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INTERVAL TRANSLATION MAPS
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FIGURE: An Interval Translation Map od = 3 intervals.
O0=pfo<pr<--<Ba=1 Aj:=[F-1,5),
2:=[01), Q= Ui=1 A

An interval translation T: 2 — €2 is a map given by a translation on
each ofAj:
T|AJ- X = X+,

for some(y, ..., vq) € RY.



INTERVAL TRANSLATION MAPS

Introduced in 1995 by Boshernitzan, Kornfeld.

¢ Non-invertible generalization of Interval Exchange
Transformations.

e Come from polygonal billiards with
semi-permeable walls.

e Lebesgue measure is no longer invariant. New
effects due to this.



LIMIT SET
LetQo=Q, 0, =TQn_1forn> 1.
Thelimit set Xis the closure of\;2 ;2.

An interval translation map is called Ghite typeif ,,1 = 2, for
somen, otherwise it is called oihfinite type

Denote the set of infinite type ITMs LY.
EXAMPLE

~ 1 ]

FIGURE: ITM of two intervals: rotation.




FINITENESS RESULTS

THEOREM (BOSHERNITZAN, KORNFELD, 1995)

e 1k(Bi,7i)o < 2= T is of finite type.
e There exists a translation map of three intervals of infityige.

THEOREM (SCHMELING, TROUBETZKOY, 1998)

e Finite type< X is a finite union of intervals, [k is IET.
e Infinite type, Tx is transitive=- X is a Cantor set.
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FINITENESS PROBLEM
How big is the sef of ITMs of infinite type?

THEOREM (2012)

In the 5-dim spacéTM (3), the setS has zero Lebesgue measure.
Moreover, from numerics (Bruin, Clack, 2011) follows

4 < dimy(SNITM(3)) < 4.88,
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STRATEGY

. Reduce the dimension of parameter spaee 8.
. Reduce to some special parameter spac¢Zrot

Define a renormalization operat®: Rot(2) — Rot(2):
e R: P, — Rot(2) is piecewise expanding
e SisR-invariant

Infinite type < R-orbits never fall into some “Abyss” region.
‘R has an absolutely continuous ergodic measure m.

.mS)=0 = Leb(S)=0.
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INDUCING ON A SUBINTERVAL

A C Qisregularif ¥x € Q someT"x € A, nuniformly bounded.
T is the induced map.

A C Qisatrapifitis regular andTA C A. ThenTa = T|a.

LEMMA
Assume X is transitive.

e Let T have finite type. Then for any regulArthe map T, has
finite type.

e Let Ta have finite type for some reguldx. Then T has finite
type.



DIMENSION REDUCTION

LS

w |
—
T

T: Q — Qistightif [inf TQ, supTQ) = Q.
TITM(d) is the space of tight ITMs df intervals.
dimTITM(d) = dimITM(d) —2=2d — 3.
LEMMA

For any T € ITM (d) there exists a trag\ such that the mapJis a
tight interval translation map of r intervals, € d.
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DOUBLE ROTATIONS

SUZUKI, ITO, AIHARA, 2005
A double rotationis

B {X—I— a}7 if xe [0>C)1
fap,e)(X) = {{x+ b}, ifxelc1).

Independent rotations of two complementary
arcs ofSt.
dimRot(2) = 3.

Any double rotation is an ITM of 2—4 intervals.



DOUBLE ROTATIONS

THEOREM (BRUIN, CLACK, 2011)

The setS N Rot(2) has zero Lebesgue measure.
Moreover, numerically

2 < dimy(S NRot(2)) < 2.88.

Proof by Suzuki, Ito, Aihara’s renormalization in the paeder space.



REDUCTION TO DOUBLE ROTATIONS

THEOREM (2012)
TITM(3) = AUBUC U K:
e AUBUC is open and dense.
¢ K is a union of countably many hyperplanes.
Moreover,
e any T € Ais a double rotation,
e any T € Bis reduced to &ot(2) via Type 1 induction,
e any T e Cis reduced to &ot(2) via Type 2 induction.
The inductions are piecewise-invertible rational maps.

Thus zero measure sets and the Hausdorff dimension areyedse



COMBINATORICS OFTA;

A1 Ay Az

|
T~ |

Assumey; > 0 andvys < 0.

Becaused is tight, some interval (naf\1) must go to the leftmost
position, and some interval (ndt3) must go to the rightmost
position. There are 3 cases:

A A B&C
Leftmost A, Az Aj
Rightmost Ay Ar,  Ag

The case#\ andA’ are mirror images of each other, so we consider
only caseA of these two.



DOUBLE ROTATION IN DISGUISE

A, goes to the leftmost position ash goes to the rightmost
position.

T is a double rotation witle = 3, (i.e. the first arc is\; U A, and the
second one iQ\z) anda = —|A1|, b = 3.



INDUCTIONS

A A B&C
Leftmost A, Az As
Rightmost A; A, Az

Now A; goes rightmostA3 goes leftmost. Because of the symmetry,
we can assumg\;| > |As|.

Consider the two sub-casegi < 0 and~; > 0.



TYPE 1 INDUCTION

A1 Az A3
| |/|
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FIGURE: Induction toA; U As.

Casey; < 0.

PROPOSITION

In this case A = A1 U A, is regular with the return time< 2. T is
a tight ITM of three intervals which is a double rotation.



TYPE 2 INDUCTION

Aq As A3
S R N —— |
WP

FIGURE: Induction toA, U As.

Casey; > 0.

PROPOSITION
In this case A = A, U Ajis regular, and Ty is a tight ITM of three
intervals which is a double rotation.



That’s it. THANK YOU!



