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Given metric space X, a dynamical system T : X — X and a real
function (potential) f : X — R, the main problem in Ergodic Opti-
mization is to guarantee the existence and to describe the support
of the maximizing measures for the system, that is, to describe the
set of measures satisfying:
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Given metric space X, a dynamical system T : X — X and a real
function (potential) f : X — R, the main problem in Ergodic Opti-
mization is to guarantee the existence and to describe the support
of the maximizing measures for the system, that is, to describe the
set of measures satisfying:

a(f) = sup /fd,u,

nEMT

where Mt denotes the set of the T-invariant borel probability me-
asures.
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1. X compact or X non-compact (Polish Space) [our case].

2. The potential f : X — R always continuous or more (Lipschitz,
Holder, summable variation, Locally Holder etc).

3. T is always continuous or more (expansive, hyperbolic, etc).
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Examples and results when X is compact:

- Maximizing measures always exist.
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Examples and results when X is compact:
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@ When X is compact since the potential f is always assume
continuous by compactness (of Mt) there exists a probability
measure m in My such that

a(f) == sup,enmy, [ Fdu= [fdm
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Examples and results when X is compact:

- Maximizing measures always exist.

@ When X is compact since the potential f is always assume
continuous by compactness (of Mt) there exists a probability
measure m in My such that

a(f) == sup,enmy, [ Fdu= [fdm

The problem in this context it is to caracterize the support of this
measures.
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Examples:

1. X =S, T(x) =2x mod 1.
2. X =% ={1,..., k}N (full shift), T = o (shift map).

Theorem: (T. Bousch and O. Jenkinson (2002), Bousch (2001)

Generically (in the potential f) in C(X) the maximizing measure is
unique and fully supported.
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Examples:

: X: S, T(x) =2x mod 1.
2. X=X ={1,.. k}N (full shift), T = o (shift map).

Theorem: (T. Bousch and O. Jenkinson (2002), Bousch (2001)

Generically (in the potential f) in C(X) the maximizing measure is
unique and fully supported.
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Main Conjecture
Roughly:

Generically in the space of Lipschitz potentials with X compact and
T with suitable properties the maximizing measure is unique and
supported in an periodic orbit.

Partial results: G. Contreras, A. Lopes and P. Thieullen (2001), T.
Bousch (2000), A. Quas and J. Siefken (to Appear in ETDS).

Important Reference: O. Jenkinson - " Ergodic Optimization - DCDS
2006.
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Our Setting: non-compact Markov shifts
Given an infinite matrix A : N x N — {0,1}, we call by Xa(N) the

subset of ¥ (N) := N of allowable sequences, that is:

YA(N) = {x € £(N), A(xj, xi+1) = 1Vi > 0}.
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Our Setting: non-compact Markov shifts

Given an infinite matrix A : N x N — {0,1}, we call by Xa(N) the
subset of ¥ (N) := N of allowable sequences, that is:

YA(N) = {x € £(N), A(xj, xi+1) = 1Vi > 0}.

Fixed A € (0,1), we define a metric on Ya(N) by d(x,y) = A,
where k is the first coordinate where xx # yi.(Polish Space)

The matrix A is finitely primitive, when there exist a finite subset
F C N and an integer Ky > 0 such that, for any pair of symbols
i,j €N, one can find {1,0>,..., 0k, € satisfying

A(i, 1)A(l1, £2) - - ALk, J) = 1.
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7 LA(N) — N is the projection of the first coordinate, that is
m(x) = 7w(xox1Xx2 ... ) = Xo-
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7 LA(N) — N is the projection of the first coordinate, that is
m(x) = 7w(xox1Xx2 ... ) = Xo-

Given a function f : ¥A(N) — R the j-th variation of f is

Vi(f) == sup{F(x)~f(y) . 7(0"(x)) = w(o(y)) fori =0,...,j~1},
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7 LA(N) — N is the projection of the first coordinate, that is
m(x) = 7w(xox1Xx2 ... ) = Xo-

Given a function f : ¥A(N) — R the j-th variation of f is
Vi(f) := sup{f(x)~f(y) , m(0'(x)) = (o' (y)) fori = 0,... j~1},
We say that f has bounded variation(summable variation), when
V(F) = Vj(f) <o
j=1

f : La(N) — Ris called locally Holder continuous when there exists
a constant Hr > 0 such that, for all integer j > 1, we have

Vi(f) < HeN.
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We say that f coercive when
lim sup f[[; = —oo0,
1—00

[i] := {x € Za(N), m(x) = i} is the cylinder beginning with i.
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We say that f coercive when

lim sup f[[; = —oo0,

1—00
[i] := {x € Za(N), m(x) = i} is the cylinder beginning with i.
This condition is satisfied when we have for example:

Z exp(sup f|[j) < oo.

ieN
The condition is usually imposed under the potential for the ther-
modynamic formalism, finite pressure etc
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When the matrix A is finitely primitive and f satisfies the last con-
dition:
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When the matrix A is finitely primitive and f satisfies the last con-
dition:

Theorem (O. Jenkinson, R. D. Mauldin and M. Urbanski 05')

The family of Gibbs measures (ju5f)g>1 has at list one weak
accumulation point as 8 — oco. Any accumulation point p is a

maximizing measure for f, and lim /fd,uﬁf :/fdu.
B—r00

Proof: Prohorov 's theorem and use that the measures pgr are
equilibrium states.
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When the matrix A is finitely primitive and f satisfies the last con-
dition:
Theorem (O. Jenkinson, R. D. Mauldin and M. Urbanski 05')

The family of Gibbs measures (f13¢)5>1 has at list one weak
accumulation point as 8 — oco. Any accumulation point p is a

maximizing measure for f, and lim fdugr = | fdp.
B—o00

Proof: Prohorov 's theorem and use that the measures pgr are
equilibrium states.

Theorem (I. D. Morris 07")

Assuming the conditions above we have that there exists a finite
set A C N such that

Bf = max /f du.
HGMG
supppC¥a(A)
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Suppose f : Xa(N) — R is continuous and bounded above.
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Suppose f : Xa(N) — R is continuous and bounded above.

A sub-action (for the potential f) is a function u € CO(X) verifying
(f+u—uoo)(x) <m(f), VxeX.
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Suppose f : Xa(N) — R is continuous and bounded above.

A sub-action (for the potential f) is a function u € CO(X) verifying
(f+u—uoo)(x) <m(f), VxeX.

Proposition

Assume Y a(N) is a finitely primitive Markov subshift on a
countable alphabet. Let f : Lo(N) — R be a bounded above and
locally Holder continuous potential such that inf;cp f|[,-] > —00.
Then there exists an nonnegative, bounded and locally Holder
continuous function u : LA(N) — Ry verifying

f+u—uoo < m(f).

Given x € XA(N), define

u(x) = sup { Sk(f — m(F)(y) - k > 0, y € Ta(N), o(y) =x}.
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Proposition

Let Y A(N) be a finitely primitive Markov subshift on a countable
alphabet. Suppose u € CO(Xa(N)) is a bounded sub-action for a
bounded above and coercive potential f € CO(Xa(N)). If p € M,
is an f-maximizing probability, then p is supported in a Markov
subshift on a finite alphabet.
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Proposition

Let Y A(N) be a finitely primitive Markov subshift on a countable
alphabet. Suppose u € CO(Xa(N)) is a bounded sub-action for a
bounded above and coercive potential f € CO(Xa(N)). If p € M,
is an f-maximizing probability, then p is supported in a Markov
subshift on a finite alphabet.

Let € M, be an f-maximizing probability. Since u € C°(X) is a
sub-action for the potential f, we have

f+u—uoo—m(f)<0 and /(f+u—uoa—m(f)) dp=0.

Therefore, the support of p is a subset of the closed set (f + u —
uoa—m(f))~L(0).
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Let n > 0 be a real constant. As f is coercive and u is bounded,
there exists Z € Z4 such that

sup(f +u—wuvoo—m(f))li < -0
i>T
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Let n > 0 be a real constant. As f is coercive and u is bounded,
there exists Z € Z4 such that

sup(f +u—uoo — m(f))\[,-] < -n.
i>T

In particular, ;(Ui>z[i]) = 0 and then supp(n) C Uj<z[i].
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Let n > 0 be a real constant. As f is coercive and u is bounded,
there exists Z € Z4 such that

sup(f +u—uoo — m(f))\[,-] < -n.
i>T

In particular, ;(Ui>z[i]) = 0 and then supp(n) C Uj<z[i].

Since supp(p) is a o-invariant set

supp(1t) C Ni00 (Ui<7[i]> =2a(D).
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R. Bissacot and E. Garibaldi (Bull. Braz. Math. Soc. 2010)

Theorem

Suppose Y aA(N) is shift with A finitely primitive. Let

f: XA(N) — R be a bounded above, coercive and locally Hélder
continuous potential satisfying inf;cp f|[,-] > —00.

Then, there exists an integer T > Iy such that

f) = xm
m(f) e / 1

suppuCTa(Z)

In particular, maximizing measures do exist. Furthermore, there
exists a compact o-invariant set Q C Y a(Z) such that € M, is
f-maximizing if, and only if, p is supported in Q.
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R. Bissacot and E. Garibaldi (Bull. Braz. Math. Soc. 2010)

Theorem

Suppose Y aA(N) is shift with A finitely primitive. Let

f: XA(N) — R be a bounded above, coercive and locally Hélder
continuous potential satisfying inf;cp f|[,-] > —00.

Then, there exists an integer T > Iy such that

f) = xm
m(f) e / 1

suppuCTa(Z)

In particular, maximizing measures do exist. Furthermore, there
exists a compact o-invariant set Q C Y a(Z) such that € M, is
f-maximizing if, and only if, p is supported in Q.

Key Fact:The invariant measures supported in periodic orbits are
dense on the set of ergodic measures. (Parthasarathy- 1961)
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Proposition

Let Y a(N) be a finitely primitive Markov subshift on a countable
alphabet. Assume f : Lo(N) — R is a bounded above and locally
Holder continuous potential verifying inf;cp f |[,-] > —00. Suppose
there exists an integer I > Ip such that

e i < o i~ 1o + Ko (svo — i |
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(Main)Earlier references of Finitely Primitive case:
Ergodic optimization for noncompact dynamical systems.
- O. Jenkinson, R. D. Mauldin and M. Urbanski - (DS-07")

Ergodic optimization for countable alphabet subshifts of finite type.
- O. Jenkinson, R. D. Mauldin and M. Urbanski - (ETDS-06")

Zero Temperature limits of Gibbs-Equilibrium states for countable
alphabet subshifts of finite type.
- O. Jenkinson, R. D. Mauldin and M. Urbanski - (JSP-05")

Including some results with weaker hypothesis. Bounded Variation
instead of locally Holder continuous, for example.
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Connection with phase transitions

Renewal shifts

Example: Let A = (ajj);jen be the transition matrix such that there
exists an increasing sequence of naturals (d;);en for which

a1 = ajiy1,i =ayg =1, VieN

and the others coefficients are zero.

17/31



Theorem (O. Sarig - 2001)
Let ¥ be a Renewal Shift and f a locally Holder potential such that
supf < co. Then there exists a constant t. € (0, 00| such that

@ For 0 < t < t. there exists an equilibrium probability measure
Wy corresponding to tf. For t > t. there is no equilibrium
probability measures corresponding to tf;

e P(tf) is real analytic on (0, tc) and linear on (tc,00). At tc, it
is continuous but not analytic.

o’
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Theorem (G. lommi - 2007)

Let > be a Renewal Shift and f a locally Holder potential such
that supf < co. Then

@ For t. = 0o, then there exists maximizing measures pi; for tf .

o If t. < oo, then there are no maximizing measures for f and

M = «(f), where M is the slope linear part of the pressure
P(tf).
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We say that A is irreducible when for any (i,j) € N2 there exists a
natural number k(/,j) and aword y1y» ... yx such that iy1ys . .. yij is
an allowable word: A(i,y1) =1, A(yi,yit1) =1fori=1,....,k—1
and A(yk,j) = 1.
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Theorem (R. Bissacot and R. Freire - arxiv )

Let o be the shift on Y a(N) with A irreducible and let be
f: Xa(N) — R be a function with bounded variation and coercive.
Then, there is a finite set A C N such that A| 4.4 is irreducible

and
a(f) = sup /f du.
HEMo(Ea(A))

Furthermore, if v is a maximizing measure, then

suppv C My(Za(A)).
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Theorem

Let ¥ be a subshift on a(N) with A irreducible, f : ¥ao(N) — R
be a function with bounded variation. Given € > 0 assume there
are naturals I, > I; > 0 such that

supflj <a(f)—e Vj>h,

and
sup f|L,] < min{Cl, Cg} Vj > /2,
where C; and C, are constants (depending on Iy ).

G = — (Polmin flg )| + (Po — 1)|m(f)| +2V(f)) ,
Co =m(f) — e — V(F).
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Then, there is a finite set A C N such that A| 4.4 is irreducible
and

a(f) = sup /f du .
)

HEMo(Ea(A)

Furthermore, if v is a maximizing measure, then

supp v C My(Za(A)).
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Then, there is a finite set A C N such that A| 4.4 is irreducible

and
a(f) = sup /f du .
BEM o (Za(A))

Furthermore, if v is a maximizing measure, then

supp v C My(Za(A)).

If we consider the alphabet Z; := {0,1,..., /1 — 1} we still have a
problem that maybe there are no allowable sequences only with such
symbols and, besides, the shift does not need to be irreducible when
restrict to such sequences. So we complete Z; to a finite alphabet
Aj in the following manner:
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Then, there is a finite set A C N such that A| 4.4 is irreducible

and
a(f) = sup /f du .
BEM o (Za(A))

Furthermore, if v is a maximizing measure, then

supp v C My(Za(A)).

If we consider the alphabet Z; := {0,1,..., /1 — 1} we still have a
problem that maybe there are no allowable sequences only with such
symbols and, besides, the shift does not need to be irreducible when
restrict to such sequences. So we complete Z; to a finite alphabet
Aj in the following manner:

We choose, for each pair i, in Z;, one word w = w(i, j) connecting
i to j. Notice there is such a word since A is irreducible. We denote
by Py the length of the longest of such connecting words.
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Key Fact (again): The invariant measures supported in periodic
orbits are dense on the set of ergodic measures.
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Key Fact (again): The invariant measures supported in periodic

orbits are dense on the set of ergodic measures.

af) = sup /f du.
.U‘GMo'fPer(ZA(N))

Proof:
The Ergodic Decomposition theorem implies that

a(f) = sup /f du,
HEMo—erg(Ta(N))

where M _erg(Xa(N)) is the set of ergodic invariant probability
measures and use the density of invariant measures supported in

periodic orbits on the set of ergodic measures.
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Naive idea:

Since the potential f decays to —oco when the symbols grow, we can
restrict ourselves to periodic orbits whose symbols are all small.
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Naive idea:

Since the potential f decays to —oco when the symbols grow, we can
restrict ourselves to periodic orbits whose symbols are all small.

Lemma

Given € > 0, there is Iy € N such that if x starts in i > |; then
Bm(x) = LSuf(x) =1 jm:61 f(o?(x)) < a(f) — e for any
m € N.

In particular, if x € Per(c) we have f(x) < a(f) —e.
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Proof: Since f is coercive, there is l; € N such that

sup fl[j < a(f) — € forall j > 1.
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Proof: Since f is coercive, there is l; € N such that

sup f|[j] < aff) —

We have that

|_\

m—

1 1
— f(o

m m

j=0

Bm(x) =

.

forall j > I;.

1 m—1
<— Z SUP f (i (x))] »
j=0
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Proof: Since f is coercive, there is l; € N such that
sup fl[j < a(f) — € forall j > 1.

We have that

1 1 m—1 1 m—1
Pm(x) = S =2 flo = Z SUP (o7 ()] -
j=0 j=0
since m(0/(x)) > i > I forall j=0,...,m—1, we get
1 m—1
Bm(x) < 2 sup Flin(oixy < alf) —

-,
Il
o
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Let x € Za(N) and w = x¢... xpm be a word appearing on x.

Definition
© The average of the word w = Xg. .. Xg1n on the orbit x is

KL, mlx) = k(w]x) = ———> " f(o"H(x));
Q if r < m we define

1
r—+2

kr(€, m|x) :=
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Fact 1:
Let x € A(N) be a periodic orbit for o such that 8(x) > 5 — €

and x ¢ ZA(A2).
Then, there is at least one word Xy . . . x;4, appearing in x such that
Q (4, m|x) = B(x);

Q x¢ < h, X¢ym = k; and
Q xptj < b forallje{0,...,m—1}.
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Fact 2:
Let x; . .. Xp+m be the word given by fact 1 and r < m be the greatest
integer such that xpy, € Z;. Then

k(€ mx) < kr(€, mix).

The Theorem is consequence of the following result:
Lemma

Let x € La(N) be any periodic orbit for o such that x ¢ ¥ a(A2)
and B(x) > «a(f) — €. Then, there is a periodic orbit z € Y p(.A3)
such that 5(z) > B(x).
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Theorem

Let o be the full shift on Y(R") and f : £(RT) — R be a
bounded above function with bounded variation. Given € > 0
assume there are real numbers I, > 1 > 0 such that

supflp < a(f)—e Vj>1,
for some € > 0 fixed and
sup fy < minflsqon) — V(F) VJji=h.

Then, we have that

af) = sup /f du.
peEMq(2([0,h]))

Furthermore, if v is a maximizing measure, then

supp v C M(2([0, k])) .
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In the case that f is coercive, we have the following:

Corollary
Let o be the full shift on *(R") and f : ¥(RT) — R be a

bounded above function with bounded variation and coercive.

Then, there is | > 0 such that

a(f) = sup /f du.
)

neMq(2([0,1])

Furthermore, if v is a maximizing measure, then

supp v C Mo (Z([0,1])) -

31/31



