Maximizing measures for irreducible countable Markov shifts

Rodrigo Bissacot - IME USP

Partially supported by FAPESP ICTP-ESF School and Conference in Dynamical Systems Trieste - Italy 25 May 2012

1/31

Given metric space X, a dynamical system $T : X \to X$ and a real function (potential) $f : X \to \mathbb{R}$, the main problem in *Ergodic Optimization* is to guarantee the existence and to describe the support of the *maximizing measures* for the system, that is, to describe the set of measures satisfying:

$$\alpha(f) := \sup_{\mu \in \mathcal{M}_T} \int f \, d\mu$$

where M_T denotes the set of the T-invariant borel probability measures.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Given metric space X, a dynamical system $T : X \to X$ and a real function (potential) $f : X \to \mathbb{R}$, the main problem in *Ergodic Optimization* is to guarantee the existence and to describe the support of the *maximizing measures* for the system, that is, to describe the set of measures satisfying:

$$lpha(f) := \sup_{\mu \in \mathcal{M}_T} \int f \ d\mu$$

where M_T denotes the set of the *T*-invariant borel probability measures.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

1. X compact or X non-compact (Polish Space) [our case].

2. The potential $f : X \to \mathbb{R}$ always continuous or more (Lipschitz, Hölder, summable variation, Locally Hölder etc).

3. T is always continuous or more (expansive, hyperbolic, etc).

- 1. X compact or X non-compact (Polish Space) [our case].
- 2. The potential $f : X \to \mathbb{R}$ always continuous or more (Lipschitz, Hölder, summable variation, Locally Hölder etc).
- 3. T is always continuous or more (expansive, hyperbolic, etc).

- 1. X compact or X non-compact (Polish Space) [our case].
- 2. The potential $f : X \to \mathbb{R}$ always continuous or more (Lipschitz, Hölder, summable variation, Locally Hölder etc).
- 3. T is always continuous or more (expansive, hyperbolic, etc).

Examples and results when X is compact:

- Maximizing measures always exist.

When X is compact since the potential f is always assume continuous by compactness (of M_T) there exists a probability measure m in M_T such that
 α(f) := sup_{μ∈M_T} ∫ f dμ = ∫ f dm

The problem in this context it is to caracterize the support of this measures.

Examples and results when X is compact:

- Maximizing measures always exist.
 - When X is compact since the potential f is always assume continuous by compactness (of M_T) there exists a probability measure m in M_T such that
 α(f) := sup_{μ∈M_T} ∫ f dμ = ∫ f dm

The problem in this context it is to caracterize the support of this measures.

Examples and results when X is compact:

- Maximizing measures always exist.
 - When X is compact since the potential f is always assume continuous by compactness (of M_T) there exists a probability measure m in M_T such that
 α(f) := sup_{μ∈M_T} ∫ f dμ = ∫ f dm

The problem in this context it is to caracterize the support of this measures.

Examples:

1. $X = S^1$, $T(x) = 2x \mod 1$. 2. $X = \Sigma = \{1, ..., k\}^{\mathbb{N}}$ (full shift), $T = \sigma$ (shift map).

Theorem: (T. Bousch and O. Jenkinson (2002), Bousch (2001)

Generically (in the potential f) in C(X) the maximizing measure is unique and fully supported.

Examples:

1.
$$X = S^1$$
, $T(x) = 2x \mod 1$.
2. $X = \Sigma = \{1, ..., k\}^{\mathbb{N}}$ (full shift), $T = \sigma$ (shift map).

Theorem: (T. Bousch and O. Jenkinson (2002), Bousch (2001)

Generically (in the potential f) in C(X) the maximizing measure is unique and fully supported.

Main Conjecture

Roughly:

Generically in the space of Lipschitz potentials with X compact and T with suitable properties the maximizing measure is unique and supported in an periodic orbit.

Partial results: G. Contreras, A. Lopes and P. Thieullen (2001), T. Bousch (2000), A. Quas and J. Siefken (to Appear in ETDS).

Important Reference: O. Jenkinson - "Ergodic Optimization - DCDS 2006.

Our Setting: non-compact Markov shifts

Given an infinite matrix $\mathbf{A} : \mathbb{N} \times \mathbb{N} \to \{0,1\}$, we call by $\Sigma_{\mathbf{A}}(\mathbb{N})$ the subset of $\Sigma(\mathbb{N}) := \mathbb{N}^{\mathbb{N}}$ of allowable sequences, that is:

$$\Sigma_{\mathbf{A}}(\mathbb{N}) := \{x \in \Sigma(\mathbb{N}), \ \mathbf{A}(x_i, x_{i+1}) = 1 \ \forall i \ge 0\}.$$

Fixed $\lambda \in (0,1)$, we define a metric on $\Sigma_{\mathbf{A}}(\mathbb{N})$ by $d(x,y) = \lambda^k$, where k is the first coordinate where $x_k \neq y_k$.(Polish Space)

The matrix **A** is *finitely primitive*, when there exist a finite subset $\mathbb{F} \subseteq \mathbb{N}$ and an integer $K_0 \geq 0$ such that, for any pair of symbols $i, j \in \mathbb{N}$, one can find $\ell_1, \ell_2, \ldots, \ell_{K_0} \in \mathbb{F}$ satisfying

 $\mathsf{A}(i,\ell_1)\mathsf{A}(\ell_1,\ell_2)\cdots\mathsf{A}(\ell_{K_0},j)=1.$

Our Setting: non-compact Markov shifts

Given an infinite matrix $\mathbf{A} : \mathbb{N} \times \mathbb{N} \to \{0,1\}$, we call by $\Sigma_{\mathbf{A}}(\mathbb{N})$ the subset of $\Sigma(\mathbb{N}) := \mathbb{N}^{\mathbb{N}}$ of allowable sequences, that is:

$$\Sigma_{\mathbf{A}}(\mathbb{N}) := \{x \in \Sigma(\mathbb{N}), \mathbf{A}(x_i, x_{i+1}) = 1 \ \forall i \geq 0\}.$$

Fixed $\lambda \in (0,1)$, we define a metric on $\Sigma_{\mathbf{A}}(\mathbb{N})$ by $d(x,y) = \lambda^k$, where k is the first coordinate where $x_k \neq y_k$.(Polish Space)

The matrix **A** is *finitely primitive*, when there exist a finite subset $\mathbb{F} \subseteq \mathbb{N}$ and an integer $K_0 \geq 0$ such that, for any pair of symbols $i, j \in \mathbb{N}$, one can find $\ell_1, \ell_2, \ldots, \ell_{K_0} \in \mathbb{F}$ satisfying

 $\mathbf{A}(i,\ell_1)\mathbf{A}(\ell_1,\ell_2)\cdots\mathbf{A}(\ell_{K_0},j)=1.$

Given an infinite matrix $\mathbf{A} : \mathbb{N} \times \mathbb{N} \to \{0,1\}$, we call by $\Sigma_{\mathbf{A}}(\mathbb{N})$ the subset of $\Sigma(\mathbb{N}) := \mathbb{N}^{\mathbb{N}}$ of allowable sequences, that is:

$$\Sigma_{\mathbf{A}}(\mathbb{N}) := \{x \in \Sigma(\mathbb{N}), \mathbf{A}(x_i, x_{i+1}) = 1 \ \forall i \geq 0\}.$$

Fixed $\lambda \in (0,1)$, we define a metric on $\Sigma_{\mathbf{A}}(\mathbb{N})$ by $d(x,y) = \lambda^k$, where k is the first coordinate where $x_k \neq y_k$.(Polish Space)

The matrix **A** is *finitely primitive*, when there exist a finite subset $\mathbb{F} \subseteq \mathbb{N}$ and an integer $K_0 \geq 0$ such that, for any pair of symbols $i, j \in \mathbb{N}$, one can find $\ell_1, \ell_2, \ldots, \ell_{K_0} \in \mathbb{F}$ satisfying

$$\mathbf{A}(i,\ell_1)\mathbf{A}(\ell_1,\ell_2)\cdots\mathbf{A}(\ell_{K_0},j)=1.$$

Given a function $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ the *j*-th variation of f is

 $V_j(f) := \sup\{f(x) - f(y), \pi(\sigma^i(x)) = \pi(\sigma^i(y)) \text{ for } i = 0, \dots, j-1\},\$

We say that f has bounded variation(summable variation), when

$$V(f) := \sum_{j=1}^{\infty} V_j(f) < \infty$$

 $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is called *locally Hölder continuous* when there exists a constant $H_f > 0$ such that, for all integer $j \ge 1$, we have

$$V_j(f) \leq H_f \lambda^j$$
.

Given a function $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ the *j*-th variation of *f* is

 $V_j(f) := \sup\{f(x) - f(y), \ \pi(\sigma^i(x)) = \pi(\sigma^i(y)) \text{ for } i = 0, \dots, j-1\},\$

We say that f has bounded variation(summable variation), when

$$V(f):=\sum_{j=1}^\infty V_j(f)<\infty$$

 $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is called *locally Hölder continuous* when there exists a constant $H_f > 0$ such that, for all integer $j \ge 1$, we have

$$V_j(f) \leq H_f \lambda^j$$
.

Given a function $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ the *j*-th variation of *f* is

$$V_j(f) := \sup\{f(x) - f(y), \ \pi(\sigma^i(x)) = \pi(\sigma^i(y)) \text{ for } i = 0, \dots, j-1\},\$$

We say that f has *bounded variation*(summable variation), when

$$V(f) := \sum_{j=1}^{\infty} V_j(f) < \infty$$

 $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is called *locally Hölder continuous* when there exists a constant $H_f > 0$ such that, for all integer $j \ge 1$, we have

$$V_j(f) \leq H_f \lambda^j$$
.

Given a function $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ the *j*-th variation of f is

$$V_j(f) := \sup\{f(x) - f(y), \ \pi(\sigma^i(x)) = \pi(\sigma^i(y)) \text{ for } i = 0, \dots, j-1\},\$$

We say that f has *bounded variation*(summable variation), when

$$V(f):=\sum_{j=1}^\infty V_j(f)<\infty$$

 $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is called *locally Hölder continuous* when there exists a constant $H_f > 0$ such that, for all integer $j \ge 1$, we have

$$V_j(f) \leq H_f \lambda^j$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

We say that *f* coercive when

$$\lim_{i\to\infty}\sup f|_{[i]}=-\infty\,,$$

 $[i] := \{x \in \Sigma_{\mathbf{A}}(\mathbb{N}), \ \pi(x) = i\}$ is the cylinder beginning with *i*.

This condition is satisfied when we have for example:

$$\sum_{i\in\mathbb{N}}\exp(\sup f|_{[i]})<\infty.$$

The condition is usually imposed under the potential for the thermodynamic formalism, finite pressure etc We say that *f* coercive when

$$\lim_{i\to\infty}\sup f|_{[i]}=-\infty\,,$$

 $[i] := \{x \in \Sigma_{\mathbf{A}}(\mathbb{N}), \ \pi(x) = i\}$ is the cylinder beginning with *i*.

This condition is satisfied when we have for example:

$$\sum_{i\in\mathbb{N}}\exp(\sup f|_{[i]})<\infty.$$

The condition is usually imposed under the potential for the thermodynamic formalism, finite pressure etc

When the matrix **A** is finitely primitive and f satisfies the last condition:

Theorem (O. Jenkinson, R. D. Mauldin and M. Urbański 05')

The family of Gibbs measures $(\mu_{\beta f})_{\beta \ge 1}$ has at list one weak accumulation point as $\beta \to \infty$. Any accumulation point μ is a maximizing measure for f, and $\lim_{\beta \to \infty} \int f d\mu_{\beta f} = \int f d\mu$.

Proof: Prohorov 's theorem and use that the measures $\mu_{\beta f}$ are equilibrium states.

Theorem (I. D. Morris 07')

Assuming the conditions above we have that there exists a finite set $\mathcal{A} \subset \mathbb{N}$ such that

$$\beta_f = \max_{\substack{\mu \in \mathcal{M}_{\sigma} \\ supp\mu \subseteq \Sigma_{\mathbf{A}}(\mathcal{A})}} \int f \ d\mu.$$

When the matrix **A** is finitely primitive and f satisfies the last condition:

Theorem (O. Jenkinson, R. D. Mauldin and M. Urbański 05') The family of Gibbs measures $(\mu_{\beta f})_{\beta \ge 1}$ has at list one weak accumulation point as $\beta \to \infty$. Any accumulation point μ is a maximizing measure for f, and $\lim_{\beta \to \infty} \int f d\mu_{\beta f} = \int f d\mu$.

Proof: Prohorov 's theorem and use that the measures $\mu_{\beta f}$ are equilibrium states.

Theorem (I. D. Morris 07')

Assuming the conditions above we have that there exists a finite set $\mathcal{A} \subset \mathbb{N}$ such that

$$\beta_f = \max_{\substack{\mu \in \mathcal{M}_{\sigma} \\ supp\mu \subseteq \Sigma_{\mathsf{A}}(\mathcal{A})}} \int f \ d\mu.$$

うへで 10/31 When the matrix **A** is finitely primitive and f satisfies the last condition:

Theorem (O. Jenkinson, R. D. Mauldin and M. Urbański 05') The family of Gibbs measures $(\mu_{\beta f})_{\beta \ge 1}$ has at list one weak accumulation point as $\beta \to \infty$. Any accumulation point μ is a maximizing measure for f, and $\lim_{\beta \to \infty} \int f d\mu_{\beta f} = \int f d\mu$.

Proof: Prohorov 's theorem and use that the measures $\mu_{\beta f}$ are equilibrium states.

Theorem (I. D. Morris 07')

Assuming the conditions above we have that there exists a finite set $\mathcal{A}\subset\mathbb{N}$ such that

$$\beta_{f} = \max_{\substack{\mu \in \mathcal{M}_{\sigma} \\ supp \mu \subseteq \Sigma_{\mathbf{A}}(\mathcal{A})}} \int f \, d\mu$$

10/31

Suppose $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is continuous and bounded above.

A sub-action (for the potential f) is a function $u \in C^0(\Sigma)$ verifying $(f + u - u \circ \sigma)(\mathbf{x}) \leq m(f), \forall \mathbf{x} \in \Sigma.$

Proposition

Assume $\Sigma_{\mathbf{A}}(\mathbb{N})$ is a finitely primitive Markov subshift on a countable alphabet. Let $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a bounded above and locally Hölder continuous potential such that $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Then there exists an nonnegative, bounded and locally Hölder continuous function $u : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}_+$ verifying

$$f+u-u\circ\sigma\leq m(f).$$

Given $\mathbf{x} \in \Sigma_{\mathbf{A}}(\mathbb{N})$, define

$$u(\mathbf{x}) := \sup \left\{ S_k(f - m(f))(\mathbf{y}) : k \ge 0, \ \mathbf{y} \in \Sigma_{\mathbf{A}}(\mathbb{N}), \ \sigma^k(\mathbf{y}) = \mathbf{x} \right\}.$$

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is continuous and bounded above.

A sub-action (for the potential f) is a function $u \in C^0(\Sigma)$ verifying $(f + u - u \circ \sigma)(\mathbf{x}) \leq m(f), \forall \mathbf{x} \in \Sigma$.

Proposition

Assume $\Sigma_{\mathbf{A}}(\mathbb{N})$ is a finitely primitive Markov subshift on a countable alphabet. Let $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a bounded above and locally Hölder continuous potential such that $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Then there exists an nonnegative, bounded and locally Hölder continuous function $u : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}_+$ verifying

$$f+u-u\circ\sigma\leq m(f).$$

Given $\mathbf{x} \in \Sigma_{\mathbf{A}}(\mathbb{N})$, define

$$u(\mathbf{x}) := \sup \left\{ S_k(f - m(f))(\mathbf{y}) : k \ge 0, \ \mathbf{y} \in \Sigma_{\mathbf{A}}(\mathbb{N}), \ \sigma^k(\mathbf{y}) = \mathbf{x} \right\}.$$

11/31

Suppose $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is continuous and bounded above.

A sub-action (for the potential f) is a function $u \in C^0(\Sigma)$ verifying $(f + u - u \circ \sigma)(\mathbf{x}) \leq m(f), \forall \mathbf{x} \in \Sigma$.

Proposition

Assume $\Sigma_{\mathbf{A}}(\mathbb{N})$ is a finitely primitive Markov subshift on a countable alphabet. Let $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a bounded above and locally Hölder continuous potential such that $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Then there exists an nonnegative, bounded and locally Hölder continuous function $u : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}_+$ verifying

$$f+u-u\circ\sigma\leq m(f).$$

Given $\mathbf{x} \in \Sigma_{\mathbf{A}}(\mathbb{N})$, define

$$u(\mathbf{x}) := \sup \left\{ S_k(f - m(f))(\mathbf{y}) : k \ge 0, \ \mathbf{y} \in \Sigma_{\mathbf{A}}(\mathbb{N}), \ \sigma^k(\mathbf{y}) = \mathbf{x} \right\}.$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ 約

Let $\Sigma_{\mathbf{A}}(\mathbb{N})$ be a finitely primitive Markov subshift on a countable alphabet. Suppose $u \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is a bounded sub-action for a bounded above and coercive potential $f \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$. If $\mu \in \mathcal{M}_{\sigma}$ is an f-maximizing probability, then μ is supported in a Markov subshift on a finite alphabet.

Let $\mu \in \mathcal{M}_{\sigma}$ be an *f*-maximizing probability. Since $u \in C^{0}(\Sigma)$ is a sub-action for the potential *f*, we have

$$f + u - u \circ \sigma - m(f) \leq 0$$
 and $\int (f + u - u \circ \sigma - m(f)) d\mu = 0.$

Therefore, the support of μ is a subset of the closed set $(f + u - u \circ \sigma - m(f))^{-1}(0)$.

Let $\Sigma_{\mathbf{A}}(\mathbb{N})$ be a finitely primitive Markov subshift on a countable alphabet. Suppose $u \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is a bounded sub-action for a bounded above and coercive potential $f \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$. If $\mu \in \mathcal{M}_{\sigma}$ is an f-maximizing probability, then μ is supported in a Markov subshift on a finite alphabet.

Let $\mu \in \mathcal{M}_{\sigma}$ be an *f*-maximizing probability. Since $u \in C^{0}(\Sigma)$ is a sub-action for the potential *f*, we have

$$f+u-u\circ\sigma-m(f)\leq 0$$
 and $\int (f+u-u\circ\sigma-m(f))\ d\mu=0.$

Therefore, the support of μ is a subset of the closed set $(f + u - u \circ \sigma - m(f))^{-1}(0)$.

Let $\Sigma_{\mathbf{A}}(\mathbb{N})$ be a finitely primitive Markov subshift on a countable alphabet. Suppose $u \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is a bounded sub-action for a bounded above and coercive potential $f \in C^0(\Sigma_{\mathbf{A}}(\mathbb{N}))$. If $\mu \in \mathcal{M}_{\sigma}$ is an f-maximizing probability, then μ is supported in a Markov subshift on a finite alphabet.

Let $\mu \in \mathcal{M}_{\sigma}$ be an *f*-maximizing probability. Since $u \in C^{0}(\Sigma)$ is a sub-action for the potential *f*, we have

$$f+u-u\circ\sigma-m(f)\leq 0$$
 and $\int (f+u-u\circ\sigma-m(f))\;d\mu=0.$

Therefore, the support of μ is a subset of the closed set $(f + u - u \circ \sigma - m(f))^{-1}(0)$.

Let $\eta > 0$ be a real constant. As f is coercive and u is bounded, there exists $\mathcal{I} \in \mathbb{Z}_+$ such that

$$\sup_{i>\mathcal{I}}(f+u-u\circ\sigma-m(f))|_{[i]}<-\eta.$$

In particular, $\mu(\bigcup_{i > \mathcal{I}}[i]) = 0$ and then $supp(\mu) \subset \bigcup_{i \leq \mathcal{I}}[i]$.

Since supp(μ) is a σ -invariant set

$$\operatorname{supp}(\mu) \subset \bigcap_{k \geq 0} \sigma^{-k} \left(\bigcup_{i \leq \hat{l}} [i] \right) = \Sigma_{\mathbf{A}}(\mathcal{I}).$$

<ロト < 部ト < 書ト < 書ト 差 の Q () 13/31 Let $\eta > 0$ be a real constant. As f is coercive and u is bounded, there exists $\mathcal{I} \in \mathbb{Z}_+$ such that

$$\sup_{i>\mathcal{I}}(f+u-u\circ\sigma-m(f))|_{[i]}<-\eta.$$

In particular, $\mu(\cup_{i > \mathcal{I}}[i]) = 0$ and then $\operatorname{supp}(\mu) \subset \cup_{i \leq \mathcal{I}}[i]$.

Since supp (μ) is a σ -invariant set

$$\operatorname{supp}(\mu)\subset \cap_{k\geq 0}\sigma^{-k}\left(\cup_{i\leq \widehat{l}}[i]
ight)=\Sigma_{\mathbf{A}}(\mathcal{I}).$$

13/31

Let $\eta > 0$ be a real constant. As f is coercive and u is bounded, there exists $\mathcal{I} \in \mathbb{Z}_+$ such that

$$\sup_{i>\mathcal{I}}(f+u-u\circ\sigma-m(f))|_{[i]}<-\eta.$$

In particular, $\mu(\cup_{i > \mathcal{I}}[i]) = 0$ and then $\operatorname{supp}(\mu) \subset \cup_{i \leq \mathcal{I}}[i]$.

Since supp(μ) is a σ -invariant set

$$\operatorname{supp}(\mu) \subset \cap_{k \geq 0} \sigma^{-k} \left(\cup_{i \leq \hat{l}} [i] \right) = \Sigma_{\mathbf{A}}(\mathcal{I}).$$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

13/31

R. Bissacot and E. Garibaldi (Bull. Braz. Math. Soc. 2010)

Theorem

Suppose $\Sigma_{\mathbf{A}}(\mathbb{N})$ is shift with \mathbf{A} finitely primitive. Let $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a bounded above, coercive and locally Hölder continuous potential satisfying $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Then, there exists an integer $\mathcal{I} > I_{\mathbb{F}}$ such that

$$m(f) = \max_{\substack{\mu \in \mathcal{M}_{\sigma} \\ supp \mu \subseteq \Sigma_{\mathbf{A}}(\mathcal{I})}} \int f \ d\mu.$$

In particular, maximizing measures do exist. Furthermore, there exists a compact σ -invariant set $\Omega \subseteq \Sigma_{\mathbf{A}}(\mathcal{I})$ such that $\mu \in \mathcal{M}_{\sigma}$ is f-maximizing if, and only if, μ is supported in Ω .

Key Fact:The invariant measures supported in periodic orbits are dense on the set of ergodic measures. (Parthasarathy- 1961)

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

R. Bissacot and E. Garibaldi (Bull. Braz. Math. Soc. 2010)

Theorem

Suppose $\Sigma_{\mathbf{A}}(\mathbb{N})$ is shift with \mathbf{A} finitely primitive. Let $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a bounded above, coercive and locally Hölder continuous potential satisfying $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Then, there exists an integer $\mathcal{I} > I_{\mathbb{F}}$ such that

$$m(f) = \max_{\substack{\mu \in \mathcal{M}_{\sigma} \\ supp \mu \subseteq \Sigma_{\mathbf{A}}(\mathcal{I})}} \int f \ d\mu.$$

In particular, maximizing measures do exist. Furthermore, there exists a compact σ -invariant set $\Omega \subseteq \Sigma_{\mathbf{A}}(\mathcal{I})$ such that $\mu \in \mathcal{M}_{\sigma}$ is f-maximizing if, and only if, μ is supported in Ω .

Key Fact: The invariant measures supported in periodic orbits are dense on the set of ergodic measures. (Parthasarathy- 1961)

Let $\Sigma_{\mathbf{A}}(\mathbb{N})$ be a finitely primitive Markov subshift on a countable alphabet. Assume $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ is a bounded above and locally Hölder continuous potential verifying $\inf_{i \in \mathbb{F}} f|_{[i]} > -\infty$. Suppose there exists an integer $\mathcal{I} > I_{\mathbb{F}}$ such that

$$\sup_{i>\mathcal{I}} f|_{[i]} < \inf_{i\in\mathbb{F}} f|_{[i]} - \left[Var(f) + K_0\left(\sup f - \inf_{i\in\mathbb{F}} f|_{[i]}\right) \right].$$

(Main)Earlier references of Finitely Primitive case:
Ergodic optimization for noncompact dynamical systems.
O. Jenkinson, R. D. Mauldin and M. Urbański - (DS-07')

Ergodic optimization for countable alphabet subshifts of finite type. - O. Jenkinson, R. D. Mauldin and M. Urbański - (ETDS-06')

Zero Temperature limits of Gibbs-Equilibrium states for countable alphabet subshifts of finite type. - O. Jenkinson, R. D. Mauldin and M. Urbański - (JSP-05')

Including some results with weaker hypothesis. Bounded Variation instead of locally Hölder continuous, for example.

Renewal shifts

Example: Let $A = (a_{ij})_{i,j \in \mathbb{N}}$ be the transition matrix such that there exists an increasing sequence of naturals $(d_i)_{i \in \mathbb{N}}$ for which

$$a_{11} = a_{i+1,i} = a_{1,d_i} = 1, \ \forall i \in \mathbb{N}$$

<ロ> <部> <部> <き> <き> <き> の

17/31

and the others coefficients are zero.

Theorem (O. Sarig - 2001)

Let Σ be a Renewal Shift and f a locally Hölder potential such that sup $f < \infty$. Then there exists a constant $t_c \in (0, \infty]$ such that

- For 0 < t < t_c there exists an equilibrium probability measure μ_t corresponding to tf. For t > t_c there is no equilibrium probability measures corresponding to tf;
- P(tf) is real analytic on (0, t_c) and linear on (t_c,∞). At t_c, it is continuous but not analytic.

Theorem (G. lommi - 2007)

Let Σ be a Renewal Shift and f a locally Hölder potential such that $\sup f < \infty.$ Then

- For $t_c = \infty$, then there exists maximizing measures μ_t for tf.
- If $t_c < \infty$, then there are no maximizing measures for f and $M = \alpha(f)$, where M is the slope linear part of the pressure P(tf).

We say that **A** is *irreducible* when for any $(i, j) \in \mathbb{N}^2$ there exists a natural number k(i, j) and a word $y_1y_2 \dots y_k$ such that $iy_1y_2 \dots y_k j$ is an allowable word: $\mathbf{A}(i, y_1) = 1$, $\mathbf{A}(y_i, y_{i+1}) = 1$ for $i = 1, \dots, k-1$ and $\mathbf{A}(y_k, j) = 1$.

20/31

Theorem (R. Bissacot and R. Freire - arxiv)

Let σ be the shift on $\Sigma_{\mathbf{A}}(\mathbb{N})$ with \mathbf{A} irreducible and let be $f: \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a function with bounded variation and coercive. Then, there is a finite set $\mathcal{A} \subset \mathbb{N}$ such that $\mathbf{A}|_{\mathcal{A} \times \mathcal{A}}$ is irreducible and

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))} \int f \, d\mu \, .$$

Furthermore, if ν is a maximizing measure, then

supp $\nu \subset \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))$.

Theorem

Let Σ be a subshift on $\Sigma_{\mathbf{A}}(\mathbb{N})$ with \mathbf{A} irreducible, $f : \Sigma_{\mathbf{A}}(\mathbb{N}) \to \mathbb{R}$ be a function with bounded variation. Given $\epsilon > 0$ assume there are naturals $I_2 > I_1 > 0$ such that

$$\sup f|_{[j]} < lpha(f) - \epsilon \quad orall j \geq I_1 \,,$$

and

$$\sup f|_{[j]} < \min\{C_1, C_2\} \quad \forall j \ge I_2,$$

where C_1 and C_2 are constants (depending on I_1).

$$C_{1} = -(P_{0}|\min f|_{\Sigma_{A}(\mathcal{A}_{1})}| + (P_{0} - 1)|m(f)| + 2V(f)) + C_{2} = m(f) - \epsilon - V(f).$$

Then, there is a finite set $\mathcal{A} \subset \mathbb{N}$ such that $\mathbf{A}|_{\mathcal{A} \times \mathcal{A}}$ is irreducible and

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))} \int f \ d\mu \,.$$

Furthermore, if ν is a maximizing measure, then

supp $\nu \subset \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))$.

If we consider the alphabet $\mathcal{I}_1 := \{0, 1, \ldots, l_1 - 1\}$ we still have a problem that maybe there are no allowable sequences only with such symbols and, besides, the shift does not need to be irreducible when restrict to such sequences. So we complete \mathcal{I}_1 to a finite alphabet \mathcal{A}_1 in the following manner:

We choose, for each pair i, j in \mathcal{I}_1 , one word w = w(i, j) connecting i to j. Notice there is such a word since **A** is irreducible. We denote by P_0 the length of the longest of such connecting words.

Then, there is a finite set $\mathcal{A} \subset \mathbb{N}$ such that $\mathbf{A}|_{\mathcal{A} \times \mathcal{A}}$ is irreducible and

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))} \int f \, d\mu \, .$$

Furthermore, if ν is a maximizing measure, then

supp
$$\nu \subset \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))$$
.

If we consider the alphabet $\mathcal{I}_1 := \{0, 1, \dots, I_1 - 1\}$ we still have a problem that maybe there are no allowable sequences only with such symbols and, besides, the shift does not need to be irreducible when restrict to such sequences. So we complete \mathcal{I}_1 to a finite alphabet \mathcal{A}_1 in the following manner:

We choose, for each pair i, j in \mathcal{I}_1 , one word w = w(i, j) connecting i to j. Notice there is such a word since **A** is irreducible. We denote by P_0 the length of the longest of such connecting words.

Then, there is a finite set $\mathcal{A} \subset \mathbb{N}$ such that $\mathbf{A}|_{\mathcal{A} \times \mathcal{A}}$ is irreducible and

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))} \int f \, d\mu \, .$$

Furthermore, if ν is a maximizing measure, then

supp
$$\nu \subset \mathcal{M}_{\sigma}(\Sigma_{\mathbf{A}}(\mathcal{A}))$$
.

If we consider the alphabet $\mathcal{I}_1 := \{0, 1, \dots, I_1 - 1\}$ we still have a problem that maybe there are no allowable sequences only with such symbols and, besides, the shift does not need to be irreducible when restrict to such sequences. So we complete \mathcal{I}_1 to a finite alphabet \mathcal{A}_1 in the following manner:

We choose, for each pair i, j in \mathcal{I}_1 , one word w = w(i, j) connecting i to j. Notice there is such a word since **A** is irreducible. We denote by P_0 the length of the longest of such connecting words.

Key Fact (again): The invariant measures supported in periodic orbits are dense on the set of ergodic measures.

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-Per}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \, d\mu \, .$$

Proof: The Ergodic Decomposition theorem implies that

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \ d\mu \,,$$

where $\mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is the set of ergodic invariant probability measures and use the density of invariant measures supported in periodic orbits on the set of ergodic measures.

Key Fact (again): The invariant measures supported in periodic orbits are dense on the set of ergodic measures.

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-Per}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \, d\mu.$$

Proof: The Ergodic Decomposition theorem implies tha

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \ d\mu \,,$$

where $\mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is the set of ergodic invariant probability measures and use the density of invariant measures supported in periodic orbits on the set of ergodic measures.

Key Fact (again): The invariant measures supported in periodic orbits are dense on the set of ergodic measures.

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-Per}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \, d\mu.$$

Proof:

The Ergodic Decomposition theorem implies that

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))} \int f \ d\mu \,,$$

where $\mathcal{M}_{\sigma-erg}(\Sigma_{\mathbf{A}}(\mathbb{N}))$ is the set of ergodic invariant probability measures and use the density of invariant measures supported in periodic orbits on the set of ergodic measures.

Since the potential f decays to $-\infty$ when the symbols grow, we can restrict ourselves to periodic orbits whose symbols are all small.

Lemma

Given $\epsilon > 0$, there is $l_1 \in \mathbb{N}$ such that if x starts in $i \ge l_1$ then $\beta_m(x) := \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) < \alpha(f) - \epsilon$ for any $m \in \mathbb{N}$.

< 白 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

25/31

In particular, if $x\in {\sf Per}(\sigma)$ we have $eta(x)<lpha(f)-\epsilon.$

Since the potential f decays to $-\infty$ when the symbols grow, we can restrict ourselves to periodic orbits whose symbols are all small.

Lemma

Given
$$\epsilon > 0$$
, there is $I_1 \in \mathbb{N}$ such that if x starts in $i \ge I_1$ then $\beta_m(x) := \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) < \alpha(f) - \epsilon$ for any $m \in \mathbb{N}$.

In particular, if $x\in {\sf Per}(\sigma)$ we have $eta(x)<lpha(f)-\epsilon.$

Since the potential f decays to $-\infty$ when the symbols grow, we can restrict ourselves to periodic orbits whose symbols are all small.

Lemma

Given
$$\epsilon > 0$$
, there is $I_1 \in \mathbb{N}$ such that if x starts in $i \ge I_1$ then $\beta_m(x) := \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) < \alpha(f) - \epsilon$ for any $m \in \mathbb{N}$.

In particular, if $x \in Per(\sigma)$ we have $\beta(x) < \alpha(f) - \epsilon$.

<ロ> < 部 > < 書 > < 書 > こ き < つ へ () 25/31 Proof: Since f is coercive, there is $I_1 \in \mathbb{N}$ such that

$$\sup f|_{[j]} < \alpha(f) - \epsilon$$
 for all $j \ge l_1$.

We have that

$$\beta_m(x) = \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) \le \frac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]},$$

since $\pi(\sigma^j(x)) \ge i \ge l_1$ for all $j = 0, \dots, m-1$, we get

$$\beta_m(x) \leq \frac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]} < \alpha(f) - \epsilon.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof: Since f is coercive, there is $I_1 \in \mathbb{N}$ such that

$$\sup f|_{[j]} < \alpha(f) - \epsilon$$
 for all $j \ge l_1$.

We have that

$$\beta_m(x) = \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) \le \frac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]},$$

since $\pi(\sigma^j(x)) \geq i \geq l_1$ for all $j=0,\ldots,m-1$, we get

$$\beta_m(x) \leq \frac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]} < \alpha(f) - \epsilon.$$

4回→ 4回→ 4目→ 4目→ 目 少Qで 26/31 Proof: Since f is coercive, there is $I_1 \in \mathbb{N}$ such that

$$\sup f|_{[j]} < \alpha(f) - \epsilon$$
 for all $j \ge l_1$.

We have that

$$\beta_m(x) = \frac{1}{m} S_m f(x) = \frac{1}{m} \sum_{j=0}^{m-1} f(\sigma^j(x)) \le \frac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]},$$

since $\pi(\sigma^j(x)) \ge i \ge l_1$ for all $j = 0, \dots, m-1$, we get

$$eta_m(x) \leq rac{1}{m} \sum_{j=0}^{m-1} \sup f|_{[\pi(\sigma^j(x))]} < lpha(f) - \epsilon \,.$$

26/31

Let $x \in \Sigma_{\mathbf{A}}(\mathbb{N})$ and $w = x_{\ell} \dots x_{\ell+m}$ be a word appearing on x.

Definition

1 The average of the word $w = x_{\ell} \dots x_{\ell+m}$ on the orbit x is

$$\kappa(\ell, m|x) = \kappa(w|x) := \frac{1}{m+1} \sum_{j=0}^{m} f(\sigma^{\ell+j}(x));$$

(2) if r < m we define

$$\kappa_r(\ell, m|x) := rac{1}{r+2} \left[f(\sigma^{\ell+m}(x)) + \sum_{j=0}^r f(\sigma^{\ell+j}(x))
ight].$$

27/31

◆□▶ ◆圖▶ ◆注▶ ◆注▶ 「注」 ≪

Fact 1: Let $x \in \Sigma_{\mathbf{A}}(\mathbb{N})$ be a periodic orbit for σ such that $\beta(x) \geq \beta_f - \epsilon$ and $x \notin \Sigma_{\mathbf{A}}(\mathcal{A}_2)$.

Then, there is at least one word $x_{\ell} \dots x_{\ell+m}$ appearing in x such that

28/31

•
$$\kappa(\ell, m | x) \geq \beta(x);$$
• $x_{\ell} < l_1, x_{\ell+m} \geq l_2;$ and
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$ for all $j \in \{0, \ldots, m-1\}.$
• $x_{\ell+j} < l_2$
•

Fact 2:

Let $x_{\ell} \dots x_{\ell+m}$ be the word given by fact 1 and r < m be the greatest integer such that $x_{\ell+r} \in \mathcal{I}_1$. Then

$$\kappa(\ell, m|x) \leq \kappa_r(\ell, m|x).$$

The Theorem is consequence of the following result:

Lemma

Let $x \in \Sigma_{\mathbf{A}}(\mathbb{N})$ be any periodic orbit for σ such that $x \notin \Sigma_{\mathbf{A}}(\mathcal{A}_2)$ and $\beta(x) \ge \alpha(f) - \epsilon$. Then, there is a periodic orbit $z \in \Sigma_{\mathbf{A}}(\mathcal{A}_2)$ such that $\beta(z) > \beta(x)$.

Theorem

Let σ be the full shift on $\Sigma(\mathbb{R}^+)$ and $f: \Sigma(\mathbb{R}^+) \to \mathbb{R}$ be a bounded above function with bounded variation. Given $\epsilon > 0$ assume there are real numbers $l_2 > l_1 > 0$ such that

$$\sup f|_{[j]} < \alpha(f) - \epsilon \quad \forall \ j \ge I_1 \,,$$

for some $\epsilon > 0$ fixed and

$$\sup f|_{[j]} < \min f|_{\Sigma([0,l_1])} - V(f) \quad \forall j \ge l_2.$$

Then, we have that

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma([0, l_2]))} \int f \ d\mu \,.$$

Furthermore, if ν is a maximizing measure, then

supp $\nu \subset \mathcal{M}_{\sigma}(\Sigma([0, I_2]))$.

うへで 30/31 In the case that f is coercive, we have the following:

Corollary

Let σ be the full shift on $\Sigma(\mathbb{R}^+)$ and $f: \Sigma(\mathbb{R}^+) \to \mathbb{R}$ be a bounded above function with bounded variation and coercive. Then, there is I > 0 such that

$$\alpha(f) = \sup_{\mu \in \mathcal{M}_{\sigma}(\Sigma([0,I]))} \int f \ d\mu \,.$$

Furthermore, if ν is a maximizing measure, then

supp $\nu \subset \mathcal{M}_{\sigma}(\Sigma([0, I]))$.

イロト 不得下 イヨト イヨト 三日