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Chapter 1

PH diffeomorphisms

Throughout this notes M will denote a closed riemannian manifold (that is,
compact and without boundary) of class C∞. We now give several definitions
of our object of study, the partially hyperbolic maps.

We say that a diffeomorphism f : M → M is partially hyperbolic in the
strong sense if there exists a continuous splitting of the tangent bundle into
a Whitney sum of the form

TM = Eu ⊕ Ec ⊕ Es

where neither of the bundles Es nor Eu are trivial, and such that1.

1. All bundles Eu, Es, Ec are df -invariant.

2. λ = ∥df |Es∥ < 1 < µ = minx{m(dfx|Eu)}.

3. For all x ∈M and for all unit vectors vσ ∈ Eσ
x (σ = s, u, c)

∥dxf (vs)∥ < ∥dxf (vc)∥ < ∥dxf (vu)∥ .

The bundles Es, Eu, Ec are the stable, unstable and center bundle respec-
tively. We also define the bundles Ecu = Ec ⊕ Eu and Ecs = Es ⊕ Ec, the
center stable and center unstable bundles.

If instead of 3) we require

3’) λ < min{m(∥df |Ec∥)} ≤ max{∥df |Ec∥} < µ

1Recall that for a linear map A, its conorm m(A) := 1
∥A∥

3
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we say that f is absolutely partially hyperbolic in the strong sense.
We will be primarily interested in partially hyperbolic diffeomorphism in

the strong sense, and we will refer to them simply as “partially hyperbolic”
(abbreviated as PH). Likewise we will write APH instead of “absolutely
partially hyperbolic in the strong sense”.

Remark 1.1. You may be wondering about the use of the word strong in the
previous definition. There is a more flexible definition of partial hyperbol-
icity where one only requires the existence of a decomposition of the form
Ecs ⊕Eu, where Eu is exponentially expanded under the derivative of f and
dominates Ecs in the sense of 2). This definition is important when one tries
to understand robust properties of diffeomorphisms. See [Dı́az et al., 1999].

Strictly speaking the case Ec = {0} (the Anosov case) is permitted in
the definition. However here we want to study the case of “true” PH-
diffeomorphisms so almost always we deal with the case when the center
bundle is not trivial. That being said, you should always try to test any
result for PH in the Anosov case if possible.

Remark 1.2. One should note that the definition of partial hyperbolicity does
not depend on the riemannian metric used. Moreover, as in the hyperbolic
case, one can find a metric where the the bundles are perpendicular and from
now on we will always work such metric when discussing PH maps.

1.0.1 First Example: Products

Let AT : T 2 → T 2 denote the Thom map (i.e. the map induced by the matrix

A =

(
2 1
1 1

)
) and consider the map f = AT × id : T 3 → T 3. Clearly f is

a linear map on the torus: denote by Ã the matrix inducing f . It is easy
to see now that f is APH where the bundles Es

f , E
u
f , E

c
f , coincide with the

projection on the torus of the generalized eigenspaces of Ã corresponding to
eigenvalues of norm smaller, equal or bigger than one respectively.

Similarly, consider Rα : T → T an irrational rotation of angle α ∈ R \Q
in the circle (Rα(t) = t + α mod 1) and define g = AT × Rα : T 3 → T 3.
Again g is PH, with the same invariant bundles as f .

Let us investigate some of the properties of the maps f and g. It will be
convenient to have some definitions to make the discussion easier.
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Definition 1.3.

1. We say that an immersed submanifold W c is a center manifold if it is
everywhere tangent to the center bundle. If x ∈ M and there exist a
center submanifold containing x we will denote it by2 W c(x).

2. If for each x ∈ M there exist a center manifold W c(x) and these sub-
manifolds comprise a foliation (see Appendix A), we refer this foliation
as the center foliation and its leaves as center leaves.

Similar definitions hold for the other invariant sub-bundles. We will carry
the discussion for f and g at the same time.

1. For each x the center bundles integrate to unique center foliations with
leaves

W c
f (x) = W c

g (x) = p−1
T 2 (pT 2(x)) (pT 2 : T 3 → T 2)

All the center leaves are compact.

2. The periodic center leaves are dense.

3. Both f and g admit a generalized Markov Partition, in the following
sense: there exist subshifts of finite type σR : ΣR → ΣR, σS : ΣS → ΣS

and continuous bounded-to-one surjective maps hR : ΣR×T → T 3, hS :
ΣS × T → T 3 such that hR semi-conjugates σR × id with f , and hS
semi-conjugates σS ×Rα with g.

Recall that a n × n 0–1 matrix G defines a subshift of finite type ΣG

by

ΣG = {x = (xn)n∈Z : xn ∈ 0, . . . , n− 1, Axn,xn+1 = 1}

The shift operator σG on ΣG is defined by σG(x)n = xn+1.

2Note that we are fixing the submanifold: in principle, x could belong to different
center manifolds.
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1.0.2 Ergodicity

Given a probability space (X,µ) and a measure preserving transformation
T : X → X, that is3 T⋆µ = µ, we say that T is ergodic with respect to µ if the
only invariant L2 functions are the constant ones: i.e. for every ϕ ∈ L2(X)

ϕ(Tx) = ϕ(x) a.e.(x) ⇒ ϕ = const a.e.

Equivalently, if X0 ⊂ X satisfies T−1(X0) = X0 a.e. then µ(X0)µ(X
c
0) =

0. If the measure µ is clear for the context we will just say that T is ergodic.
For basic background on these concepts see [Mañé, 1983].

We will study extensively ergodicity or PH systems, providing different
proofs and discussing the scope of them. We start with the maps f and g,
establishing one of the main differences between them: while g is ergodic, f
is not.

1. The map g is ergodic: Let ϕ be an L2 g-invariant function, and consider
the augmented matrix B given by

B =

(
A O
0 1

)

Writing the Fourier expansion of ϕ we get

ϕ(x) =
∑
n∈Z

an · en(x) = ϕ(gx) (en(x) = exp(2πi⟨x, n⟩))

Note that

en(gx) = exp (2πi⟨(A(x1, x2), x3 + α), (n1, n2, n3)⟩)
= exp (2πi⟨(A(x1, x2), x3) + (0, 0, α), (n1, n2, n3)⟩)
= exp (2πi(⟨B(x1, x2, x3), (n1, n2, n3)⟩+ n3α))

exp 2πi⟨(x1, x2, x3), B∗(n1, n2, n3)⟩ exp (2πin3α)

3T⋆µ(Y ) := µ(T−1Y )
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Then

ϕ(gx) =
∑
n∈Z

aneB∗n(x)exp(2πin3α) = ϕ(x) =
∑
m∈Z

amem(x)

and hence, by uniqueness of Fourier coefficients, we conclude

aB∗n = anexp(2πin3α) ⇒ |aB∗n| = |an|

and thus, for every k ∈ Z

|an| = |a(B∗)kn|

Fix n. Bessel’s inequality implies

∞ > ∥ϕ∥22 =
∑
m∈Z

|am|2 ≥
∑
k∈Z

|a(B∗)kn|2. (1.1)

We have two cases:

(a) All the {(B∗)kn} are different. Then necessarily an = 0, since the
right side series is a convergent series with all coefficients equal.

(b) There exist k such that (B∗)kn = n. Observe that

(B∗)k =

(
(A∗)k O
0 1

)
and (A∗)kv ̸= v for any non-zero vector v (why?). We conclude
that n = (0, 0, n3), and

aB∗n = anexp(2πin3α) ⇒ a(0,0,n3) = a(0,0,n3)exp(2πin3α)

Since α is irrational n3α is never an integer (unless n3 = 0), hence
n3 = 0.

We have shown that an = 0 if n ≠= (0, 0, 0): in other words
ϕ(x) = a0 constant.

2. Referring now to the previous part, it is easy to see that the function
ϕ(x) = e(0,0,1)(x) is f -invariant. Hence f is not ergodic.
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1.1 Coherence and the Stable Manifold The-

orem

We come back to the study of general PH. We address here the important
topic of the integrability of the invariant bundles.

The classical stable manifold theorem4 below states that always the bun-
dles Es and Eu are integrable. You probably know the proof for the hyper-
bolic case, but the proof generalizes to our context.

Theorem 1.4. Let f be PH of class Cr. Then

1. There exist ϵ > 0 such that for every x ∈M the set

W s
ϵ (x) := {y ∈M : lim sup

n7→∞

d(fnx, fny)

λ
≤ 1, d(x, y) < ϵ }

coincides with the exponential of the graph of a Cr function

σs : E
s(ϵ′) → Ecu

which is tangent to Es
x at zero, for some ϵ′ ≈ ϵ.

2. Define
W s(x) = ∪n≥of

−n(W s
ϵ (f

nx))

Then for every x the setW s(x) is a immersed submanifold ofM of class
Cr, tangent to Es on each of its points. Each W s(x) is homeomorphic
to the Euclidean space Rs (s = dimEs).

3. The collection {W s(s)} is a foliation of class Cr,0+.

You can find the proof of this result in [Hirsch et al., 1977]
(or [Brin and Pesin, 1974]), and [Pugh et al., 1997]. This theorem is highly
non-trivial and requires a fair amount of work to prove it in the general case
that we stated.

Instead of proving the stable manifold theorem in general, we will restrict
ourselves to discuss the case when the manifold is the torus and f is a small

4We state the Theorem for the stable bundle only since the case of the unstable follows
from it by considering f−1.
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perturbation of a linear automorphism, just to give a flavor of how the proof
works. Incidentally, in this case we will obtain a stronger result. The proof
given is due to Federico and appears in [Rodriguez-Hertz, 2005], Appendix
B.

Remark 1.5. Given a matrix Ã ∈ SL(n,Z) consider the linear automorphism

A : T n → T n that it induces. If spec(Ã) ̸⊂ S1 then A is APH.

Setting: Let A : T n → T n be a linear automorphism of the torus with
invariant bundles Eσ and consider the map f = A + r where r is bounded
and Lipschitz small. We will denote the lift of the maps to Rn by f̃ , Ã, r̃,
and we will use the decomposition Rn = Eu ⊕ Ecs.

Given x ∈ Rn, we are interested in looking at the graphs of Lipschitz
continuous functions x + Eu → x + Ecs such that their “tangent” at zero is
not too bad. Given one of these functions we can apply f̃ and obtain the
graph of a similar function, but now anchored at f̃(x). For example, if r̃ = 0,
one can easily check that the only invariant graph precisely corresponds to
the unstable bundle (i.e: σu(v) = v if v ∈ x + Eu). The idea is that since

f̃ is a small perturbation of Ã we should obtain its unstable manifold as an
invariant graph as well.

To this end, we will consider Lipschitz functions σx : Eu → Ecs. Fixing
one of these, a typical point of the graph of x+ σx is of the form

x+ v + σ(v), v ∈ Eu.

If the image of the graph of σx under f̃ is the graph of a new function νx, we
should have

f̃(x+ v + σx(v)) = f̃(x) + v′ + νf̃(x)(v
′) for some v′ ∈ Eu (1.2)

or

r̃(x+ v + σx(v))− r̃(x) + Ãv + Ãσx(v) = v′ + νf̃(x)(v
′) (1.3)

Projecting on Eu, Ecs we obtain

v′ = r̃u(x+ v + σx(v))− r̃u(x) + Ãuv (1.4)

νf̃(x)(v
′) = r̃cs(x+ v + σx(v))− r̃cs(x) + Ãσx(v) (1.5)
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Note that since Ãu is invertible and r̃ is Lipschitz small, we can invert
(1.4) and solve in (1.5) to find the general expression of νf̃(x).

Given a point x of Rn define the space of graphs

Gx = {σx : Eu → Ecs : Lip(σ) <∞}

We equip each of these spaces with the norm

|σx|∗ = Lip0(σx)

This norm makes each Gx a Banach space. Now we consider the bundle
G = ∪x∈RnGx, and let

Γ(G) = space of bounded sections of G

equipped with the uniform norm. As we have seen, f̃ acts by graph transform
in Σ(G).

By domination of Ecs by Eu one can prove that this graph transform in
fact is a contraction on the complete space Σ(G), hence it has a unique fixed
point σu ∈ Γ(G). We then have

W u
f (x) = pr(x+ graph(σu

x)) pr : Rn → T n

Remark 1.6. In this case we have obtained that the unstable manifold is
obtained globally as a graph. This is seldom the case, and usually one can
only guarantee that the unstable manifold is a local graph.

O.k., so Es, Eu are integrable. What about the other bundles, say Ec?
Things here become more difficult, and in fact the answer to the previous
questions is negative in general as we will see. First some definitions.

Definition 1.7. We say that a PH system is dynamically coherent if the
bundles Ec, Ecs, Ecu are integrable to foliations Wc,Wcs,Wcu (integrability),
and Wc sub-foliates both Wcs and Wcu (coherence).

We remark that the definition requires both integrability and coherence
of the center foliation with respect to the others; is not at all clear that
coherence will follow from just the existence. On the other hand, K.Burns
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and A.Wilkinson observed that Ws,Wu always sub-foliate Wcs,Wcu when
these exist. See [Burns and Wilkinson, 2008].

The first example of a PH diffeomorphism with non-integrable center
bundle was given by Smale (based in ideas of A. Borel) in [Smale, 1967].
It is essentially an algebraic Anosov diffeomorphism on a 6 dimensional nil-
manifold, where one considers the stable bundle and unstable bundles as the
bundles generated by the directions of biggest contraction and biggest ex-
pansion, respectively. The center bundle is thus a smooth four dimensional
bundle, with the particularity that it does not satisfy the Frobenius integra-
bility conditions, and hence it cannot be integrable (not even locally!). See
[Hertz et al., 2007] for an account of this example.

Nonetheless, it is well known (starting with the work of Anosov
[Anosov, 1967]) that the invariant bundles are seldom differentiable: they
are only Hölder continuous [Shub, 1986]. That raised the natural question
of whether there could be any other obstruction to integrability of Ec when
this is bundle is not C1. This question remained open until very recently,
when F.Rodriguez-Hertz, J. Rodriguez-Hertz and R. Ures gave an striking
counterexample: they found a PH diffeomorphism on the 3 torus where the
line bundle Ec is not integrable. Note that since dimEc = 1 by Peano’s the-
orem there exist locally curves which integrate Ec. The problem is that these
curves cannot be assembled into a foliation. We will discuss this example in
section 1.3.

Why do we care so much about the existence of these foliations? Well,
in fact one can derive many dynamical properties of the maps using them
and during the course we will see difference instances of this. Let us see
an example: we will use the properties of Ws,Wu to establish ergodicity of
Anosov diffeomorphisms with respect to a natural invariant measure.

1.1.1 Codimension one Anosov maps are ergodic (mix-
ing)

In this section we will give a proof of the fact that codimension one Anosov
Diffeomorphisms are Ergodic using properties of the invariant foliations. The
idea here is two-fold: on the one hand show that geometrical properties of the
foliations are useful for establishing dynamical properties, and on the other
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to recall some definitions. Furthermore a similar technique will be used later
when we study the geodesic flow.

The setting here is: f : M → M is an Anosov with dimEu = 1. We will
show that f is mixing with respect to its entropy maximizing measure. We
essentially follow McMullen’s notes [McMullen, 2011], where the same result
is proved for the Thom map.

Note: If you are not familiar with hyperbolic dynamical systems just
assume that A is the Thom map. It’s entropy maximizing measure is the
Lebesgue measure.

Remark 1.8. The restriction of codimension 1 is not necessarily and one can
prove the same result for any Anosov map by using symbolic dynamics (see
[Bowen, 1975]).

We first recall the following.

Definition 1.9. Let T : (X,µ) → (X,µ) be a measure preserving map. One
says that T is Mixing if for every pair of functions f, g ∈ L2(X) we have

lim
n7→∞

∫
f(x)g(T nx)dµ(x) =

∫
f(x)dµ(x)

∫
g(x)dµ(x) (1.6)

If T is mixing then T is ergodic, but the converse is not true. If X is a
compact metric space, it suffices to show (1.6) for continuous functions.

Definition 1.10. Assume that X is a compact metric space and consider
T ∈ Homeo(X). We say that T is uniquely ergodic if it has only one invariant
measure.

If T is uniquely ergodic then it is ergodic with respect to its invariant
measure. This is a consequence of the fact that the set XT of T invariant
measures is a convex, ω∗-closed subset of the set of all probabilities, and
the ergodic measures correspond precisely to its extremal points. The set of
extremal points is non-empty (a consequence of Krein-Millman’s Theorem),
so if there is only one invariant measure it is necessarily extremal, and thus
ergodic.

Unique ergodicity is equivalent to: there exist some measure µ such that
for every x ∈ X we have

n−1∑
i=0

δx
w∗

−−−→
n→∞

µ
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Assume first that f = A is a linear hyperbolic map acting on the torus
T n. Then A preserves the Lebesgue measure (detA = 1) and this measure is
its entropy maximixing measure, meaning

hLeb(A) = htop(A)

In general the existence of a entropy maximizing measure is a delicate issue,
but in the case of a hyperbolic matrix is just a direct computation.

Consider the expanding foliation of A. This is a one dimensional ori-
entable (since Eu is generated by the unstable eigenvector) foliation, and
thus its leaves are the orbits of a flow ϕt. We call this flow the horocycle
flow. One can make similar definitions of ergodicity, unique ergodicity, etc.
for flows. For example, the definition of ergodicity for a flow is that there
are not L2 invariant functions except for the constant ones.

Lemma 1.11. The horocycle flow is ergodic.

In fact the horocycle flow of an Anosov diffeomorphisms is uniquely er-
godic, but for us it suffices to show ergodicity and in out context the proof is
much simpler. If you are assuming that A is the Thom map skip the following
proof and prove the statement directly.

Proof. First we prove that the flow the horocycle flow is minimal (all its
orbits are dense) and for this, since all trajectories are translates of the orbit
of 0, that the orbit of zero is dense.

It is easy to show that the set of periodic points for A is dense (they
correspond to the points of the torus with rational coordinates). Now let
N = cl(orbϕt(0)) = W u(0). It suffices to show that N is open.

Take x ∈ N and consider a small neighborhood U of x. If p ∈ U is a
periodic point, then by invariance of Ws,Wuit follows (draw a picture!) that
W s(p) ∩W s(0) ̸= ∅. But points in W s(p) approach p under iteration, and
thus p ∈ N . We have shown that all periodic points of U are also in A. Since
these points are dense in U and N is closed, we conclude U ⊂ N .

Let v = (v1, . . . , vn) the (constant) vector field generating ϕt and consider
the map T : T n−1 × 0 ⊂ T n → T n−1 × 1 induced by the flow. It is easy to
see that T = Rα for some vector α ∈ T n−1, and since the flow is minimal, T
is minimal as well.
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Now we recall that the only measure on a torus which is invariant under all
traslations Rβ is the Lebesgue measure (the Haar measure of the torus). Take
now any measure ν invariant under T . If we take any continuous function
h : Tn−1 → Tn−1 we obtain

∫
h(Tm(x))dν(x) =

∫
h(x+mα)dν(x) =

∫
h(x+ Tm(0))dν(x)

for every m ∈ ZḂut the orbit of 0 under T is dense, and hence we obtain for
every a ∈ Tn∫

h(x)dν(x) =

∫
h(x+ a)dν(x) =

∫
h(Ra(x))dν(x)

We conclude that ν is the Lebesgue measure. In other words T is uniquely
ergodic. Finally we take a continuous invariant function l under the flow: it
induces an T invariant function, and hence it is constant a.e.

By invariance we conclude that l is constant, and the horocycle flow is
ergodic.

Denote by ϕt the horocycle flow and let l,m be two continuous functions
in T n. We have that

⟨l,m ◦ An⟩ =
∫
Tn

l(x)m(Anx)dx =
1

T

∫ T

0

∫
Tn

l(x)m(Anx)dxdt

=
1

T

∫ T

0

∫
Tn

l(ϕtx)m(Anϕtx)dxdt ∀T

since ϕt preserves the Lebesgue measure. Note also that

An(ϕtx) = An(x+ teu) = An(x) + λnteu = ϕµnt(A
nx).

Using Fubini we switch the order of integration to get

⟨l,m ◦ An⟩ =
∫
T 2

1

T

∫ T

0

l(ϕtx)m(ϕµnt(A
nx))dtdx ∀T

Now l is (uniformly) continuous, so we can use the mean value theorem
in the inner integral and get for T small
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≈
∫
Tn

l(x)
1

T

∫ T

0

m(ϕµnt(A
nx))dtdx

=

∫
Tn

l(x)
1

µnT

∫ µnT

0

m(ϕt(A
nx))dtdx

=

∫
Tn

l(A−nx)
1

µnT

∫ µnT

0

m(ϕt(x))dtdx

where in the last equality we have used that A also preserves the measure.
Using Birkhoff’s theorem5, and since the horocycle flow is ergodic, the inner
integral converges to the constant function

∫
mdx as n 7→ ∞. Thus

lim
n7→∞

⟨l,m ◦ An⟩ =
∫
mdx

∫
l ◦ A−ndx =

∫
ldx

∫
mdx

We now consider the general case, i.e. when f is a codimension one
Anosov, not necessarily linear. By the results of J. Franks [Franks, 1968]
and S. Newhouse [Newhouse, 1970], it is conjugated to a linear hyperbolic
matrix A : T n → T n (in particular M = T n). Under the conjugacy, the
entropy maximizing measure of A goes to the entropy maximizing measure
of f , and by the previous case we conclude that this measure is mixing for
f .

1.1.2 Second Example: Automorphisms of the Torus

We will fix Ã ∈ SL(n,Z) and consider A : T n → T n the induced linear
automorphism of the torus: A is is APH. In fact A is dynamically coherent,
and all invariant foliations are smooth. Furthermore the distribution Eu⊕Es

is also integrable. We first study the ergodic properties of A.

Proposition 1.12. The following conditions are equivalent.

1. A is ergodic with respect to the Lebesgue measure.

2. The eigenvalues of Ã are not root of the unity.

5See Appendix B.



16 CHAPTER 1. PH DIFFEOMORPHISMS

3. The orbit of any n ∈ Zn \ 0 under Ã∗ is unbounded.

4. A is mixing.

5. The foliation tangent to Eu ⊕ Es is minimal.

6. A is K.

7. Ã is Bernoulli.

For the proof we will use the following important observation:

Remark 1.13. If A a linear automorphism of the torus whose eigenvalues
are all of norm equal to one, all its eigenvalues are roots of the unity. In
particular a linear ergodic automorphism of the torus is PH.

Proof. Recalling that the eigenvalues of Ãk are the kth-powers of the eigen-
values of Ã, one obtains that for every positive integer k

tr(Ak) =
n∑
1

λki ∈ Z

where λ1, . . . , λn are the eigenvalues of Ã.
By compactness there exist positive integers (kl)

∞
l such that

(λkl1 , . . . , λ
kl
n ) −−−→

l→∞
(1, . . . , 1)

and hence
∑n

1 λ
kl
i −→

l
n .

This implies that for big enough l the sum
∑n

1 λ
kl
i is equal to n, and

since each eigenvalue has norm one we conclude that each one of them is
necessarily equal to one.

Proof. That 1 ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4 follows from arguments similar to the
ones used in section 1.0.1 (excercise 4). That 5 ⇒ 1 will be proved in the
next chapter.

We study 2 ⇒ 5: Let E = cl(Eu
A ⊕ Es

A) ⊂ Tn. We will show that

E = T. Note that E is the projection of Ê = cl(Es
Ã
⊕ Es

Ã
). The set E is

an invariant (additive) subgroup of the torus, compact and connected (being
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the projection of a connected set). Hence it is a sub-torus of Tn. This implies

that Ê has a basis of integer vectors, say B.
Now we apply Gauss elimination to obtain a triangular form of Ã: in

other words Â is conjugated (by an integer matriz!) to a matrix of the form

Γ =

(
F G
0 H

)
where F,G,H are integer matrices, F : Ê → Ê.
The fact that this conjugacy is made by an integer matrix implies that

A is conjugated in the torus to the corresponding automorphism induced
by Γ. Note that the eigenvalues of Γ are the same of the ones of Â, and
in particular no eigenvalue of Γ is root of the unity (since the matrices are
conjugated). But then H: is not present in Γ; otherwise H would be a matrix
whose eigenvalues have all norm equal to one, which implies that they are
root of the unity.

So Γ = F and E = Tn.

For 1 ⇒ 6 see Appendix C.
1 ⇒ 7 is a celebrated theorem due to Katznelson: it means that f is

measurably conjugated to a Bernoulli Scheme. A Bernoulli Scheme is a
system of the following form: the space consist of all bi-infinite sequences
whose terms belong to some finite alphabet {1, . . . , r}, hence the space is
Σ = {1, . . . , r}Z. The dynamics is the shift automorphism σ defined by

(σx)n = xn+1

if x = (xn) ∈ Σ. Finally, the invariant measure is a Bernoulli measure. Here
is the definition: take a probability vector P = (p1, . . . , pr) and consider the
measure νP on {1, . . . , r} defined by νP (i) = pi. A Bernoulli measure is a
measure on Σ of the form (νP )

Z.

We record the following properties of the ergodic automorphism A.

1. There are not any closed center leaves: if we have a closed leaf, it is a
torus. Then a similar argument of 2 ⇒ 5 finishes the proof.

2. The periodic leaves are dense.
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Consider the matrix

FRH =


0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8

 .

Then FRH ∈ SL4(Z) has one eigenvalue of norm bigger than one, one
eigenvalue of norm smaller than one, and two eigenvalues on the unit circle,
none of them roots of the unity. Hence FRH is ergodic. In fact Federico
proved in his thesis that this map was not only ergodic but stably ergodic,
meaning:

Definition 1.14. Let f ∈ Diff r
vol(M). We say that F is stably ergodic if

there exist a neighborhood U ⊂ Diff 1
vol(M) of f such that every g ∈ U is

ergodic.

For example, in the next chapter we will give a complete proof that
C2 Anosov diffeomorphisms are ergodic. Combining this with the fact that
Anosov diffeomorphisms are C1 open we conclude that every C2 Anosov dif-
feomorphism is stably ergodic.

For the case of the map FRH things are much more difficult, and we
will not explain here the delicate proof of its stable ergodicity referring the
reader to [Rodriguez-Hertz, 2005] instead. The map FRH : T 4 → T 4 is the
F.Rodriguez-Hertz map.

1.2 The geodesic flow

We will study now another type of PH diffeomorphism, the time 1-map of the
geodesic flow corresponding to surfaces of negative curvature. First we will
recall some general definitions and review some basic facts of the geometry
of hyperbolic surfaces.

Definition 1.15. Let M be a compact surface and ϕ = (ϕt) a Cr-flow with
r ≥ 1. We say that ϕ is an Anosov flow if there exists a continuous splitting
of the tangent bundle into a Whitney sum of the form

TM = Eu ⊕ Ec ⊕ Es

where neither of the bundles Es nor Eu are trivial, Ec is the direction
generated by the tangent of ϕ, and such that.
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1. For every t,and for every x ∈M,dxϕtE
σ
x = Eσ

x .

2. λ = supt≥0{∥dϕt|Es∥} < 1 < µ = inft≥0{m(dϕt|Eu)}.

It is obvious that if ϕ is an Anosov flow then for every T the time-T map
ϕT :M →M is APH. We will study the map f = ϕ1.

The most well-known example of hyperbolic flow is the geodesic flow
corresponding to a surface of negative curvature. References for this section
are [McMullen, 2011] and [Rhoades, ].

1.2.1 Geometry in H
We will work with the upper-half plane equipped with the hyperbolic metric

ds2h =
1

y2
dxdy

This is a complete metric of constant sectional curvature Kg = −1. It is a
simple exercise to verify that every element of

PSL2(R) = {A =

(
a b
c d

)
a, b, c, d ∈ R, ad− bc = 1}

defines an isometry of H. In fact, by Schwartz-Pick we have.

Lemma 1.16. Isom(H, dsh) = PSL2(R)

By a non-euclidean line we mean either a a semicircle in H with center
in R or a vertical semi line. It is easy to prove that elements of PSL2(R)
preserve the family of non-euclidean lines, and in fact the group PSL2(R)
acts transitively on the set of non-euclidean lines. One verifies directly that
the y axis minimizes the distance between two points on it, hence it is a
geodesic line, for example the trace of the geodesic γi,u2(t) determined by the
point i and the unit vector u2 = (0, 1). Thus we conclude that the set of
non-euclidean lines coincide with the set of geodesics in H.

To define the geodesic flow6, we need to work in the tangent bundle, and
since geodesics have constant velocity, we will restrict ourselves to the unit

6Geodesics in H intersect!
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tangent bundle (i.e. we will parametrize by arc length). The geodesic flow is
then, the flow gt : T1H → T1H given by

gt(z, v) = (γz,v(t), γ
′
z,v(t))

Note that by direct computation

γi,u2(t) = iet.

Now since PSL2(R) consist of isometries, this group acts on T1H as fol-
lows: if A ∈ PSL2(R) and we denote LA(z) = Az, then

A · (z, v) = (LA(z), L
′
A(z)v)

Using cross-ratios, for example, we verify that this action is transitive,
and by direct computation one sees that the isotropy group of (i, u2) is trivial,
hence one can identify PSL2(R) ≈ T1H via

A↔ A · (i, u2)

On the other hand,

(γz,v(t), γ
′
z,v(t)) = (iet, iet) =

(
et/2 0
0 et/2

)
· (i, u2)

and furthermore if (z, v) = A · (i, u2) then γz,v(t) = Aγi,u2(t). We have
shown

Lemma 1.17. Under the identification PSL2(R) ≈ T1H the geodesic flow is
given by

gt(A) = A ·
(
et/2 0
0 e−t/2

)
There are two other important flows related to gt, which we now describe.

Given a vector vz = (z, v), denote by a−, a+ the left and right intersections
with the real line of the geodesic γvz (if v is vertical we define a+ = ∞).
Consider the circle Hs(vz) tangent to v at z and to R in a+. If a+ = ∞
define Hs(vz) to be the horizontal line passing through z. The set Hs(vz)
is called the stable horosphere of vz. We note that the family of stable
horospheres is invariant under the action of PSL2(R), and this action is also
transitive.
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We will suppose that horospheres are oriented with the usual conventions,
and we parametrize them with unit speed. Then we define the s-horocycle
flow as the flow which parallel transports vz along the horosphere. Note that
this is a flow in the unit tangent bundle of H, hst : T1H → T1H.

Remark 1.18. If π : T1H → T1H denotes the projection, then dH(πvz, πh
u
t (vz)) =

t.

We also define the unstable horosphere as Hu((z, v)) = Hs((z,−v)) and
the u-horocycle flow hut : T1H → T1H by hut ((z, v)) = −hs−t((z,−v)).

Definition 1.19. The orbit of vz under hs is the stable horocycle (nt.
W s(vz)) and the orbit under hu is the ustable horocycle.

The stable-unstable horocycles are homeomorphic to lines: see the exer-
cises .

Let ii = (i, u2) and consider Hs(ii): we have πϕt(H
s(ii)) = iet +Hs(ii),

hence the length along the horizontal line decreases by e−t, so we have

ϕt ◦ hsv = hse−tv ◦ ϕt

and hence,

ϕt ◦ huv = huetv ◦ ϕt

If we define Es, Eu, Ec to be the line fields generated by the tangent
vectors to hs, hu, ϕt we have then.

Proposition 1.20. The geodesic flow on T1H is a hyperbolic flow with respect
to the decomposition Eu ⊕ Ec ⊕ Es.

Going back to our identification PSL2(R) ≈ T1H, note that

hst(ii) = (i+ t, u2) =

(
1 t
0 1

)
· (i, u2)

and since elements of PSL2(R) permute s-horospheres, we finally get.

Proposition 1.21. In PSL2(R), we have

hst(A) = A ·
(
1 t
0 1

)
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hut (A) = A ·
(
1 1
t 1

)
The second formula follows from the first one together with the fact

(z, v) = A · (i, u2) → (z,−v) = JA · (i, u2) where

J =

(
0 −1
1 0

)
Finally we prove that the product of the Riemannian area dλ = 1

y2
dx∧dy

on H with the Lebesgue measure on S1 is invariant by action of PSL2(R) on
T 1H = H× S1.

Given A ∈ PSL2(R) suppose that A1 =

(
a b
c d

)
. Then Im(LA−1(z) =

Im(z)
|cz+d|2 ), and since L′

A−1(z) =
1

(cz+d)2
its jacobian is equal to j(z) = 1

|cz+d|4 =

| Im(LA−1 (z)

Im(z)
|2. Let f be any continuous function with compact support on H

and compute

(LA)∗λ(f) =

∫
f(Az)

1

Im(z)2
dLeb(z) =

∫
f(z)j(z)

1

Im(LA−1(z)
dLeb(z) = λ(f)

hence (LA)∗λ = λ.
We use the coordinates (z, θ) on T1H. Note that the action of A in the

θ coordinate is just a translation (because LA is complex differentiable its
action on vectors amounts to only rotate them). Hence we see that the
Liouville measure

dLiou = dλdθ

is invariant under the action of PSL2(R).

Proposition 1.22. The Liouville measure on PSL2(R) = T 1H coincides
with the Haar measure.

Proof. By the previous computations, we get that the Liouville measure is
invariant by multiplication on the left by elements of PSL2(R). On the other
hand, it is well known that PSL2(R) is unimodular, i.e. the left and the right
Haar measures coincide, hence the claim.
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Remark 1.23. Note that, in particular, the Liouville measure is preserved by
ϕt, h

s
t , h

u
t .

1.2.2 Hyperbolic Surfaces

Let S be a compact surface of negative sectional curvature. It is a conse-
quence of the Uniformization Theorem that in this case the universal covering
of S is H, and the fundamental group Γ of S acts by hyperbolic isometries
on H. We can thus identify Γ < PSL2(R) and

S = Γ \H = {Γz : z ∈ H}

Hence, we can see unit tangent bundle of S as the homogeneous space

T 1S = Γ \ PSL2(R) = {ΓA : A ∈ PSL2(R)}

Under these identifications we have

gt(ΓA) = ΓA

hst(ΓA) = ΓA ·
(
1 t
0 1

)

hut (ΓA) = ΓA ·
(
1 1
t 1

)
By Proposition 1.22, the Liouville measure induces a (finite area) measure

on T1S = Γ \ PSL2(R), the Liouville measure on T1S. We assume that this
measure is normalized to have area equal to one. Note that the flows gt, h

s
t , h

u
t

preserve the Liouville measure.

1.2.3 Ergodicity of the Geodesic Flow

Now we will prove that the time-one map of the geodesic flow in a surface
of negative curvature is ergodic. To prove this, we will use the ergodic prop-
erties of the flow instead. Now, if a flow is ergodic it is not generally true that
the time-one map is ergodic (give a counterexample). On the other hand, it
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does follows that if the flow is mixing then the time one map is also mixing.
See exercise ??. It would suffice then to show that if Γ is a cocompact lattice
in PSL2(R) then gt :M = Γ/PSL2(R) →M is mixing.

Consider the subgroups G = (gt) ·I,Hs = (hst)I,H
u = (hut )I of PSL2(R).

Since (gt) is an Anosov flow, it follows easily that PSL2(R) is generated by
{G,Hs, Hu}.

Since the action of the geodesic and horocycle flows amounts to multipli-
cation (on the right) by a certain matrix of PSL2(R), it is clear that we can
extend the flows to an action of the complete PSL2(R). For a ∈ PSL2(R)
we consider the Koopman operator Tg : L2(M) → L2(M) of this complete
action, which is defined by

Ta(f) = f ◦Ra

where Ra(Γb) = Γab. The Koopman operators induced by the geodesic
and horocycle actions are denoted T g

t , T
s
t , T

u
t respectively. Observe that each

of the Koopman operators are unitary, and in fact the assignation T : a→ Ta
is a unitary representation of PSL2(R). Similarly for the other operators.

Lemma 1.24. Fix elements g = diag(x, 1/x) ∈ G, a ∈ H+, b ∈ H−. Then

lim
n→∞

gnag−n = I if x < 1

lim
n→∞

gnbg−n = I if x > 1

Proof. Excercise.

Proposition 1.25 (Mautner’s Lemma). Consider the Koopman unitary rep-
resentation T : PSL2 → U(L2(M)) and suppose that g, h ∈ SL2(R) satisfy

lim
n→∞

gnhg−n = I

Then if f ∈ L2(M) satifies Tg(f) = f , it also satifies Th(f) = f .
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Proof. We have

∥Th(f)− f∥2 = ⟨TgnThTg−nf − f⟩ = ⟨Tgnhg−nf − f⟩

By SOT-continuity (exercise 8) we conclude the claim.

Theorem 1.26. The geodesic flow on M is ergodic.

Proof. It is easy to verify that the flow (gt) is ergodic if and only if

T g
t (f) = f a.e. → f = constant a.e.

Let f ∈ L2(M) be fixed for every Tgt . By Mautner’s Lemma and the
Lemma before it, we conclude that f is invariant under the Koopman action
of G,Hs, Hu, which generate PSL2(R), hence f is constant as we wanted to
show.

Now we will show that the horocycle flows are ergodic as well.

Theorem 1.27. The horocycle flows hs, hu are ergodic.

Proof. Of course it suffices to show the claim for hs. We proceed as in the
proof of the ergodicity of the geodesic flow.

Note that is enough to establish the following: if f ∈ L2(M) is fixed
under the action of Ta for a ∈ Hs then f is fixed under the action of Tg for
g ∈ G (as we have seen, invariance under the geodesic flow implies invariance
under both horocycle flows).

Define ψ : PSL2(R) → R by ψ(a) = ⟨Taf, f⟩ : ψ is continuous. Fix
g = diag(x, 1/x) and consider the matrices

an =

(
0 α−1

n

αn 0

)

bn =

(
1 xα−1

n

0 1

)
cn =

(
1 x−1α−1

n

0 1

)
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where (αn) is a sequence of positive numbers converging to zero. Then

bnancn =

(
x 0
αn x−1

)
Furthermore by invariance, ψ(an) = ψ(bnancn) hence

lim
n→∞

ψ(an) = ψ(g)

But the an do not depend on g and g is arbitrary, hence we conclude that
ψ is constant in G, i.e. for every g ∈ G

⟨Tgf − f, f⟩ = 0

By Cauchy-Schwartz (Tg is unitary) we conclude Tgf = f as we wanted
to show.

Theorem 1.28. The geodesic flow (gt) is mixing, hence f = g1 is also mix-
ing.

Proof. Take two continuous observables ϕ, ψ, and let h = hu. Then

I = ⟨ϕ, ψ ◦ gt⟩ ≈ ⟨ϕ ◦ h−s, ψ ◦ gt⟩ = ⟨ϕ, ψ ◦ hsgt⟩

if s small. Since hsgt = gthets, we get

I ≈ ⟨ϕ, ψ ◦ gthets⟩ = ⟨ϕg−t, ψhets⟩

Taking S small and averaging over S we obtain

I =
1

S

∫ S

0

Ids ≈ ⟨ϕg−t, f⟩

f(t, x) =
1

S

∫ S

0

ψ(hetsx)ds =
1

etS

∫ etS

0

ψ(hsx)ds

and thus, if t is sufficiently large by ergodicity of hs we get

f(t, x) ≈
∫
ψdm

Finally, putting everything together we obtain for large t,

I ≈
∫
ϕdm

∫
ψdm

as we wanted to show.



1.2. THE GEODESIC FLOW 27

1.2.4 Consequences of the Ergodicity

Here we obtain some meaningful dynamical properties of the time one
map of the geodesic flow. We start with the following.

Corollary 1.29. The time one map of the geodesic flow is transitive.

This follows immediately since it is mixing with respect to a measure
positive on open sets.

Now will prove that there exist infinitely many closed leaves for f = gt.
These correspond to the periodic points of the geodesic flow. For doing that
we introduce the important property of shadowing.

Definition 1.30. Let f :M →M be PH7.

1. A sequence x = {xn}N−N where N ∈ N∪{∞} is called a δ-pseudo-orbit
for f if d(fxn, xn+1) ≤ δ for every n = −N, . . . , N − 1.

2. The pseudo-orbit y = {yn}N−N ϵ-shadows the pseudo-orbit

x = {xn}N−N if d(xn, yn) < ϵ for every n = −N, . . . , N − 1.

3. We say that the pseudo-orbit x respects the foliation F or it is subor-
dinate to the foliation F if for every n ∈ {−N, . . . , N − 1}, f(xn) and
xn+1 are in the same leaf of F .

The relevant theorem involving pseudo-orbits is the following.

Theorem 1.31 (Shadowing). Let f :M →M be a dynamically coherent PH
diffeomorphism. Then there exists a constant C(f) > 1 only depending on
f such that if δ is sufficiently small then any δ-pseudo-orbit can be C(f)δ-
shadowed by a C(f)δ-pseudo-orbit subordinate to the foliation Wc. That is,
f(xn) and xn+1 lie always in the same center plaque.

In particular, if Ec = 0 (i.e. the system is hyperbolic) we recover the
classical shadowing theorem. Namely pseudo-orbits can be shadowed by
true orbits.

This theorem is due to Hirsch, Pugh and Shub (see theorem 7A-2 in
[Hirsch et al., 1977]). The version presented here appears in [Carrasco, 2010].

7Of course these notions can also be defined for a general homeomorphism acting on a
metric space. We will not have the opportunity to use these more general notions though.
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Definition 1.32. We say that a foliation F is plaque expansive if there exists
ξ > 0 such that if x = {xn}n , y = {yn}n are two ξ-pseudo-orbit respecting
F and satisfying d(xn, yn) < ξ for every n ∈ Z, we have that xn and yn are
always in the same plaque of F . We say that a PH map is plaque expansive
if Wc is plaque expansive.

Corollary 1.33. Under the same hypothesis of theorem ??, if f is plaque
expansive then there exists δ0 > 0 such that if 0 < δ ≤ δ0 then any bi-infinite
δ-pseudo-orbit x can be Cδ-shadowed by a Cδ-pseudo-orbit y which respects
Wc. If z is any other Cδ-pseudo-orbit which Cδ-shadows x and respects Wc,
then yn and zn are always in the same plaque of Wc.

Corollary 1.34. Let f be a dynamically coherent partially hyperbolic diffeo-
morphism and suppose that the non-wandering set of f is equal to M . Then
the set of points whose central leaf is periodic is dense in M .

Proof. Take any point x and let U be an arbitrary neighbourhood of x. Since
x is non-wandering there exists a positive integer k such that fk(U)∩U ̸= ∅.

Now define the pseudo-orbit obtained by taking the sequence
[xf(x) . . . fn(x)], and copying this block one after the other (in both direc-
tions).

By 1.31 there exists a pseudo-orbit {yn}n subordinate to Wc and close
to pseudo-orbit defined before. Now consider the pseudo-orbit {zn} defined
by shifting everything k places to the left, i.e. zn = yk+n.

Then {zn} also shadows the first pseudo-orbit , and hence, since the
system is plaque expansive, zn and yn are always in the same plaque. In
particular y0 and fk(y0) are in the same plaque.

This means that the leaf through y0 is periodic.

Using 1.29 and the previous Corollary, we finally obtain.

Corollary 1.35. There exist infinitely countably many closed leaves for f .
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1.3 An example of non-dynamically coherent

PH diffeomorphism

Here we will be concerned with integrability of the center bundle. The argu-
ments developed in section 1.1 show that at least for the special case when
M = T n and f is a small perturbation of a linear map, then f is dynamically
coherent (in fact all invariant distributions are integrable). Of course this is
a very particular case, but at least forM = T 3 the following theorem is true.

Theorem 1.36 (Brin-Burago-Ivanov). Assume that f : T 3 → T 3 is APH.
Then f is dynamically coherent.

See [Brin et al., 2009].

Even though this Theorem is fairly recent, is what was expected. The
idea is that since dimEc = 1 there exist, by Peano’s theorem, curves tangent
to Ec through every point of the manifold. Then you “only” have to assemble
them into a foliation...

Of course this assembling is a very difficult problem: here we will show
that in fact this is impossible in general. We will explain the following.

Theorem 1.37 (F.R.Hertz-J.R.Hertz-R.Ures). There exist a PH map f :
T 3 → T 3 which is not dynamically coherent.

Proof. Let λ < 1 the stable eigenvalue of AT (hence the unstable eigenvalue
is 1/λ) and let u a unit eigenvector of eigenvalue λ. Consider also a north
pole-south pole function f : T → T such that

f(0) = 0, f(1/2) = 1/2

f ′(1/2) = σ < λ < 1 < ν = f ′(0) < 1/λ

and a differentiable function ϕ : T → R, and construct perturbation F of the
Axiom-A map At × f by “pushing” in the stable direction of A, namely

F (x, θ) = (Ax, f(θ)) + (ϕ(θ)u, 0)

Note the strong unstable direction of At × f is unaltered by this pertur-
bation, and in particular the strong stable manifold of the perturbation exist
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and coincides with the strong stable manifold of the unperturbed map. What
we need to study are the other directions. Also note that the unperturbed
map is not PH.

We are seeking invariant directions of the derivative of F :

dF(x,θ)(v, t) = (Av, f ′(θ)t) + (ϕ′(θ)tu, 0)

An invariant direction (inside the u × T plan) will be generated by a
vector field of the form (a(θ)u, 1) for some function a, hence we need to solve

a(f(θ)) = λa(θ) + ϕ′(θ) (1.7)

We are thus led to find a solution of the cohomological equation

b ◦ f = λb+ ϕ (1.8)

(the solution of (1.7) is just a = b′). But the solutions of this type of
cohomological equation are known, and we can directly check that

η(θ) =
1

λ

∞∑
1

λnϕ(f−nθ) (1.9)

ζ(θ) = −1

λ

∞∑
0

λ−nϕ(fnθ) (1.10)

are solutions.

For every 0 < ϵ < 1/2 we have f−n|(−ϵ,ϵ)
n→∞−−−→= 0 = f(0), hence the

function η is well defined and continuous in T \{1/2}. Deriving term by term
and using λ < f ′(0) we conclude that in fact η ∈ C1(T \ {1/2}). Similarly, if
ϕ(1/2) = 0 then ζ ∈ C1(T \ {0}): we will assume that is the case.

Back to the invariant directions. Note that η′(θ) gets bigger as θ ap-
proaches 1/2, and thus if we can choose ϕ so that

lim
θ→1/2

η′(θ) = ∞ (1.11)

we will get continuity for Ec by defining

Ec(θ = 1/2) = span{(u, 0)} = Es
AT

× 0
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Arguing similarly, we define

Es(θ = 0) = Es
AT

× 0

and we will get a continuous bundle provided that we prove

lim
θ→0

ζ ′(θ) = ∞ (1.12)

Assume for now that we have proved that these bundles are continuous.
Now we want to show that TT 3 = Es + ⊕Ec ⊕ Eu, or what is equivalent,
that the angle between Es and Ec are not zero. What we need to show is
that η′ ̸= ζ ′ for θ ̸= 0, 1/2. Note that for θ = 0, 1/2 the angle is not zero,
and hence it is not zero in a neighbourhood of these points. But by the
cohomological equations,

η′f − ζ ′f = λ

and using the form of the dynamics of f , we conclude that the sign of
η′ − ζ ′ is constant in (0, 1/2) and (1/2, 1), and clearly non zero.

Proposition 1.38. There exist ϕ so that

1. Equations (1.11) and (1.12) hold.

2. η′ has opposite sign in (0, 1/2) and (1/2, 1).

For example ϕ(θ) = 1 + cos(frm−epiθ) works. The proof is carried in
[Hertz et al., 2010].

Hence F is PH (but note that NOT APH). Finally we prove that is not
dynamically coherent.

Important remark: Since the bundles only depend on θ we obtain the
stable, unstable and center manifolds (provided that this last one exists) by
translating a given one of the same type.

Consider the function h : T 2 → T 2 given by

h(x, θ) = x− ϕ(θ)u

Then Fh = hAT and h is clearly surjective, hence it is a semiconjugacy.
Note that we have

l(x, θ) = h−1(h(x, θ)) = (h(x, θ), 0) + (η(θ), θ)
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Figure 1.1: Behavior of center and stable curves.

and hence, the family of curves {l(x, θ)} is tangent to Ec if θ ̸= 1/2. For
θ ̸= 1/2 the bundle Ec is uniquely integrable and hence its invariant curves
are precisely the l(x, θ). But for θ = 1/2 Ec = Es

A × {0}, hence its tangent
curves have to be horizontal. Now we use that η′ have different signs on the
intervals (0, 1/2) and (1/2, 1) to conclude that this family is not a foliation
near θ = 1/2, hence the bundle Ec is not integrable. See Figure 1.1.

Important remark: The example previously constructed in fact is robust,
meaning that in a neighbourhood of ot there are no dynamically coherent PH
diffeomorphisms, a surprising fact. This is consequence of the existence of a
cu-torus, a torus tangent to the center unstable direction (in the example is
the invariant torus corresponding to θ = 1/2).

One very important question in the theory is to characterize the obstruc-
tions to integrability. In particular the following question is still open:

Question: Does bunching imply dynamical coherence?

If the bundles Ecs, Ecu are C1 we have the following.

Proposition 1.39 (Burns-Wilkinson). Assume that Ecs, Ecu are C1 and f
is center bunched. Then Ecs, Ecu, Ec are integrable.

In fact, this proposition can be improved to the case where Ec is Lipschitz.
See [Burns and Wilkinson, 2008] and references therein.
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Note that we did not claim invariance of the resulting foliations, and in
fact we can ask:

Question:: Assume that Ec is integrable. Does it follow that the foliation
is f -invariant?

We investigate these types of questions a little bit deeper. We will explain
the concept of completeness, and to state it we will use some notation.

Given a point x ∈ M and a positive number γ > 0 we will denote by
W s

γ (x) the open disc of size γ inside the leaf W s(x). Similarly for W u
γ (x). If

L is a center manifold we define.

W s
γ (L) =

∪
x∈L

W s
γ (x)

W u
γ (L) =

∪
x∈L

W u
γ (x)

W s(L) =
∪
n≥0

f−nW s
γ (f

nL) =
∪
x∈L

W s(x)

W u(L) =
∪
n≥0

fnW u
γ (f

−nL) =
∪
x∈L

W u(x)

Note that W s
γ (L) ⊂ W s(L),W u

γ (L) ⊂ W u(L) are open (with the induced
topology).

Since the foliation Wc is normally hyperbolic one can use the results of
Section 6 of [Hirsch et al., 1977] to both W s(L),W u(L) are immersed sub-
manifolds tangent to Es⊕Ec, Eu⊕Ec respectively. See also Proposition 3.4
in [Brin et al., 2004].

It follows by definition that for a given center leaf L the submanifolds
W s(L) andW u(L) are saturated by the corresponding strong foliation (either
Ws or Wu).

Definition 1.40. Assume that Ec integrates to an invariant foliation Wc.
Then submanifolds W s(L) and W u(L) are said to be complete if they are
saturated by the center foliation. The center foliation is complete if for every
center leaf L the submanifolds W s(L) and W u(L) are complete

In the case of a dynamically coherent partially hyperbolic diffeomorphism,
given a point x ∈ L it follows that W s(L) ⊂ W cs(x) is an open submanifold,
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and likewise W u(L) ⊂ W cu(x) is open. Completeness of W s(L) is the same
as metric completeness inside W cs(x).

Lemma 1.41. Assume that f is partially hyperbolic diffeomorphism with
invariant complete center foliation Wc. Then f is dynamically coherent.

Proof. Consider a manifold W s(L) where L is a center leaf. As we explained
before, the results of section 6.1 of [Hirsch et al., 1977] imply that this is an
immersed submanifold ofM tangent to Ecs. Take x ∈ W s(L): by hypothesis
W c(x) ⊂ W s(L) and thus W s(W c(x)) ⊂ W s(L), and by the same argument
W s(W c(x)) = W s(L). This shows that the family {W s(L) : L ∈ Wc} is a
partition of the manifold M into C1 submanifolds tangent to the continuous
bundle Ecs, and thus it is a foliation. By hypothesis its leaves are saturated
by the center foliation. Invariance follows from the fact that both Wc and
Ws are invariant.

Similarly, the bundle Ecu integrates to an invariant foliation whose leaves
are saturated by the center foliation.

Corollary 1.42. Assume that Ec integrates to a C1 foliation. Then f is
dynamically coherent.

Proof. This follows easily from the fact that if α : [0, 1] → M is a C1 curve
tangent to Ec, then α([0, 1]) ⊂ W s(Lα(0)) ∩ W u(Lα(0)), and hence Wc is
complete.

In principle it is not obvious at all that dynamical coherence imply com-
pleteness. You can find some discussion about this in [Carrasco, 2012].

Let us finish this part with another question. If Ecs, Ecs are integrable
then Ec is integrable to the foliation obtained as intersection of cs, cu-leaves.
However is we assume that Ecs, Ecs, Ec are integrable to foliations Wcs,Wcu

Wc there is no reason a priori that implies that the intersection of a center
stable and a center unstable leaf is a leaf of Wc. The reason is the that
Ec may integrate to many foliations, so in principle we could have a center
stable and a center unstable intersecting in a manifold tangent to Ec but not
necessarily a leaf of Wc. In [Hertz et al., 2010] the authors construct a center
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bundle that is not uniquely integrable, but in fact the unique integrability
only fails at a curve. So we are led to the following question.

Question: If Ec is integrable, is it true that it has a unique foliation
tangent to it?

1.4 Skew Products and Compact Foliations.

For a dynamically coherent PH map, we have seen three different types
of examples in terms of the structure of its center foliation, namely

1. All center leaves are closed (Product case).

2. No center leaf is closed (Anosov case).

3. There are infinitely many closed center leaves and infinitely many non-
closed center leaves (Anosov flow case).

This short list in fact resumes all known behaviour in terms of the struc-
ture of the center foliation, and thus one is led to wonder whether this list is
complete, namely

Question: Are there any PH diffeomorphisms with other type of center
structure?

Here we will investigate the first case, namely we will assume that f is
PH with compact center foliation Wc (i.e. all leaves of Wc are compact). We
will only sketch some results, and refer the reader to [Carrasco, 2012] for the
complete proofs.

Example: Skew products.
Take an Anosov map A : N → N and let G a (connected) compact Lie

Group. Suppose that there exist a representation ϕ : N → Aut(G) and define

f(x, g) = (Ax, ϕ(g)(x))

Then f : N × G → N × G is PH, and is called a Skew product. These
types of examples have been studied thoroughly .

More in general, we can consider a PH map f such that it fibers over an
Anosov map A.
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In general, for a compact foliation on a compact riemannian manifold, the
most (and characterizing) property is the fact of being uniformly compact.

Definition 1.43. A compact foliation F of a compact Riemannian manifold
M said to be uniformly compact if the function vol :M → R+ which assigns
to each point x the Riemannian volume of the submanifold Lx ⊂ M is
uniformly bounded from above, i.e.

sup{vol(L) : L leaf of F} <∞

Establishing this property is the fist step to prove that f fibers over
some hyperbolic map. Let us mention that this concern is not unjustified:
there are examples of compact foliations on compact manifolds which are not
uniformly compact. See [Sullivan, 1976].

Theorem 1.44 (D.B.A. Epstein). The following conditions are equivalent.

1. F is uniformly compact.

2. Every leaf L of F has finite holonomy.

3. X/F is Hausdorff.

We will also need the following.

Theorem 1.45. Let G be a group that acts effectively on a connected mani-
fold N by homeomorphisms and such that every point has a finite orbit. Then
G is finite.

Now we are ready to start working. First we have the following.

Proposition 1.46. Let f be a partially hyperbolic diffeomorphism with uni-
formly compact foliation Wc. Then

1. f is dynamically coherent.

2. The foliation Wc is complete.
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Proof. By Lemma 1.42 it suffices to show that Wc is complete.
We denote by π : M → X = M/Wc the projection onto the quotient of

M by the leaves of the center foliation. The space N is a compact Hausdorff
space (see 1.44), and it is thus metrizable where a compatible metric is given
as follows: if K,K ′ are two center leaves then the distance between them as
points in N is

dX(π(K), π(K ′)) = inf{d(x, y) : x ∈ K, y ∈ K ′}
(see [Bourbaki, 1998]).
Fix a leaf L ∈ Wc, and consider any other leaf L′ such that L′∩W s(L) ̸=

∅. We will show that given ϵ > 0 there exist some N such that for every
n ≥ N dX(f

n(L), fn(L′) < ϵ. The characterization8 given in Theorem 6.1 in
[Hirsch et al., 1977] implies that L′ ⊂ W s(L).

By theorem ?? we can conclude that every point F ∈ N has a neighbour-
hood U(L, δL) of radius δL, and since the space N is compact we can find
finitely many points F1, . . . , Fk and 0 < δ < ϵ/2 satisfying

X = ∪k
i=1U(Fi, δ).

Let α the Lebesgue number of the covering {pi−1(U(Fi, δ))}. By hypoth-
esis there exist x ∈ L, y ∈ L′ in the same strong stable manifold. Thus, r
there exist some N such that for all n ≥ N the points fN(x) and fN(y) are
at distance less than α, and hence dX(f

n(L), fn(L′)) < 2δ < ϵ.

We want to prove the converse, namely that if the center foliation is
complete and f is dynamically coherent with compact center foliation then
Wc is uniformly compact. We need the following theorem.

Theorem 1.47. Assume that f is dynamically coherent with compact center
foliation Wc and such that for every f -periodic leaf L, |G(L)| < ∞. Then
Wc is uniformly compact.

The proof of this theorem is given in [Carrasco, 2012].

Since we are assuming dynamical coherence, for a given leaf L we can talk
about its holonomy group when restricted to the center stable and center
unstable manifolds where it is contained. For any point x ∈ L we denote

Gs(L) = G(L|W cs(x)), Gu(L) = G(L|W cu(x))

8This is similar to the characterization given in the Classical Stable Manifold Theorem.
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Dynamical coherence also implies that if D is a small transverse disc to
Wc one can define coordinates on it by using the three transverse foliations.
See figure 1.2.

x

W

s

(x)

W (x)

u

D

Figure 1.2: Transverse coordinates in D.

Using these coordinates, one can prove.

Proposition 1.48. The group G(L) is finite if and only if Gs(L), Gu(L) are
finite. In this case G(L) is isomorphic to Gu(L)×Gs(L).

Corollary 1.49. Assume that dimM = 3 (thus all Es, Eu, Ec are one dimen-
sional. Then the foliation Wc is uniformly compact. Moreover, if Ec, Ecs, Ecu

are oriented then all center leaves are without holonomy and f fibers over a
map g : T2 → T2 which is conjugate to a hyperbolic automorphism.

Note that the condition of Ec, Ecs, Ecu being oriented can be achieved by
passing to a finite covering of M .

Proof. It is not hard to see that an open surface foliated by circles is home-
omorphic to either a cylinder or a Mbius band, hence it follows that the
holonomy of every leaf is finite. If the bundles are oriented all center stables
and center unstables are homeomorphic to cylinders hence Gs, Gu are trivial,
and thus all holonomy groups are trivial. In this case π : M → M/Wc
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is a fibration9 and one concludes that M/Wc is a smooth manifold and
g : M/Wc → M/Wc is a differentiable map preserving two invariant trans-
verse foliations U ,S such that g uniformly expands U and uniformly contracts
S. HenceM/Wc = T2 and g is conjugated to an Anosov diffeomorphism.

Proposition 1.50. Assume that f is dynamically coherent and Wc is com-
plete. Then Wc is uniformly compact.

Suppose that L is a periodic center leaf, and W s(L) is complete. Then
for every leaf L′ ⊂ W s(L) we have

1. L′ is a finite covering of L.

2. The group Gs(L′) is finite.

Sketch. It suffices to show that for a given periodic leaf L, Gs(L), Gu(L) are
finite. Consider then N = W s(L). Since N is complete, it is not hard to
prove that N = W cs(x) where x is any point in L. Fix x and letW = W s(x).
By iterating one verifies that W ∩ L = {x}.

We now use completeness: if L′ ⊂ N is any other center leaf then un-
der iteration is approaching L (figure 1.3). Hence we conclude that L′ is a
covering of L where the covering projection is given by the stable projection.

This mechanisms allows us to extend any representative g : D ⊂ W → W
of a holonomy germ to the whole W . Here is how: for y ∈ W consider the
lift α̃y of the curve α to the leaf W c(y), such that α̃y(o) = y. Then define
ĝ(y) = α̃y(1). This procedure clearly defines a continuous extension of g
to the whole W , with the property that for every point y ∈ W , the points
y and g(y) are in the same center leaf. In particular we can think of the
holonomy group of L as a group H of homeomorphisms of the manifold W .
Again completeness imply that for any L′ we have |L′ ∩W | < ∞, and thus
the orbit of any point y ∈ W under the action of H is finite. Theorem 1.45
implies then that H is finite, as we wanted to show.

By Corollary 1.42 a C1 foliation is complete, hence we get.

9This is consequence of Reeb’s Stability Theorem.
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f
n

XZ

W(X)
S

L

L'

f(X)
n

Figure 1.3: Under iterations L′ aproaches L.

Corollary 1.51. Assume that Ec integrates to a C1 compact foliation Wc.
Then Wc is uniformly compact.

There are other cases where a compact center foliation is known to be
compact, namely we have the following two theorems.

Theorem 1.52. Assume that f is dynamically coherent and Ec is a line
bundle which integrates to a compact foliation Wc. Then Wc is uniformly
compact.

Definition 1.53. A partially hyperbolic diffeomorphism f is said to be cen-
ter isometric if ∥df |Ec∥ = 1.

It is a result of M. Brin that in this case f is dynamically coherent. See
[Brin, 2003].

Theorem 1.54. Let f : M → M be a center isometric partially hyperbolic
diffeomorphism whose center foliation Wc is compact.

Then Wc is uniformly compact.

See [Carrasco, 2012].
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As we saw with Corollary 1.49, at least in 3 dimensions uniform compact-
ness imply that our map fibers over some hyperbolic map. This is also true
(with the same proof) if all holonomy is trivial. We can put together this
two facts and ask

Question: If Wc is uniformly compact, does there exist a finite covering
of the manifold such that the corresponding foliation is without holonomy?
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Chapter 2

Hopf’s Method

2.0.1 Absolute Continuity

Here we investigate an important property of the invariant foliations: its
absolute continuity. What we are seeking is the following Fubini type claim:
if F is a foliation on M and S ⊂ M is measurable, then Leb(S) = 0 if and
only if S ∩ L has zero Lebesgue measure inside L for almost every leaf L
(again here we are referring to the Lebesgue measure). To make prove this
claim we first recall some definitions.

2.0.2 Lebesgue measure in a manifold

Here we recall the definition of the Lebesgue measure class on a manifold
M . A measure ν on M is a smooth measure if there exist an atlas {ϕi, Ui}
of M such that for every i there exist a smooth bounded-away from zero
positive function fi ∈ C∞(ϕi(Ui),Rn) such that

(ϕi)∗ν = fidx

where dx stands for the Lebesgue measure on Rn.
Note that if ϕ̃i : Ũi → Rn is any other chart, by the change of variables

formula

43
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(ϕ̃i)∗ν = fi ◦ ϕĩi|det(dϕĩi)|dx

where ϕĩi = ϕi ◦ ϕ̃−1
i , and thus the definition of smooth measure is inde-

pendent of the atlas used.

Using partitions of the unity is easy to see that all smooth measures are
equivalent, hence we define

Definition 2.1. The Lebesgue class on a manifold is the equivalence class
of all smooth measures in the manifold.

We remark that every manifold can be equipped with a smooth measure
(i.e. the Lebesgue class is non-empty): see excercise 5.

It makes sense then to speak of null sets with respect to smooth volumes:
we call these Lebesgue null sets. We define.

Definition 2.2. A measurable bijection h :M →M is absolutely continuous
if it induces a bijection in the collection of Lebesgue null sets of M .

If h is abs. cont. and ν is a smooth volume on M then h∗ν ≪ ν and
hence by Lebesgue-Radon-Nikodym theorem there exist some density J such
that

d(h∗ν) = Jdν (2.1)

Further properties of J are of course desirable.

Example: Assume that M is orientable and let ω a non-vanishing n-form
(a volume form). If h is a Cr-diffeo we have

J(x) = |detωdxh|

and in particular, J(x) is continuous and positive everywhere.

We will be applying these notions to holonomy maps corresponding to
invariant foliations. In particular we will deal with maps h : D → D′ de-
fined on small completely transverse disks D,D′ to F (the Lebesgue measure
induced by the Riemannian metric of M).

We record here the following lemma which will be used in the next section.
See [Mañé, 1983] for the proof.
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Lemma 2.3. Let (hn)n≥0 ⊂ Emb1(D,D′) and denote Jn the Jacobian of hn.
Assume that there exist a topological embedding h : D → D′ and a positive
continuous function J : D → R+ such that

hn ⇒ h

Jn ⇒ J

Then h is absolutely continuous and dh∗m = Jdm.

Note the similitude of this lemma with the well known fact that Cr(D,D′)
is Cr closed.

2.0.3 Absolute continuity of the unstable foliation

Definition 2.4. A foliation F is absolutely continuous if every holonomy
transport map hx,y : Dx → Dy is absolutely continuous.

Since the pseudo-group of holonomy transports is countably generated,
it suffices to prove that holonomies transports are absolutely continuous for
small discs.

Here is the main theorem of this section:

Theorem 2.5. If f is PH then Wu is absolutely continuous.

Would Eu be a C1 bundle the result will be immediate, but this is seldom
the case (see [Anosov, 1967]). The best that we can hope for is that Eu is
θ-Hölder , as explained in [Pugh et al., 1997] for example. The natural idea
here is to try to approximate Wu by smooth local foliations Fn prove that
their holonomy transports hn : D → D′ converge uniformly to h, and their
Jacobians converge uniformly to some map J : D → R. Then using Lemma
2.3 we could conclude that h is absolutely continuous.

However this is impossible to do in practice. The only structure that for
sure we could approximate is the bundle Eu. Note that if we do approximate
Eu by Cr-bundles En, these bundles will not be necessarily integrable. To
circumvent this difficulty we will work with some version of a local foliation:
a plaquation. The proof that we present here using plaquations is the one
of [Pugh and Shub, 1972]. There are other ways to prove the absolute con-
tinuity of Wu but the use of plaquations is a typical technique of partially
hyperbolic dynamics.
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Proof.
We fix small cs-dimensional discs Dp ⊂ D,D′

p′ ⊂ D′ transverse to Wu,
and consider the holonomy transport map h : Dp → D′

p′ . We assume that
Dp, D

′
p′ are small enough so that h can be extended to an embedding defined

on bigger discs. As explained before, absolute continuity is a local fact so
is no loss of generality to assume that D,D′ are contained in a common
foliation chart.

Take any Cr approximation E to Eu and consider

P = {Px = expx(Ex(r))}x∈M

where r > 0 will be specified later. In principle we only require r to be
less than the injectivity radius of exp. We note that P is a collection of u-
dimensional discs centered at each point x ∈M and such that they vary con-
tinuously with respect to its center: this is precisely a plaquation. We omit
the formal definition (the reader should be able to provide by him/herself).

The point is that we can also define holonomy transports using P (pro-
vided that Dp, D

′
p′ are close enough). In principle the holonomy maps are

much worse behaved that in the case of a foliation. However we have the
following:

Lemma 2.6. Let 0 < α < π/2 be given. Then we can choose r so that if
A,B are two transverse discs to P so that

1. max{ang(TA,Ecs), ang(TB,Ecs)} < α

2. x ∈ A⇒ d(x,B ∩ Px) < r

then the holonomy transport gx,x′ : Ax ⊂ A→ Bx′ ⊂ B is Cr-immersion.

(Recall that we are using a metric so that Eu is perpendicular to Ecs).

Proof. The fact that gx,x′ is Cr is immediate. Consider then y close to p and
denote y′ = g(y). We want to show that dygx,x′ : TyAx → Ty′Bx′ is bijective.
Note that for y close to x we have gx,x′ = gy,y′ , so with no loss of generality
we can assume y = x.

If y = x = x′ then the claim is clear, i.e. we have injectivity in the
diagonal in a neighbourhood of (x, x′). The map g and its derivative de-
pends continuously on x, x′ and on the discs Ax, Bx′ ; since {Vp ⊂ TpM :
ang(Vp, E

cs) ≤ α},M are compact, bijectivity on the diagonal extends to a
r-neighbourhood of the diagonal.
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We will use the lemma with α = ang(Ecs, E⊥). Now we take advantage
of the fact that f preserves Wu.

Remark 2.7. Since f preserves the foliation Wu, so it is enough to prove
absolute continuity for a holonomy transport H : Df−np → D′

f−n with n ≥ 0.
Of course as we pre-iterate the pre-image of the discs D,D′ become larger,
but again using that abs. cont. is local, we see that it suffices to show absolute
continuity for discs contained in the same foliation chart. As we pre-iterate,
the tangent bundles of Dp, Dp′ converge uniformly to the bundle Ecs (this is
a consequence of the λ-lemma; alternatively see [Hirsch et al., 1977]), so the
pre-iterates of the discs are still in hypothesis of the previous lemma.

Define now the following family of plaquations: Pn
x = fnPf−nx.

Fact : There exist ϵ > 0 such that if Pn(ϵ) denotes the plaquation Pn

restricted to the discs of size ϵ then

Pn(ϵ) ⇒ W u
ϵ (x)

See [Hirsch et al., 1977] for the proof.

We will assume that d(x, x′ < ϵ/2. Finally let gn : Dx → Rx′
n
⊂ Dx′ be

the holonomy transport of Pn. Here we mean x′n = gn(x), Rx′
n
= gn(Dx).

Then

gn ⇒ h

Lemma 2.8. Each gn is an embedding.

Proof. By 2.6 and the previous remarks, each gn is a Cr-immersion. With no
loss of generality we can assume that all gn and h are defined in a slightly
bigger disc D̂ and that ĝn ⇒ ĥ (a hat denotes the extensions). Also the

extension ĥ of h can be taken as being an homeomorphism.

Note that all maps are local homeomorphisms, so we can compute their
degree using their local degrees. To this end, take B ⊂ Dx′ a compact
neighborhood of hDx inside ĥD̂. For each y ∈ B we have that degy(ĥ) = 1,
and hence by uniform converge degy(ĝn) = 1 if n is sufficiently large. This
proves injectivity of gn.
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Denote for y ∈ Dp y
′
n = gn(y) and let pn = f−np, qn = f−n(x′n), Dn =

f−nDp, D
′
n = f−nDp′ . Then we can write gn = fn ◦ gpn,qnf−n where g is

the holonomy transport corresponding to the plaquation P . In particular
qn ∈ Ppn and furthermore since f−n contracts the u-distance and P is close
to Wu, there exist a sequence of positive numbers ϵn converging to zero so
that qn ∈ Ppn(ϵn).

For any y in Dp we have

Jacy(gn) = | det(dfn|Tf−ny′nD
′
n) det(dgpn,qn|Tf−ny′nDn) det(df

−n|TyDp)|

= det(dgpn,qn|Tf−ny′nDn)|
det(df−n|TyDp)

det(df−n|Ty′nD′
p′)

|

The first term converges uniformly to 1 (since Dn, D
′
n ⇒ Ecs, d(pn, qn) →

0)). We then have

Lemma 2.9. Define Ln : Dp → R by

Ln(y) = | det(df
−n|TyDp)

det(df−n|Ty′nD′
p′)

|

J(y) = lim
n→∞

| det(df
−n|TyDp)

det(df−n|Ty′D′
p′)

|

Then J(y is well defined, the convergence is uniform and Ln ⇒ J .

After proving this lemma we can use lemma 2.3 to conclude the proof of
the theorem.

Proof.
Particular case: y = p, TpDp = Ecs

p , Tp′Dp′ = Ecs
p′ .

Denote dcsf = df |Ecs. We are trying to prove that

∃ lim
n

det(dcsp f
−n)

det(dcsp′f
−n)

= lim
n

n∏
k=0

det(dcs
f−kp

f−1)

det(dcs
f−kp′

f−1)

or equivalently, taking log that the series∑
k=0

| log det(dcsf−kpf
−n)− log det(dcsf−kp′f

−n)| (2.2)

is finite.
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As stated before, it is known that Ecs is Hölder , and since the function
x→ log(det(dxf

−1) is C1 in the manifold we conclude that its cs-restriction
x→ log(det(dcsx f

−1) is θ-Hölder . Then, the series of (2.2) is dominated by

∞∑
k=0

Cd(f−kp, f−kp′)θ ≤ C
∞∑
k=0

(|duf−1|)θ)k <∞

and thus converges as well (note that |duf−1|θ < 1).

General Case: Consider π : TM = Eu ⊕ Ecs → Ecs the projection, and
note that π commutes with df . Then for any point y ∈ Dp we can write

df−n|TyDp = (π|Tf−nyDn)
−1 ◦ dcsf−n|Ecs ◦ π|TyDp

and hence

Ln(y) =
det(π|Tf−ny′D

′
n)

det(π|Tf−nyDn)

det(dcsy f
−n|Ecs)

det(dcsy′nf
−n|Ecs)

det(π|TyDp)

det(π|Ty′nD′
p′)

Again since TDn, TD
′
n converge uniformly to Ecs, the first quotient con-

verges uniformly to 1 and furthermore using that gn ⇒ h and D′
p′ is C1 we

get that

π|Ty′nD
′
p′ ⇒ π|Ty′D′

p′

Hence, we just need to prove

L′
n(y) :=

det(dcsy f
−n|Ecs)

det(dcsy′nf
−n|Ecs)

⇒ J ′(y) := lim
n→∞

dcsy f
−n|Ecs

dcsy′f
−n|Ecs

By the particular case J ′(y) is well defined and the convergence is uniform.

Note

L′
n(y) =

dcsy f
−n|Ecs

dcsy′f
−n|Ecs

det(dcsy′f
−n|Ecs)

det(dcsy′nf
−n|Ecs)

The first term converges uniformly to J ′(y) so we need to prove that the
second term converges uniformly to 1. Equivalently we can prove that the
series whose general term is
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n−1∑
k=0

| log(det(dcsf−ky′n
f−1|Ecs))− log(det(dcsf−ky′f

−1|Ecs))|

≤ C

n−1∑
k=0

d(f−ky′n, f
−ky′)kθ (2.3)

is uniformly convergent in y to zero. Observe that the points y′n, y
′ are not in

the same unstable manifold in general, so we need to be a little more careful
in the estimates than in the particular case (and furthermore we need to find
the limit of the series)

What it is true however is that f−ny′ ∈ W u
ϵ (f−ny) so ϵm ≤ m(dfu)−n, and

since P is almost tangent to Eu we can also assume that f−ny′n ∈ Pf−ny(ϵn)
if n is sufficiently big. Hence if n is sufficiently big we have d(f−ny, f−ny′n) ≤
m(dfu)−n, and thus

d(f−ky′n, f
−ky′) = d(fn−k(f−ny′n), f

n−k(f−ny′))

As we pre-iterate the discs D′
k become tangent to Ecs so we get for some

constant independent of k, n

d(f−ky′n, f
−ky′) = d(fn−k(f−ny′n), f

n−k(f−ny′)) ≤ C ′m(dfu)−n|dcsf |n−k

Putting everything together we estimate

n−1∑
k=0

d(f−ky′n, f
−ky′)kθ ≤ C ′

n−1∑
k=0

(m(dfu)−n|dcsf |n−k)θ =
1− |dcsf |nθ

1− |dcsf |θ
m(dfu)−n

which converges to zero as n goes to infinity, independently of y.

Now suppose that f is a PH diffeomorphism which preserves a smooth
volume ν, and consider a foliated cube U = {P (x) = W u(x) ∩ U}x∈U . Since
the plaques of U have C1 tubular neighbourhoods we can assume with no



51

loss of generality that U = {D(x)}x∈U , where D(x) is a disc of dimension
c + s transverse to Wu and such that this partition is C1. Denote by H the
partition whose atoms are the plaques P (x) and T the partition whose atoms
are the discs D(x).

Now consider the disintegrations of ν with respect to this partitions and
denote νH and νT the corresponding quotient measures. Note that we can
identify U/H by any of the discs D(x). We fix one of them, D = D(xo) and
we will think νH as a measure on D. We then have

Proposition 2.10. If we denote by m the Lebesgue measure we have.

1. νHx is equivalent to mP (x).

2. νH is equivalent to mD.

Proof. This is Theorem 7.81 in [Pesin, 2004]. Here is the proof.
It is easier to work with local coordinates: take a diffeomorphism (C1!)

x : U → (−1, 1)u × (−1, 1)c+s that sends the partition T to the vertical
partition of discs {a× (−1, 1)c+s}. Note that under this diffeomorphism each
horizontal plaque is mapped to a completely transverse submanifold to the
vertical partitions. We will continue using the same notation for both of this
partitions in the x coordinates. Also, it is no loss of generality to assume
that D = D(0). Let m = u+ c+ s the dimension of the manifold M .

If A ⊂ U has positive measure, then for some positive differentiable func-
tion ρ : U → R we have

µ(A) =

∫
ρ(x)χA(x)dx

Also

µ(A) =

∫
(−1,1)u

dx1 · · · dxu
∫
D

(x)ρ(x)χA(x)dx
u+1 · · · dxm (2.4)

Denote the points of U by x = (y, z), and consider the holonomy hx :
D → D(y). By absolute continuity of the horizontal foliation, there exist a
positive measurable function J(z|y) such that the previous equation can be
written as

1Pablo wants to thank Y. Pesin for clarifying the proof for him.
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µ(A) =

∫
(−1,1)u

dx1 · · · dxu
∫
D

ρ(hx(z))χA(hx(z))J(z|y)dxu+1 · · · dxm (2.5)

Now notice that if we fix y ∈ (−1, 1)u, the trace of hx(z) is precisely V (x),
hence we can write after using Fubini to interchange the order of integration

µ(A) =

∫
D

dxu+1 · · · dxm
∫
V (x)

ρ(hx(z))χA(hx(z))J(z|y)dx1 · · · dxu (2.6)

This proves both of the claims.

Corollary 2.11. Using the previous notation, if X ⊂ M has full measure
then for almost every x ∈M we have: for νHx almost every y ∈ P (x), y ∈ X.

A similar statement, of course, holds for the stable foliation.

2.0.4 Hopf’s Method - Anosov Case

To illustrate this method we will assume for now that Ec = 0. We fist
establish a general criterion for ergodicity.

Proposition 2.12 (Birkhoff’s converse). Let M be a compact metric space
and T : M → M a measurable map preserving a measure ν. Suppose that
for every continuous function ϕ :M → R we have

ϕ+(x) = lim
n→∞

An(ϕ)(x) = const.(=

∫
ϕdν)

Then T is ergodic.

Proof. Excercise.

It is a consequence of Birkhoff Theorem that if T is invertible then for
almost every x ∈M we have ϕ+(x) = ϕ−(x) where

ϕ−(x) = lim
n→−∞

−An(ϕ)(x)
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We will denote this common value by ϕ∗(x).

Now we come back to our setting: f : M → M Anosov preserving a
smooth volume ν.

Lemma 2.13. Suppose that ϕ is continuous and x is such that ϕ+(x) is
defined. Then for every y ∈ W s(x) we have that ϕ+(y) is defined and equal
to ϕ+(x). Similarly if ϕ−(x) is defined and y ∈ W u(x) then ϕ−(y) is defined
and equal to ϕ−(x).

Proof. Excercise.

Theorem 2.14. [Anosov] f is ergodic.

Proof. 1. Let X ⊂ M the set where ϕ+(x) = ϕ−(x) = ϕ∗(x): X has full
measure. Consider a foliated cube U corresponding to the unstable
foliation and use the notation that we used for Theorem 2.11. Then
for almost every x ∈ M we have that νHx -almost every y ∈ W u(x) ∩ U
is in X. Then A(x) = ∪y∈Wu(x)∩U,y∈XcW s(x) ∩ U has zero measure.
Hence, and using the similar statement for the stable foliation we con-
clude that for almost every x ∈ M its stable plaque W s

loc(x) intersects
A(x) for almost every point y ∈ W s

loc(x). I.e., almost every point x
has a neighbourhood N such that for almost every y ∈ N the point
z = W u(x)∩W s(y)∩N ∈ X. Hence ϕ∗x = ϕ∗(z); in other words ϕ∗ is
locally constant.

2. Now notice that given two points in the manifold we can join them by
a u-s path (meaning a piecewise C1 path consisting of pieces tangent to
either Eu or Es). In other words, we can ”join” neighbourhoods where
ϕ∗, and thus we conclude that ϕ∗ is constant. Proposition 2.12 finishes
the proof.

Remark 2.15. Note that the proof of the previous Theorem consist of two
pieces: “local ergodicity” and “accesibility”. We will say more about this
later when we study Hopf method for general PH.
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2.0.5 Hopf’s Method - Partially Hyperbolic Case

Now we want to apply a similar procedure por general PH diffeos. Of
course the presence of the center foliation complicates considerably the prob-
lem, since we cannot guarantee that Birkhoff’s averages of continuous func-
tions are constant for points in the same center leaf (provided that this leaf
even exist!). In other words, we have lost the accessibility referred at the
end of last section. Before going into that it will be convenient to rephrase
some of the results of the previous part in a somewhat different language.
We follow here the approach of [Burns et al., 1999].

Hypothesis: Throughout this part f is PH and preserves a smooth
measure µ.

We will be working with the Borel σ-algebra BM of M . If A ⊂ BM is a
sub σ-algebra we will denote by Â its “saturation” with respect to the sets
of BM of measure zero, namely

Â = {B ∈ BM : ∃A ∈ A : µ(B △ A) = 0}

If you consider the proof of Lemma 2.13, you will see that in fact you
do not need the points to belong to the same strong stable manifold for the
conclusion to be true, but only that these points asymptotically converge to
each other: in other words that they are in the same weak stable manifold

Wws(x) = {y ∈M : lim sup
n→∞

d(fnx, fny) = 0}

Similarly we can define the weak unstable manifold. Note that Fws =
{Wws(x)}x and Fwu = {W us(x)}x are partitions of M . In the case when f
is Anosov we have Wws(x) = W s(x) and W us(x) = W u(x), but if f is PH
we can only assert the inclusions

W s(x) ⊂ Wws(x)

W u(x) ⊂ Wwu(x).

We denote by S,U the σ-algebras consisting of sets saturated by weak
stable and weak unstable leaves, and by SS,SU the corresponding σ-algebras
consisting of sets saturated by strong stable and strong unstable leaves. Note
that S ⊂ SS and U ⊂ SU , but in general the opposite inclusions do not hold.
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Proposition 2.16 (Hopf’s Method - Revised version).

If Ŝ ∩ Û = ν (being ν the trivial σ-algebra) then f is ergodic.

Proof. If f were nor ergodic, there would be a continuous function ϕ and a
real number c such that

0 < µ{ϕ+ < c} < 1

Consider the sets

A = {x : ∃ϕ+(x) and ϕ+(x) < c}

B = {x : ∃ϕ−(x) and ϕ−(x) < c}
Then A ∈ S, B ∈ U and µ(A△B) = 0 (Birkhoff), hence

A ∩B ∈ Ŝ ∩ Û = ν

But since 0 < µ(A) < 1, we conclude A ∩B ̸∈ ν, a contradiction.

Now we go back to the problem of accessibility.

Definition 2.17. Fix a point x ∈M . We say that y ∈M is accessible from
x if there exist a piecewise C1 curve α : x 7→ y everywhere tangent to Es or
Eu. The set of points y accessible from x is called the accessibility class of x
and denoted ACC(x).

We then say that f is

1. accessible if there is only one accessible class.

2. essentially accessible if given a borel set A consisting of accessibility
classes, then A has either full or null measure.

Example 1: The map f = AT ×Rα : T 3 → T 3 is not essentially accessible.
Note that given p = (xp, yp, zp), q = (xq, yq, zq) ∈ T 3 then

d(fnp, fn
q ) −−−→

n→∞
0 ⇐⇒ zp = zq and (xq, yq) ∈ W s

aT
((xp, yp))

By the dynamical characterization of the stable foliation we conclude
that the stable manifold of p is the set W s

aT
((xp, yp)) × {zp}. Similarly, the
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unstable manifold of p is W u
aT
((xp, yp)) × {zp}. From here follows that f is

not essentially accessible.
Example 2: The time one map f of the geodesic flow on a surface of

negative curvature is accessible (See [Grayson et al., 1994]).
Denote by X,Xu, Xs the unit vector fields generating the flows g, hu, hs.

We first note the following.

Lemma 2.18. [Xs, Xu] = X.

Proof. Let Z = [Xs, Xu]. Then we can write Z = aXs + bX + cXu for some
differentiable functions a, b, c. It follows that

(gt)∗Z = [(gt)∗X
s, (gt)∗X

u] = [e−tXs, etXu] = Z = ae−tXs + bX + cetXu

hence a = c = 0.

Now since span{Xs, X,Xu} = TM , for each p ∈ M the map Φ :
(−1, 1)3 →M given by

Φ(t, v, w) = hsvh
u
wgt(p)

is a diffeomorphism onto an open neighbourhood of p containing a ball Bp(rp)
of radius rp. By compactness there exist r > 0 such that rp ≥ r. We know
that the geodesic flow is transitive2: let γ be a dense orbit.

Lemma 2.19. There exist L > 0 such that any two Bp(r), Bq(r) can be
joined by an arc of γ of time length ≤ L.

The proof is an exercise.

Using Lemma 2.18 we see that there exist a constant c > 0 such that if
q = gt(p) for some |t| ≤ c we have q = hu−wh

s
−vh

u
wh

s
v(p) for some |v|, |w| ≤ 1.

From here it is obvious.

Example 3: The F.Rodriguez-Hertz map is essentially accessible.
This follows since E = Es ⊕ Eu is an irrational plane, and hence dense.

Note that since E is integrable, FRH cannot be accessible.

2Transitivity of the Geodesic Flow can be established directly without reference to its
ergodicity.
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We now go back to the general setting. Note that essential accessibility
is equivalent to

̂SS ∩ SU = ν.

On the other hand we always have

Ŝ ∩ Û ⊂ ŜS ∩ ŜU
̂SS ∩ SU ⊂ ŜS ∩ ŜU .

Hence to prove ergodicity for an essentially accessible PH map it suffices
to show, by 2.16, the inclusion

ŜS ∩ ŜU ⊂ ̂SS ∩ SU .

The following important Theorem due to C. Pugh and M. Shub was one
the foundational results in the ergodic theorem of

Theorem 2.20 (C.Pugh-M.Shub). Let f be a C2 PH diffeo preserving a
smooth volume and satisfying:

1. f is dynamically coherent.

2. f is center bunched , namely supx
∥dcxf∥
m(dcxf)

≈ 1.

3. f is essentially accessible.

Then ŜS ∩ ŜU ⊂ ̂SS ∩ SU , and thus f is ergodic.

This is a very important Theorem in the ergodic theory of PH maps, not
only for the result per se but for the tools developed to prove it. You can
find the original proof in [Pugh and Shub, 1999]. This Theorem has been
improved by K. Burns and A. Wilkinson ([Burns and Wilkinson, 2010]) to
drop the condition of dynamical coherence. See also Appendix C.

Corollary 2.21. The following maps are ergodic.

1. The time-one map of the geodesic flow corresponding a surface of con-
stant negative curvature.

2. The F.R.Hertz map.
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Exercises

1. Prove that Es, Eu are uniquely integrable, i.e. if α : [0, 1] → M is a C1

curve such that α′(t) ∈ Es
α(t) ∀t then α([0, 1]) ⊂ W s(α(0)).

2. Probe that irrational rotations are uniquely ergodic. Hint: First show
that it suffices to prove weak converge of the measures

∑n−1
i=0 δx for a

dense set of C(S1).

3. Prove that for an automorphism of the Torus the periodic points are
dense.

4. Prove 1 ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4 in 1.12.

5. Given a paracompact smooth manifoldM prove that its Lebesgue class
is non-empty as follows:

(a) Suppose that you are given an atlas {ϕi, Ui} and a collection of
smooth bounded-away from zero positive function fi ∈ C∞(ϕi(Ui),Rn)
satisfying for all i, j such that Ui ∩ Uj ̸= ∅

fj = fj ◦ ϕji|det(dϕji)| ϕji = ϕj ◦ ϕ−1
i

Use Riesz-Markov theorem to show that there exist a smooth mea-
sure ν on M such that

(ϕi)∗ν = fidx

59
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(b) Equip M with a Riemannian metric g and show that the local
coordinates of the metric (gij) with respect to some atlas satisfy
the compatibility condition of the previous part.

6. Prove Lemma 1.24.

7. Prove Lemma 2.19.

8. Let G be a locally compact group and H be a Hilbert space. We say
that a representation T : G→ B(H) is a unitary representation if

(a) Each Tg is unitary.

(b) T is continuous when B(H) is equipped with the SOT-topology.

Prove that the Koopman representation for a measure preserving ac-
tion is a unitary representation.

9. LetM be a compact metric space and F ⊂M a closed subset. Suppose
that ϕ : M → N is a local homeomorphism such that is 1 to 1 in F .
Prove that there exist an open neighbourhood of U of F in M such
that ϕ is 1 to 1 on U .

10. Prove Proposition 2.12.

11. Prove Lemma 2.13. Hint: ϕ is uniformly continuous.

12. Prove that for all dynamical coherent examples given in the text, the
center foliation is complete.



Appendix A: Foliations.

LetM be am dimensional smooth manifold. A foliation onM of codimension
q is a decomposition of M of the form F = {L} where

1. Each L is an immersed connected submanifold of M of dimension p =
m− q: these submanifolds are called the leaves of the foliation.

2. M = ⊔L∈FL.

3. The bundle TF = ⊔LTL is a continuous subbundle of TM .

Sometimes in the literature these are called Cr,0 foliations (being r the
degree of differentiability of the leaves). More in general, the foliation is of
class Cr,0 if TF is subbundle of TM of differentiability class Cs (Warning:
this is seldom the case in our context that TF is smooth).

There is another equivalent and useful way to define foliations. Given an
atlas {ϕ, Ui} of M we say that is a foliation atlas if

1. For each i, ϕ(Ui) = [−1, 1]p × [−1, 1]q.

2. The change of variables maps ϕij : ϕj(Ui ∩Uj) → ϕi(Ui ∩Uj) are of the
form

ϕij(s, t) = (α(s, t), β(t))

where α is smooth and β is continuous.

The differential structure induced by a foliation atlas is also called a
foliation.

The sets of the form ϕ([−1, 1]p, t) are called plaques. We define an equiva-
lence relation onM saying that two points x, y are equivalent if they there ex-
ist a chain of plaques P0, . . . , Pn (i.e. Pi∩Pi+1 ̸= ∅) such that x ∈ P0, y ∈ Pn.
We then see that the equivalence classes of this relation give a foliation of
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M in the first sense. Conversely, given a foliation is not hard to construct a
foliation atlas. Note that for a foliation atlas of a foliation Cr,s, the number
r is precisely the degree of differentiability of the maps α, and the number s
is the degree of differentiability of the maps β.

Suppose that F is a foliation of M and let x, y be in the same plaque.
Consider a chart ϕ : U → [−1, 1]p × [−1, 1]q of the foliation atlas such that
x, y ∈ U and take two completely transverse discs Dx, Dy centered at x, y
respectively. We can then define a local homeomorphism hy,x : Dx → Dy such
that z, hy,x(z) are in the same plaque. More in general, if two points belong
to the same leaf then there exist a chain of plaques joining them, and thus
we can define for each such chains, local homeomorphisms by concatenating
the hy,x constructed before. The maps thus constructed are called holonomy
transports and the collection of all such maps is the holonomy pseudo-group.
It can be proved that the holonomy pseudo-group is countably generated.

In particular one can consider holonomy transports obtained by fixing a
point x and a completely transverse disc D. In this case one obtains a map
from a small neighbourhood U ⊂ D of x to D. One verifies that the germ
of these type of maps h : U → D only depends of the homotopy class of
the loop (with endpoints fixed) used to define it. In other words, for each
element of π1(Lx, x) one obtains a germ of diffeomorphisms of D at x. The
assignation

H : π1(Lx, x) → Germx(D)

is in fact a representation, and is called the holonomy representation of Lx at
x. Choosing a different base-point y ∈ Lx amounts to change the holonomy
representation by an equivalent one. It is usual to be a little imprecise
and just refer these representations as the holonomy representation (while in
fact is a equivalence class of representations). The image3 of the holonomy
representations is called the holonomy group of L and its denoted by G(L).
One says that L has finite holonomy (no holonomy) if G(L) is finite (trivial).
Sometimes it is necessary to work with saturated sets of a foliated manifold,
namely sets which consists of full leaves. In this case one can restrict the
holonomy to the set: if E ⊂M is saturated we will denote this restriction to
G(L|E).

See [Candel and Conlon, 2000] for general background on foliation theory.

3Again, a conjugacy class of a group instead of a group.



Appendix B: Birkhoff’s Ergodic
Theorem.

Let (X,µ) be a probability space and T : X → X a measure preserving
transformation.

Theorem 2.22. If f ∈ L1(X) then

∃ lim
n→∞

1

n

n−1∑
0

f(T ix) =: f̃(x)

a.e.(x) and in L1(X). The function f̃ satisfies

1. f̃ ∈ L1(X).

2.
∫
f̃dµ =

∫
fdµ.

The function f̃(x) is clearly T -invariant, and in fact, it is equal to the
conditional expectation of f with respect to the invariant σ-algebra of T
(= {A measurable : T−1A = A}).

Remark 2.23.

1. If furthermore T is ergodic we have f̃ =
∫
fdµ.

2. If T is invertible then a.e.(x)

f̃(x) = lim
n→∞

1

|n|

n−1∑
0

f(T−ix) = lim
n→∞

1

2n+ 1

n∑
−n

f(T ix)
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Appendix C: The K-property.

Let T : (X,B, µ) → (X,B, µ) be measure preserving and invertible. We
say that T is K if there exist a sub-algebra A ⊂ B such that

1. T−1A ⊂ A.

2. σ(∪n∈ZT
nA)B.

3. ∩n≥0T
−nA = ν.

Theorem 2.24 (Brin-Pesin). Assume that f is a volume preserving PH such

that ŜS ∩ ŜS = ν. Then f is K.

See [Brin and Pesin, 1974].

Corollary 2.25. Let f be a C2 center bunched essentially accessible PH
diffeo. Then f is K.

This follows directly from Theorem 2.20.

When studying the ergodic properties, there is some sort of hierarchy
among the different properties being the most significant ones the following:

f is Bernoulli ⇒ f is K ⇒ f is mixing (of all orders) ⇒ f is weak-mixing
⇒ f is ergodic .

It is an open question to show whether the conditions of Theorem 2.20
imply the stronger level in the hierarchy, namely that f is Bernoulli. This is
known for Anosov systems by the work of Sinai and Bowen, and for ergodic
automorphisms of the torus (Katznelson’s Theorem [Katznelson, 1971]).
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Appendix D: Disintegration of
measures.

A probability space (X,B,m) is a Lebesgue space if it is measure iso-
morphic to the interval [0, 1] with a Lebesgue-Stieljes measure. This is a
very common class: for example if X is a compact metric space then it is a
Lebesgue space with any probability defined on its Borel σ-algebra. We will
only deal with Lebesgue spaces.

Given a partition η = {ηi} of X by measurable sets, we say that the
partition is measurable if (X/η, π∗B,mη = π∗m) is a Lebesgue space, where
π : X → X/η is the canonical map and π∗B = {A ⊂ X/η : π−1A ∈ B}.

If η is measurable, there exist a full set X ′ ⊂ X and family of probability
measures {mη

x}x∈X′ on X satisfying:

1. Each mη
x is supported in η(x), the atom containing x.

2. For every A ⊂ X measurable, the set A ∩ ηi is measurable for mη-a.e.
ηi ∈ X/η and

m(A) =

∫
X/η

mη
x(A ∩ ηi)dmη(i) =

∫
X

mη(x)
x (A ∩ η(x))dm(x)

This is a celebrated theorem due to Rohklin. You can find the proof in
[Rokhlin, 1962].

We record the following important consequences.

i) Uniqueness: If {µx}x∈X′′ is another family family of measures defined
for the full set X ′′ and satisfying 1 and 2, then mη

x = µx m-a.e.(x).
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ii) Let f : X → R be an integrable function and define fηi(x) = f(x) if
x ∈ ηi. Then ∫

X

fdm =

∫
X/η

dmη(i)

∫
ηi

fηi(x)dm
η
x(x)

Moreover, if η̂ denotes the σ-algebra generated by η, then

E(f |η̂)(x) =
∫
η(x)

fη(x)(x)dm
η(x)
x
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foliations. Duke Math J., 86(3):517–546.

[Rhoades, ] Rhoades, R. Ergodicity of the geodesic and horocycle flows.
Web-notes.

[Rodriguez-Hertz, 2005] Rodriguez-Hertz, F. (2005). Stable ergodicity of cer-
tain linear automorphisms of the torus. Annals of Mathematics.

[Rokhlin, 1962] Rokhlin, V. (1962). On the fundamental ideas of measure
theory. Transl. Amer. Math. Soc., 10:1–52.

[Shub, 1986] Shub, M. (1986). Global Stability of Dynamical Systems.
Springer.

[Smale, 1967] Smale, S. (1967). Differentiable dynamical systems. Bull.
Amer. Math. Soc., 73:747–817.

[Sullivan, 1976] Sullivan, D. (1976). A counterexample to the periodic orbit
conjecture. Inst. Hautes tudes Sci. Publ. Math., (46):5–14.


