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Given metric space X , a dynamical system T : X → X and a real
function (potential) f : X → R, the main problem in Ergodic Opti-
mization is to guarantee the existence and to describe the support
of the maximizing measures for the system, that is, to describe the
set of measures satisfying:

α(f ) := sup
µ∈MT

∫
f dµ

where MT denotes the set of the T -invariant borel probability me-
asures.
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Settings:

1. X compact or X non-compact (Polish Space) [our case].

2. The potential f : X → R always continuous or more (Lipschitz,
Hölder, summable variation, Locally Hölder etc).

3. T is always continuous or more (expansive, hyperbolic, etc).
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Examples and results when X is compact:

- Maximizing measures always exist.

When X is compact since the potential f is always assume
continuous by compactness (of MT ) there exists a probability
measure m in MT such that
α(f ) := supµ∈MT

∫
f dµ =

∫
f dm

The problem in this context it is to caracterize the support of this
measures.
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Examples:

1. X = S1, T (x) = 2x mod 1.
2. X = Σ = {1, ..., k}N (full shift), T = σ (shift map).

Theorem: (T. Bousch and O. Jenkinson (2002), Bousch (2001)

Generically (in the potential f ) in C (X ) the maximizing measure is
unique and fully supported.
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Main Conjecture

Roughly:

Generically in the space of Lipschitz potentials with X compact and
T with suitable properties the maximizing measure is unique and
supported in an periodic orbit.

Partial results: G. Contreras, A. Lopes and P. Thieullen (2001), T.
Bousch (2000), A. Quas and J. Siefken (to Appear in ETDS).

Important Reference: O. Jenkinson - ”Ergodic Optimization - DCDS
2006.
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Our Setting: non-compact Markov shifts

Given an infinite matrix A : N× N→ {0, 1}, we call by ΣA(N) the
subset of Σ(N) := NN of allowable sequences, that is:

ΣA(N) := {x ∈ Σ(N), A(xi , xi+1) = 1∀i ≥ 0} .

Fixed λ ∈ (0, 1), we define a metric on ΣA(N) by d(x , y) = λk ,
where k is the first coordinate where xk 6= yk .(Polish Space)

The matrix A is finitely primitive, when there exist a finite subset
F ⊆ N and an integer K0 ≥ 0 such that, for any pair of symbols
i , j ∈ N, one can find `1, `2, . . . , `K0 ∈ F satisfying

A(i , `1)A(`1, `2) · · ·A(`K0 , j) = 1.
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π : ΣA(N) → N is the projection of the first coordinate, that is
π(x) = π(x0x1x2 . . . ) = x0.

Given a function f : ΣA(N)→ R the j-th variation of f is

Vj(f ) := sup{f (x)−f (y) , π(σi (x)) = π(σi (y)) for i = 0, . . . , j−1} ,

We say that f has bounded variation(summable variation), when

V (f ) :=
∞∑
j=1

Vj(f ) <∞

f : ΣA(N)→ R is called locally Hölder continuous when there exists
a constant Hf > 0 such that, for all integer j ≥ 1, we have

Vj(f ) ≤ Hf λ
j .
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We say that f coercive when

lim
i→∞

sup f |[i ] = −∞ ,

[i ] := {x ∈ ΣA(N), π(x) = i} is the cylinder beginning with i .

This condition is satisfied when we have for example:∑
i∈N

exp(sup f |[i ]) <∞.

The condition is usually imposed under the potential for the ther-
modynamic formalism, finite pressure etc
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When the matrix A is finitely primitive and f satisfies the last con-
dition:

Theorem (O. Jenkinson, R. D. Mauldin and M. Urbański 05’)

The family of Gibbs measures (µβf )β≥1 has at list one weak
accumulation point as β →∞. Any accumulation point µ is a

maximizing measure for f, and lim
β→∞

∫
fdµβf =

∫
fdµ.

Proof: Prohorov ’s theorem and use that the measures µβf are
equilibrium states.

Theorem (I. D. Morris 07’)

Assuming the conditions above we have that there exists a finite
set A ⊂ N such that

βf = max
µ∈Mσ

suppµ⊆ΣA(A)

∫
f dµ.
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Suppose f : ΣA(N)→ R is continuous and bounded above.

A sub-action (for the potential f ) is a function u ∈ C 0(Σ) verifying
(f + u − u ◦ σ)(x) ≤ m(f ), ∀ x ∈ Σ.

Proposition

Assume ΣA(N) is a finitely primitive Markov subshift on a
countable alphabet. Let f : ΣA(N)→ R be a bounded above and
locally Hölder continuous potential such that inf i∈F f |[i ] > −∞.
Then there exists an nonnegative, bounded and locally Hölder
continuous function u : ΣA(N)→ R+ verifying

f + u − u ◦ σ ≤ m(f ).

Given x ∈ ΣA(N), define

u(x) := sup
{

Sk(f −m(f ))(y) : k ≥ 0, y ∈ ΣA(N), σk(y) = x
}
.
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locally Hölder continuous potential such that inf i∈F f |[i ] > −∞.
Then there exists an nonnegative, bounded and locally Hölder
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Proposition

Let ΣA(N) be a finitely primitive Markov subshift on a countable
alphabet. Suppose u ∈ C 0(ΣA(N)) is a bounded sub-action for a
bounded above and coercive potential f ∈ C 0(ΣA(N)). If µ ∈Mσ

is an f -maximizing probability, then µ is supported in a Markov
subshift on a finite alphabet.

Let µ ∈ Mσ be an f -maximizing probability. Since u ∈ C 0(Σ) is a
sub-action for the potential f , we have

f + u − u ◦ σ −m(f ) ≤ 0 and

∫
(f + u − u ◦ σ −m(f )) dµ = 0.

Therefore, the support of µ is a subset of the closed set (f + u −
u ◦ σ −m(f ))−1(0).
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Let η > 0 be a real constant. As f is coercive and u is bounded,
there exists I ∈ Z+ such that

sup
i>I

(f + u − u ◦ σ −m(f ))|[i ] < −η.

In particular, µ(∪i>I [i ]) = 0 and then supp(µ) ⊂ ∪i≤I [i ].

Since supp(µ) is a σ-invariant set

supp(µ) ⊂ ∩k≥0σ
−k
(
∪i≤Î [i ]

)
= ΣA(I).
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R. Bissacot and E. Garibaldi (Bull. Braz. Math. Soc. 2010)

Theorem

Suppose ΣA(N) is shift with A finitely primitive. Let
f : ΣA(N)→ R be a bounded above, coercive and locally Hölder
continuous potential satisfying inf i∈F f |[i ] > −∞.
Then, there exists an integer I > IF such that

m(f ) = max
µ∈Mσ

suppµ⊆ΣA(I)

∫
f dµ.

In particular, maximizing measures do exist. Furthermore, there
exists a compact σ-invariant set Ω ⊆ ΣA(I) such that µ ∈Mσ is
f -maximizing if, and only if, µ is supported in Ω.

Key Fact:The invariant measures supported in periodic orbits are
dense on the set of ergodic measures. (Parthasarathy- 1961)
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Proposition

Let ΣA(N) be a finitely primitive Markov subshift on a countable
alphabet. Assume f : ΣA(N)→ R is a bounded above and locally
Hölder continuous potential verifying inf i∈F f |[i ] > −∞. Suppose
there exists an integer I > IF such that

sup
i>I

f |[i ] < inf
i∈F

f |[i ] −
[

Var(f ) + K0

(
sup f − inf

i∈F
f |[i ]
)]

.
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(Main)Earlier references of Finitely Primitive case:
Ergodic optimization for noncompact dynamical systems.
- O. Jenkinson, R. D. Mauldin and M. Urbański - (DS-07’)

Ergodic optimization for countable alphabet subshifts of finite type.
- O. Jenkinson, R. D. Mauldin and M. Urbański - (ETDS-06’)

Zero Temperature limits of Gibbs-Equilibrium states for countable
alphabet subshifts of finite type.
- O. Jenkinson, R. D. Mauldin and M. Urbański - (JSP-05’)

Including some results with weaker hypothesis. Bounded Variation
instead of locally Hölder continuous, for example.

16/31



Connection with phase transitions

Renewal shifts

Example: Let A = (aij)i ,j∈N be the transition matrix such that there
exists an increasing sequence of naturals (di )i∈N for which

a11 = ai+1,i = a1,di = 1, ∀ i ∈ N

and the others coefficients are zero.
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Theorem (O. Sarig - 2001)

Let Σ be a Renewal Shift and f a locally Hölder potential such that
sup f <∞. Then there exists a constant tc ∈ (0,∞] such that

For 0 < t < tc there exists an equilibrium probability measure
µt corresponding to tf . For t > tc there is no equilibrium
probability measures corresponding to tf ;

P(tf ) is real analytic on (0, tc) and linear on (tc ,∞). At tc , it
is continuous but not analytic.

18/31



Theorem (G. Iommi - 2007)

Let Σ be a Renewal Shift and f a locally Hölder potential such
that sup f <∞. Then

For tc =∞, then there exists maximizing measures µt for tf .

If tc <∞, then there are no maximizing measures for f and
M = α(f ), where M is the slope linear part of the pressure
P(tf ).
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We say that A is irreducible when for any (i , j) ∈ N2 there exists a
natural number k(i , j) and a word y1y2 . . . yk such that iy1y2 . . . yk j is
an allowable word: A(i , y1) = 1, A(yi , yi+1) = 1 for i = 1, . . . , k−1
and A(yk , j) = 1.
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Theorem (R. Bissacot and R. Freire - arxiv )

Let σ be the shift on ΣA(N) with A irreducible and let be
f : ΣA(N)→ R be a function with bounded variation and coercive.
Then, there is a finite set A ⊂ N such that A|A×A is irreducible
and

α(f ) = sup
µ∈Mσ(ΣA(A))

∫
f dµ .

Furthermore, if ν is a maximizing measure, then

supp ν ⊂Mσ(ΣA(A)) .

21/31



Theorem

Let Σ be a subshift on ΣA(N) with A irreducible, f : ΣA(N)→ R
be a function with bounded variation. Given ε > 0 assume there
are naturals I2 > I1 > 0 such that

sup f |[j] < α(f )− ε ∀j ≥ I1 ,

and
sup f |[j] < min{C1,C2} ∀j ≥ I2 ,

where C1 and C2 are constants (depending on I1).

C1 =−
(
P0|min f |ΣA(A1)|+ (P0 − 1)|m(f )|+ 2V (f )

)
,

C2 =m(f )− ε− V (f ) .
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Then, there is a finite set A ⊂ N such that A|A×A is irreducible
and

α(f ) = sup
µ∈Mσ(ΣA(A))

∫
f dµ .

Furthermore, if ν is a maximizing measure, then

supp ν ⊂Mσ(ΣA(A)) .

If we consider the alphabet I1 := {0, 1, . . . , I1 − 1} we still have a
problem that maybe there are no allowable sequences only with such
symbols and, besides, the shift does not need to be irreducible when
restrict to such sequences. So we complete I1 to a finite alphabet
A1 in the following manner:

We choose, for each pair i , j in I1, one word w = w(i , j) connecting
i to j . Notice there is such a word since A is irreducible. We denote
by P0 the length of the longest of such connecting words.
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Key Fact (again): The invariant measures supported in periodic
orbits are dense on the set of ergodic measures.

α(f ) = sup
µ∈Mσ−Per (ΣA(N))

∫
f dµ .

Proof:
The Ergodic Decomposition theorem implies that

α(f ) = sup
µ∈Mσ−erg (ΣA(N))

∫
f dµ ,

where Mσ−erg (ΣA(N)) is the set of ergodic invariant probability
measures and use the density of invariant measures supported in
periodic orbits on the set of ergodic measures.
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Naive idea:

Since the potential f decays to −∞ when the symbols grow, we can
restrict ourselves to periodic orbits whose symbols are all small.

Lemma

Given ε > 0, there is I1 ∈ N such that if x starts in i ≥ I1 then
βm(x) := 1

mSmf (x) = 1
m

∑m−1
j=0 f (σj(x)) < α(f )− ε for any

m ∈ N.

In particular, if x ∈ Per(σ) we have β(x) < α(f )− ε.
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Proof: Since f is coercive, there is I1 ∈ N such that

sup f |[j] < α(f )− ε for all j ≥ I1 .

We have that

βm(x) =
1

m
Smf (x) =

1

m

m−1∑
j=0

f (σj(x)) ≤ 1

m

m−1∑
j=0

sup f |[π(σj (x))] ,

since π(σj(x)) ≥ i ≥ I1 for all j = 0, . . . ,m − 1, we get

βm(x) ≤ 1

m

m−1∑
j=0

sup f |[π(σj (x))] < α(f )− ε .
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Let x ∈ ΣA(N) and w = x` . . . x`+m be a word appearing on x .

Definition
1 The average of the word w = x` . . . x`+m on the orbit x is

κ(`,m|x) = κ(w |x) :=
1

m + 1

m∑
j=0

f (σ`+j(x)) ;

2 if r < m we define

κr (`,m|x) :=
1

r + 2

f (σ`+m(x)) +
r∑

j=0

f (σ`+j(x))

 .
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Fact 1:
Let x ∈ ΣA(N) be a periodic orbit for σ such that β(x) ≥ βf − ε
and x /∈ ΣA(A2).

Then, there is at least one word x` . . . x`+m appearing in x such that

1 κ(`,m|x) ≥ β(x);

2 x` < I1, x`+m ≥ I2; and

3 x`+j < I2 for all j ∈ {0, . . . ,m − 1}.
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Fact 2:
Let x` . . . x`+m be the word given by fact 1 and r < m be the greatest
integer such that x`+r ∈ I1. Then

κ(`,m|x) ≤ κr (`,m|x) .

The Theorem is consequence of the following result:

Lemma

Let x ∈ ΣA(N) be any periodic orbit for σ such that x /∈ ΣA(A2)
and β(x) ≥ α(f )− ε. Then, there is a periodic orbit z ∈ ΣA(A2)
such that β(z) > β(x).
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Theorem

Let σ be the full shift on Σ(R+) and f : Σ(R+)→ R be a
bounded above function with bounded variation. Given ε > 0
assume there are real numbers I2 > I1 > 0 such that

sup f |[j] < α(f )− ε ∀ j ≥ I1 ,

for some ε > 0 fixed and

sup f |[j] < min f |Σ([0,I1]) − V (f ) ∀ j ≥ I2 .

Then, we have that

α(f ) = sup
µ∈Mσ(Σ([0,I2]))

∫
f dµ .

Furthermore, if ν is a maximizing measure, then

supp ν ⊂Mσ(Σ([0, I2])) .
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In the case that f is coercive, we have the following:

Corollary

Let σ be the full shift on Σ(R+) and f : Σ(R+)→ R be a
bounded above function with bounded variation and coercive.
Then, there is I > 0 such that

α(f ) = sup
µ∈Mσ(Σ([0,I ]))

∫
f dµ .

Furthermore, if ν is a maximizing measure, then

supp ν ⊂Mσ(Σ([0, I ])) .
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