
α , if α 6= αb, αt

T (I b
αb

), if α = αb

I b
αt
− T (I b

αb
), if α = αt

Also, the new length data is λ̃α = λα if α 6= αt , and
λ̃αt = λαt − λαb

, and the new combinatorial data is π̃t = πt and

π̃b(α) =


πb(α), if πb(α) ≤ πb(αt)

πb(αt) + 1, if α = αb

πb(α) + 1, if πb(αt) < πb(α) < d
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Basic step of Rauzy-Veech algorithm IV

The map (T , πt , πb) 7→ (T̃ , π̃t , π̃b) is the basic step of the
Rauzy-Veech algorithm. The following exercises contain some
basic features of RV algorithm.

Exercise

Show that:

the combinatorial data (π̃t , π̃b) is irreducible;

if T has no connections, T̃ has no connections (and RV
algorithm can be iterated indefinitely);

the return map of T to an interval Ĩ ⊂ I ′ ⊂ I is an i.e.t. of
d + 1 intervals.

for d = 2, the RV algorithm is the Euclidean division

(λA, λB) 7→
{

(λA − λB , λB), if λA > λB

(λA, λB − λA), if λA < λB
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Rauzy-Veech algorithm detects connections

Concerning the 2nd item of the previous exercise, it is possible to
prove that the converse is true: the RV algorithm stops if and only
if the i.e.t. has connections.

In other words, if the i.e.t. T has some connection, the RV
algorithm will see it some day!
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Rauzy diagrams

The combinatorics π̃ = (π̃t , π̃b) depends only on π = (πt , πb) and
the type (top or bottom) of the step of RV algorithm, that is,
π̃ = Rt(π) or π̃ = Rb(π).

Definition

A Rauzy class R is a set of irreducible combinatorial data Rt ,
Rb-invariant and minimal with this property. A Rauzy diagram D
is a graph having a Rauzy class R as a set of vertices, and oriented
arrows (of top or bottom type) joining π to its image under Rt and
Rb.

Definition

The winner of an arrow of top/bottom type starting at (πt , πb) is
αt = π−1

t (d)/αb = π−1
b (d), while the loser is αb/αt .
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Some examples of Rauzy diagrams
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Cardinality of Rauzy classes

In a recent work, Vincent Delecroix computed recurrence formulas
for the cardinality of Rauzy classes: using his formulas (and/or
SAGE) and denoting by R(g) the cardinality of the largest Rauzy
class of genus g , one has:

for genus g = 2, R(g) = 15,

for genus g = 3, R(g) = 2177,

for genus g = 4, R(g) = 617401, and

for genus g = 5, R(g) = 300296573

can you guess the next value for g = 6? :)
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Complete paths and i.e.t.’s

Definition

A finite path γ in a Rauzy diag. D is complete if every α ∈ A wins
at least once on an arrow of γ. An infinite path γ in D is
∞-complete if every α ∈ A wins in infinitely many arrows of γ
(i.e., it is the concatenation of infinitely many complete paths).

Theorem

An infinite path in a Rauzy diagram comes from an i.e.t. if and
only if it is ∞-complete.

Remark

A ∞-complete path of an i.e.t. w/o conn. is a rotation number...
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∞-complete paths in some concrete examples

For d = 2, a ∞-complete path is easy to describe: it uses all (two)
arrows, i.e., it has the form Aa1Ba2Aa3 .... However, for d = 4, we
see that ∃ ∞-complete paths not using all arrows.
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Basic step of Rauzy-Veech algorithm for suspensions I

Given π = (πt , πb), recall that suspensions vectors τ = (τα) satisfy∑
πt(α)<k

τα > 0 and
∑

πb(α)<k

τα < 0 for each 1 < k ≤ d .

These conditions define a cone Θπ ⊂ RA.

Let τ̃α =

{
τα, if α 6= αt

ταt − ταb
, if α = αt

if π̃ = Rt(π) has top type.

One can show that τ 7→ τ̃ sends Θπ to Θeπ ∩ {∑
α
τ̃α < 0}.
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Basic step of Rauzy-Veech algorithm for suspensions II

The RV algorithm for susp. is (π, λ, τ) 7→ (π̃, λ̃, τ̃). Geometrically:

A

B C

D

C
B

A
D

E

M(π, λ, τ)

A

B C

C
B

A

D

E

E

M(π̃, λ̃, τ̃)

Remark

Above we have a top case, but, as usual, bottom case is similar.
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Basic step of Rauzy-Veech algorithm for suspensions IIa

The RV algorithm in terms of Veech’s construction is:
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Basic step of Rauzy-Veech algorithm for suspensions III

From previous figures, one can see that the transl. surf. M(π, λ, τ)
and M(π̃, λ̃, τ̃) are canonically isomorphic.

In terms of this isomorphism, the homology classes [ζα], [θα] and
[ζ̃α], [θ̃α] (introduced by the end of yesterday’s lecture) are related
via the formulas (in the top case):

[ζ̃α] =

{
[ζα], if α 6= αt

[ζαt ]− [ζαb
] if α = αt

, [θ̃α] =

{
[ζα], if α 6= αb

[θαt ] + [θαb
] , if α = αb
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