Volume	of
Transitive	Sets

P. Zhang

Outline

Volume of Transitive Sets of Partially Hyperbolic Systems

Pengfei Zhang

Peking University

ICTP, 25 May 2012

(ロ) (同) (三) (三) (三) (○) (○)

	Outline
Volume of Transitive Sets P. Zhang	
Outline	1 Introduction and Motivations
	2 Results: Old and New
	3 Special cases: center-bunching and accessible p.h.
	4 Proofs

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

	Outline
Volume of Transitive Sets P. Zhang	
Motivations Results Special cases	Introduction and Motivations
Proofs	2 Results: Old and New
	3 Special cases: center-bunching and accessible p.h.
	4 Proofs

Introduction

Volume of Transitive Sets

P. Zhang

Motivations Results

Special cases

Proofs

Definition (Transitive Set)

- Let *M* be a closed manifold, $f : M \to M$ be a diffeomorphism.
- *x* ∈ *M* is a transitive point of *f* if O_f(*x*) = {*fⁿx* : *n* ∈ ℤ} is dense in *M*.
- Tran_f =: the set of transitive points of f.
- f is transitive if $\operatorname{Tran}_f \neq \emptyset$.

Remark

The set $Tran_f$ is always residual whenever it is nonempty. So topologically large.

Motivations

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases Proofs Let *m* be a normalized volume measure on *M*: m(M) = 1.

Note

A topologically large set is not necessarily measure-theoretically large.

Examples

The set of Liouville numbers in \mathbb{R} : residual but zero measure. More specifically:

$$E = \bigcap_{k \ge 1} \bigcup_{n \ge 1} B(r_n, \frac{1}{k \cdot 2^n}).$$

Introduction

Volume of Transitive Sets P. Zhang	
Motivations	
Results	
Special cases	Question
Proofs	Is $Tran_f$ measure-theoretically large? More specifically, is $m(Tran_f) > 0$? Or even $m(Tran_f) = 1$?

Motivations

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases Proofs

Bad case: $\overline{m}(\operatorname{Tran}_f) = 0$

Bad example should be ample... We (the author) do not know any concrete diffeomorphism which is transitive with $m(\text{Tran}_f) = 0$.

Good ones?

- m is f-invariant and ergodic.
- general ergodicity (even *m* is not preserved).

Sometime maps with $m(\operatorname{Tran}_f) = 1$ are called weakly ergodic.

	Outline
Volume of Transitive Sets P. Zhang	
Motivations Results	1 Introduction and Motivations
Proofs	2 Results: Old and New
	3 Special cases: center-bunching and accessible p.h.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Anosov case

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Definition

A diffeomorphism f is said to be Anosov if

- a continuous splitting $TM = E^s \oplus E^u$,
- Df contracts E^s ,
- Df expands E^u.

Examples

•
$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} : \mathbb{T}^2 \to \mathbb{T}^2.$$

- Hyperbolic matrix $A \in SL(d, \mathbb{Z})$ acts on \mathbb{T}^d .
- General hyperbolic automorphism acts on nilmanifolds.
- C¹-small perturbations.

Anosov systems

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases Proofs

Theorem (Sinaĭ 1968)

Let $f : M \to M$ be C^2 transitive Anosov. \exists ! Gibbs measure μ_+ .

• $supp(\mu_+) = M$. • $m(B(\mu_+, f)) = 1: \frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k x} \to \mu_+ \text{ as } n \to +\infty.$

• $B(\mu_+, f) \subset \operatorname{Tran}_f$.

So for C^2 transitive Anosov: $m(\text{Tran}_f) = 1$ (large, pretty good).

(ロ) (同) (三) (三) (三) (○) (○)

Result I Volume of Transitive Sets Motivations Results Theorem (Z. DCDS 2012) Special cases $f \in PH^2(M)$ be accessible, $\mu \ll m$ Absolutely Continuous Proofs Invariant Probability. Then • $supp(\mu) = M$ and μ -a.e. x has a dense orbit.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• In particular $m(\operatorname{Tran}_f) > 0$.

Accessible P.H.D.

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Definition

- A diffeo f is partially hyperbolic if
 - \exists a continuous splitting $TM = E^s \oplus E^c \oplus E^u$,
 - Df contracts E^s and expands E^u ,
 - $E^s \prec E^c \prec E^u$.

Definition

 $f \in PH(M)$ is said to be accessible if $\forall x, y \in M$, $\exists su-path$ connecting x and y.

Theorem (Dolgopyat-Wilkinson 2003)

Accessibility is C^1 open and dense in PH(M).

Hopf decomposition

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases

Proofs

Let m(E) > 0. *E* is wandering if $f^i E \cap f^j E = \emptyset$ for every $i \neq j$. Let D_f be the 'maximal' wandering subset of *f*. Put $D_f = \emptyset$ if there is no wandering set.

 D_f is called the *dissipative part* of f. $C_f = M \setminus D_f$ is called the *conservative part* of f. $\{C_f, D_f\}$ is the Hopf decomposition of (m, f).

Remark

Definition

- *m* is not assumed to be invariant.
- $f_*m = m$ implies $C_f = M$ by Poincaré Recurrence Theorem.

Result II Volume of Transitive Sets Motivations Results Theorem (Z. arXiv:1204.0409) Special cases $f \in PH^2(M)$ be accessible. Then $m(Tran_f) \ge m(C_f)$. In Proofs particular • either $D_f = M$: completely dissipative.

(ロ) (同) (三) (三) (三) (○) (○)

• or f is transitive and $m(\operatorname{Tran}_f) > 0$.

	Outline
Volume of Transitive Sets P. Zhang	
Motivations Results Special cases	1 Introduction and Motivations
Proofs	2 Results: Old and New
	3 Special cases: center-bunching and accessible p.h.

・ロト・四ト・モート ヨー うへの

4 Proofs

Center Bunching

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Definition

 $f \in PH(M)$ is center bunched if the hyperbolicity of $Df|_{E^s}$ and $Df|_{E^u}$ is stronger than the nonconformity of $DF|_{E^c}$:

$$|Df|_{E^s} \prec rac{m(DF|_{E^c})}{\|DF|_{E^c}\|} < 1 < rac{\|DF|_{E^c}\|}{m(DF|_{E^c})} \prec Df|_{E^u}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

An open condition.

Center bunching

Volume of Transitive Sets

P. Zhang

Motivations Results

Special cases

Proofs

Theorem (Burns-Wilkinson 2010)

Let $f \in PH^2(M)$ be center bunched. Then every bi-ess. saturated set is ess. bi-saturated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- s-saturated ~> ess. s-saturated
- u-saturated ~> ess. u-saturated
- bi-saturated ~> ess. bi-saturated
- bi-ess. saturated

Center bunched, accessible P.H.

Volume of Transitive Sets

P. Zhang

Motivations Results

Special cases

Proofs

Proposition

For acip μ: {x : dμ/dm(x) > 0} is bi-ess. saturated.
 C_f is bi-ess. saturated.

Corollary

Let $f \in PH^2(M)$ be center bunched and accessible.

• For acip μ : $\mu \approx m$. Hence exactly one acip and ergodic.

2 More generally, either $C_f = \emptyset$ or $C_f = M$. In the later case *f* is ergodic.

Another Motivation

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

The (2) provides a partially generalization of the following classical dichotomy.

Theorem (Gurevich-Oseledets 1973)

Let f be C^2 Anosov. Then

- either $\mu_+ \neq \mu_-$: then $C_f = \emptyset$ and $D_f = M$.
- or μ₊ = μ₋: then μ = μ₊ is an smooth measure and f is ergodic.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

	Outline
Volume of Transitive Sets P. Zhang	
Motivations Results Special cases	1 Introduction and Motivations
Proofs	2 Results: Old and New

Special cases: center-bunching and accessible p.h.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Proofs

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Let $f \in PH(M)$, W^s be the foliation tangent to E^s and $W^s(x, \delta)$ be the local leaf.

Definition (Stable basis)

Let $B_n^s(x) = f^n W^s(f^{-n}x, \delta)$ for each $n \ge 0$. The collection

 $\mathcal{S} = \{B_n^s(x) : x \in M, n \ge 0\}.$

Let $A \subset M$. A point *x* is an *S*-density point of *A* if

$$\lim_{n \to +\infty} \frac{m_s(B_n^s(x) \cap A)}{m_s(B_n^s(x))} = 1.$$
(5.1)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

	Proofs
Volume of Transitive Sets P. Zhang	
Motivations	
Results	Denote by A^s , the set of S-density points of A.
Special cases	
Proofs	Theorem (Xia 2006)
	<i>S</i> is a density basis w.r.t. <i>m</i> . That is, $m(A\Delta A_d^s) = 0$ every measurable subset <i>A</i> .

Bounded distortion estimates, absolute continuity of \mathcal{W}^s .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Two recurrence theorems

Volume of Transitive Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Recurrence on $E_{\mu} = \{x : \frac{d\mu}{dm}(x) > 0\}$ for acip:

Poincaré Recurrence Theorem

For every $A \subset E_{\mu}$, a.e. $x \in A$ will return to A infinitely many times.

Recurrence on C_f :

Halmos Recurrence Theorem

For every $A \subset C_f$, a.e. $x \in A$ will return to A infinitely many times.

(ロ) (同) (三) (三) (三) (○) (○)

Proofs

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases

Proofs

Again using bounded distortion estimates, we have

Lemma

Let A be f-invariant. If $\frac{m_s(B_n^s(x)\cap A)}{m_s(W^s(f^{-n}x,\delta)\cap A)} \sim 1$, then $\frac{m_s(W^s(f^{-n}x,\delta)\cap A)}{m_s(W^s(f^{-n}x,\delta))} \sim 1$.

Applying Recurrence Theorem: every *f*-invariant subset $A \subset E_{\mu}$ (respectively, $A \subset C_{f}$) is ess. *s*-saturated. Similarly it is ess. *u*-saturated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Proofs

Volume of Transitive Sets

P. Zhang

Motivations Results Special cases

Proofs

Proposition (Burns-Dolgopyat-Pesin 2002)

 ϵ -accessibility implies ϵ -transitivity.

Assume *f* accessible. Then $\forall \epsilon > 0$, a.e. $x \in E_{\mu}$ (respectively, $x \in C_f$) has ϵ -dense orbit.

Assume accessibility + center bunching. Then every f-invariant E, being *bi-ess. sat.*, is *ess. bi-sat.* and hence has volume 1 or 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

This finishes the proof.

Volume	of
Transitive	Sets

P. Zhang

Motivations

Results

Special cases

Proofs

Thank You!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @