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Introduction

Definition (Transitive Set)
Let M be a closed manifold, f : M → M be a
diffeomorphism.
x ∈ M is a transitive point of f if Of (x) = {f nx : n ∈ Z} is
dense in M.
Tranf =: the set of transitive points of f .
f is transitive if Tranf 6= ∅.

Remark
The set Tranf is always residual whenever it is nonempty.
So topologically large.
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Motivations

Let m be a normalized volume measure on M: m(M) = 1.

Note
A topologically large set is not necessarily
measure-theoretically large.

Examples
The set of Liouville numbers in R: residual but zero
measure.
More specifically:

E =
⋂
k≥1

⋃
n≥1

B(rn,
1

k · 2n ).
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Introduction

Question
Is Tranf measure-theoretically large? More specifically,
is m(Tranf ) > 0?
Or even m(Tranf ) = 1?
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Bad case: m(Tranf ) = 0

Bad example should be ample...
We (the author) do not know any concrete diffeomorphism
which is transitive with m(Tranf ) = 0.

Good ones?
m is f -invariant and ergodic.
general ergodicity (even m is not preserved).

Sometime maps with m(Tranf ) = 1 are called weakly
ergodic.
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Anosov case

Definition
A diffeomorphism f is said to be Anosov if

a continuous splitting TM = Es ⊕ Eu,
Df contracts Es,
Df expands Eu.

Examples(
2 1
1 1

)
: T2 → T2.

Hyperbolic matrix A ∈ SL(d, Z) acts on Td.
General hyperbolic automorphism acts on nilmanifolds.
C1-small perturbations.
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Anosov systems

Theorem (Sinaı̌ 1968)

Let f : M → M be C2 transitive Anosov. ∃! Gibbs measure
µ+.

supp(µ+) = M.

m(B(µ+, f )) = 1: 1
n

n−1∑
k=0

δf kx → µ+ as n → +∞.

B(µ+, f ) ⊂ Tranf .

So for C2 transitive Anosov: m(Tranf ) = 1 (large, pretty
good).
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Result I

Theorem (Z. DCDS 2012)

f ∈ PH2(M) be accessible, µ � m Absolutely Continuous
Invariant Probability. Then

supp(µ) = M and µ-a.e. x has a dense orbit.
In particular m(Tranf ) > 0.
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Accessible P.H.D.

Definition
A diffeo f is partially hyperbolic if

∃ a continuous splitting TM = Es ⊕ Ec ⊕ Eu,
Df contracts Es and expands Eu,
Es ≺ Ec ≺ Eu.

Definition
f ∈ PH(M) is said to be accessible if ∀x, y ∈ M, ∃su-path
connecting x and y.

Theorem (Dolgopyat-Wilkinson 2003)

Accessibility is C1 open and dense in PH(M).
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Hopf decomposition

Definition

Let m(E) > 0. E is wandering if f iE ∩ f jE = ∅ for every i 6= j.
Let Df be the ‘maximal’ wandering subset of f .
Put Df = ∅ if there is no wandering set.

Df is called the dissipative part of f . Cf = M\Df is called the
conservative part of f . {Cf , Df } is the Hopf decomposition of
(m, f ).

Remark
• m is not assumed to be invariant.
• f∗m = m implies Cf = M by Poincaré Recurrence Theorem.
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Result II

Theorem (Z. arXiv:1204.0409)

f ∈ PH2(M) be accessible. Then m(Tranf ) ≥ m(Cf ). In
particular

either Df = M: completely dissipative.
or f is transitive and m(Tranf ) > 0.
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Center Bunching

Definition
f ∈ PH(M) is center bunched if the hyperbolicity of Df |Es and
Df |Eu is stronger than the nonconformity of DF|Ec :

Df |Es ≺ m(DF|Ec)
‖DF|Ec‖

< 1 <
‖DF|Ec‖
m(DF|Ec)

≺ Df |Eu .

An open condition.
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Center bunching

Theorem (Burns-Wilkinson 2010)

Let f ∈ PH2(M) be center bunched. Then every bi-ess.
saturated set is ess. bi-saturated.

s-saturated ess. s-saturated
u-saturated ess. u-saturated
bi-saturated ess. bi-saturated
bi-ess. saturated
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Center bunched, accessible P.H.

Proposition

1 For acip µ: {x : dµ
dm(x) > 0} is bi-ess. saturated.

2 Cf is bi-ess. saturated.

Corollary

Let f ∈ PH2(M) be center bunched and accessible.
1 For acip µ: µ ≈ m. Hence exactly one acip and ergodic.
2 More generally, either Cf = ∅ or Cf = M. In the later

case f is ergodic.
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Another Motivation

The (2) provides a partially generalization of the following
classical dichotomy.

Theorem (Gurevich-Oseledets 1973)

Let f be C2 Anosov. Then
either µ+ 6= µ−: then Cf = ∅ and Df = M.
or µ+ = µ−: then µ = µ+ is an smooth measure and f
is ergodic.
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Let f ∈ PH(M), Ws be the foliation tangent to Es and Ws(x, δ)
be the local leaf.

Definition (Stable basis)

Let Bs
n(x) = f nWs(f−nx, δ) for each n ≥ 0. The collection

S = {Bs
n(x) : x ∈ M, n ≥ 0}.

Let A ⊂ M. A point x is an S-density point of A if

lim
n→+∞

ms(Bs
n(x) ∩ A)

ms(Bs
n(x))

= 1. (5.1)
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Denote by As
d the set of S-density points of A.

Theorem (Xia 2006)

S is a density basis w.r.t. m. That is, m(A∆As
d) = 0 every

measurable subset A.

Bounded distortion estimates, absolute continuity of Ws.
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Two recurrence theorems

Recurrence on Eµ = {x : dµ
dm(x) > 0} for acip:

Poincaré Recurrence Theorem
For every A ⊂ Eµ, a.e. x ∈ A will return to A infinitely many
times.

Recurrence on Cf :

Halmos Recurrence Theorem
For every A ⊂ Cf , a.e. x ∈ A will return to A infinitely many
times.
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Again using bounded distortion estimates, we have

Lemma

Let A be f -invariant. If ms(Bs
n(x)∩A)

ms(Bs
n(x)) ∼ 1, then

ms(Ws(f−nx,δ)∩A)
ms(Ws(f−nx,δ)) ∼ 1.

Applying Recurrence Theorem: every f -invariant subset
A ⊂ Eµ (respectively, A ⊂ Cf ) is ess. s-saturated. Similarly it
is ess. u-saturated.
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Proposition (Burns-Dolgopyat-Pesin 2002)
ε-accessibility implies ε-transitivity.

Assume f accessible. Then ∀ε > 0, a.e. x ∈ Eµ (respectively,
x ∈ Cf ) has ε-dense orbit.

Assume accessibility + center bunching. Then every
f -invariant E, being bi-ess. sat., is ess. bi-sat. and hence
has volume 1 or 0.

This finishes the proof.
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Thank You!
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