INTERVAL TRANSLATION MAPS OF THREE INTERVALS

Denis Volk

SISSA, Trieste IITP RAS, Moscow

21 May 2012

INTERVAL TRANSLATION MAPS

FIGURE: An Interval Translation Map of d = 3 intervals.

$$0 = \beta_0 < \beta_1 < \dots < \beta_d = 1, \quad \Delta_j := [\beta_{j-1}, \beta_j),$$
$$\Omega := [0, 1), \quad \Omega = \sqcup_{j=1}^d \Delta_j.$$

An *interval translation* $T: \Omega \to \Omega$ is a map given by a translation on each of Δ_j :

$$T|_{\Delta_j} \colon x \mapsto x + \gamma_j,$$

for some $(\gamma_1, \ldots, \gamma_d) \in \mathbb{R}^d$.

INTERVAL TRANSLATION MAPS

Introduced in 1995 by Boshernitzan, Kornfeld.

- Non-invertible generalization of Interval Exchange Transformations.
- Come from polygonal billiards with semi-permeable walls.
- Lebesgue measure is no longer invariant. New effects due to this.

LIMIT SET

Let $\Omega_0 = \Omega$, $\Omega_n = T\Omega_{n-1}$ for $n \ge 1$. The *limit set* X is the closure of $\bigcap_{n=1}^{\infty} \Omega_n$.

An interval translation map is called of *finite type* if $\Omega_{n+1} = \Omega_n$ for some *n*, otherwise it is called of *infinite type*.

Denote the set of infinite type ITMs by S.

EXAMPLE

FIGURE: ITM of two intervals: rotation.

FINITENESS RESULTS

THEOREM (BOSHERNITZAN, KORNFELD, 1995)

- $\operatorname{rk}(\beta_i, \gamma_i)_{\mathbb{Q}} \leq 2 \Rightarrow T$ is of finite type.
- There exists a translation map of three intervals of infinite type.

THEOREM (SCHMELING, TROUBETZKOY, 1998)

- Finite type $\Leftrightarrow X$ is a finite union of intervals, $T|_X$ is IET.
- Infinite type, $T|_X$ is transitive $\Rightarrow X$ is a Cantor set.

PARAMETER SPACE

The space ITM(d) of *d* intervals' translations is a convex polytope in \mathbb{R}^{2d-1} with the Euclidean metric and the Lebesgue measure.

PARAMETER SPACE

The space ITM(d) of *d* intervals' translations is a convex polytope in \mathbb{R}^{2d-1} with the Euclidean metric and the Lebesgue measure.

For every $n \ge 0$, $\Omega_{n+1} = \Omega_n$ is finitely many linear inequalities. Thus the set of finite type ITMs is at least a union of countably many open cells.

FINITENESS PROBLEM How big is the set S of ITMs of infinite type?

PARAMETER SPACE

The space ITM(d) of *d* intervals' translations is a convex polytope in \mathbb{R}^{2d-1} with the Euclidean metric and the Lebesgue measure.

For every $n \ge 0$, $\Omega_{n+1} = \Omega_n$ is finitely many linear inequalities. Thus the set of finite type ITMs is at least a union of countably many open cells.

FINITENESS PROBLEM How big is the set S of ITMs of infinite type?

THEOREM (2012)

In the 5-dim space ITM(3), the set S has zero Lebesgue measure. Moreover, from numerics (Bruin, Clack, 2011) follows

 $4 \leq \dim_H(\mathcal{S} \cap \mathrm{ITM}(3)) \leq 4.88.$

1. Reduce the dimension of parameter space $5 \rightarrow 3$.

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).
- 3. Define a renormalization operator $\mathcal{R} \colon Rot(2) \to Rot(2)$:

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).
- 3. Define a renormalization operator $\mathcal{R} \colon Rot(2) \to Rot(2)$:
 - $\mathcal{R}: P_i \to \operatorname{Rot}(2)$ is piecewise expanding
 - S is R-invariant

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).
- 3. Define a renormalization operator $\mathcal{R} \colon Rot(2) \to Rot(2)$:
 - $\mathcal{R}: P_i \to \operatorname{Rot}(2)$ is piecewise expanding
 - S is R-invariant

4. Infinite type $\Leftrightarrow \mathcal{R}$ -orbits never fall into some "Abyss" region.

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).
- 3. Define a renormalization operator $\mathcal{R} \colon Rot(2) \to Rot(2)$:
 - $\mathcal{R}: P_i \to \operatorname{Rot}(2)$ is piecewise expanding
 - S is R-invariant
- 4. Infinite type $\Leftrightarrow \mathcal{R}$ -orbits never fall into some "Abyss" region.
- 5. \mathcal{R} has an absolutely continuous ergodic measure m.

- 1. Reduce the dimension of parameter space $5 \rightarrow 3$.
- 2. Reduce to some special parameter space Rot(2).
- 3. Define a renormalization operator $\mathcal{R} \colon Rot(2) \to Rot(2)$:
 - $\mathcal{R}: P_i \to \operatorname{Rot}(2)$ is piecewise expanding
 - S is R-invariant
- 4. Infinite type $\Leftrightarrow \mathcal{R}$ -orbits never fall into some "Abyss" region.
- 5. \mathcal{R} has an absolutely continuous ergodic measure m.
- $6. \ m(\mathcal{S})=0 \quad \Rightarrow \quad Leb(\mathcal{S})=0.$

INDUCING ON A SUBINTERVAL

 $\Delta \subset \Omega$ is *regular* if $\forall x \in \Omega$ some $T^n x \in \Delta$, *n* uniformly bounded. T_{Δ} is the induced map.

 $\Delta \subset \Omega$ is a *trap* if it is regular and $T\Delta \subset \Delta$. Then $T_{\Delta} = T|_{\Delta}$.

INDUCING ON A SUBINTERVAL

 $\Delta \subset \Omega$ is *regular* if $\forall x \in \Omega$ some $T^n x \in \Delta$, *n* uniformly bounded. T_{Δ} is the induced map.

 $\Delta \subset \Omega$ is a *trap* if it is regular and $T\Delta \subset \Delta$. Then $T_{\Delta} = T|_{\Delta}$.

LEMMA

Assume X is transitive.

- Let T have finite type. Then for any regular Δ the map T_{Δ} has finite type.
- Let T_{Δ} have finite type for some regular Δ . Then T has finite type.

DIMENSION REDUCTION

 $T: \Omega \to \Omega$ is *tight* if $[\inf T\Omega, \sup T\Omega) = \Omega$. TITM(*d*) is the space of tight ITMs of *d* intervals.

 $\dim \text{TITM}(d) = \dim \text{ITM}(d) - 2 = 2d - 3.$

LEMMA

For any $T \in ITM(d)$ there exists a trap Δ such that the map T_{Δ} is a tight interval translation map of r intervals, $r \leq d$.

DOUBLE ROTATIONS

SUZUKI, ITO, AIHARA, 2005 A *double rotation* is

Independent rotations of two complementary arcs of S^1 .

 $\dim \operatorname{Rot}(2) = 3.$

Any double rotation is an ITM of 2-4 intervals.

DOUBLE ROTATIONS

THEOREM (BRUIN, CLACK, 2011) The set $S \cap \text{Rot}(2)$ has zero Lebesgue measure. Moreover, numerically

 $2 \leq \dim_H(\mathcal{S} \cap \operatorname{Rot}(2)) \leq 2.88.$

Proof by Suzuki, Ito, Aihara's renormalization in the parameter space.

REDUCTION TO DOUBLE ROTATIONS

THEOREM (2012)

 $TITM(3) = A \cup B \cup C \cup K:$

- $A \cup B \cup C$ is open and dense.
- *K* is a union of countably many hyperplanes.

Moreover,

- any $T \in A$ is a double rotation,
- any $T \in B$ is reduced to a Rot(2) via Type 1 induction,
- any $T \in C$ is reduced to a Rot(2) via Type 2 induction.

The inductions are piecewise-invertible rational maps.

Thus zero measure sets and the Hausdorff dimension are preserved.

COMBINATORICS OF $T\Delta_i$

Assume $\gamma_1 > 0$ and $\gamma_3 < 0$.

Because *T* is tight, some interval (not Δ_1) must go to the leftmost position, and some interval (not Δ_3) must go to the rightmost position. There are 3 cases:

$$\begin{array}{cccc} A & A' & B\&C\\ Leftmost & \Delta_2 & \Delta_3 & \Delta_3\\ Rightmost & \Delta_1 & \Delta_2 & \Delta_1 \end{array}$$

The cases A and A' are mirror images of each other, so we consider only case A of these two.

DOUBLE ROTATION IN DISGUISE

 Δ_2 goes to the leftmost position and Δ_1 goes to the rightmost position.

T is a double rotation with $c = \beta_2$ (i.e. the first arc is $\Delta_1 \cup \Delta_2$ and the second one is Δ_3) and $a = -|\Delta_1|$, $b = \gamma_3$.

INDUCTIONS

$$\begin{array}{cccc} A & A' & B\&C\\ Leftmost & \Delta_2 & \Delta_3 & \Delta_3\\ Rightmost & \Delta_1 & \Delta_2 & \Delta_1 \end{array}$$

Now Δ_1 goes rightmost, Δ_3 goes leftmost. Because of the symmetry, we can assume $|\Delta_1| \ge |\Delta_3|$.

Consider the two sub-cases: $\gamma_2 < 0$ and $\gamma_2 > 0$.

Type 1 induction

FIGURE: Induction to $\Delta_1 \cup \Delta_2$.

Case $\gamma_2 < 0$.

PROPOSITION

In this case, $\Delta = \Delta_1 \cup \Delta_2$ is regular with the return time ≤ 2 . T_{Δ} is a tight ITM of three intervals which is a double rotation.

Type 2 induction

FIGURE: Induction to $\Delta_2 \cup \Delta_3$.

Case $\gamma_2 > 0$.

PROPOSITION

In this case, $\Delta = \Delta_2 \cup \Delta_3$ is regular, and T_{Δ} is a tight ITM of three intervals which is a double rotation.

That's it. THANK YOU!