Statistical stability for Lorenz attractors

José Ferreira Alves (joint with Mohammad Soufi)

ICTP-ESF School and Conference in Dynamical Systems

May 21, 2012

(日) (四) (분) (분) (분) 분

Lorenz system

Lorenz (1963) introduced a system of differential equations X in \mathbb{R}^3 having an attractor with sensitive dependence on the initial conditions.

Geometric model

A geometric model for Lorenz equations was introduced in the seventies by Guckenheimer and Williams.

Singularity

The vector field X is linear in a neighborhood of the singularity (0,0,0) whose eigenvalues satisfy

There is a cross-section Σ intersecting the stable manifold of the singularity along a curve $\Gamma.$

$$au(x,y,1) = -rac{1}{\lambda_1} \log |x|$$

José Ferreira Alves (CMUP)

▶ < 불▶ 불 ∽ < < May 21, 2012 6 / 28

$$au(x,y,1) = -rac{1}{\lambda_1} \log |x| + T_0,$$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

▶ < 둘 ▶ 둘 ∽ ९... May 21, 2012 7 / 28

<ロト < 団ト < 団ト < 団ト

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.
- Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

 $\Lambda = \bigcap_{t>0} X_t(U);$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.
- Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- A contains the singularity O.
- Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

Λ contains a dense orbit;

- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.
- Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

 Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.

Λ is a singular-hyperbolic attractor.

- Λ is an invariant set under the flow;
- there is an open neighborhood U of Λ such that

$$\Lambda = \bigcap_{t>0} X_t(U);$$

- Λ contains a dense orbit;
- it has sensitive dependence on the initial conditions in U;
- Λ contains the singularity O.
- Λ is a singular-hyperbolic attractor.

Poincaré return map

The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of Pⁿ(ξ) goes to zero when n → ∞, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2$$

Poincaré return map

The return map P admits a stable foliation \mathcal{F} on Σ with the properties:

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of Pⁿ(ξ) goes to zero when n → ∞, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2$$

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;

• it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2$$

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2$$

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 .

Assuming the strong dissipative condition at the equilibrium

$$-\frac{\lambda_2}{\lambda_1} > -\frac{\lambda_3}{\lambda_1} + 2,$$

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-rac{\lambda_2}{\lambda_1}>-rac{\lambda_3}{\lambda_1}+2,$$

- invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained in another stable leaf;
- contracting: the diameter of $P^n(\xi)$ goes to zero when $n \to \infty$, uniformly over all leaves;
- it induces a map f on the quotient space $\Sigma/\mathcal{F} \sim [-1,1] = I$.

The foliation \mathcal{F} is C^1 -Hölder when the vector field X is C^2 . Assuming the strong dissipative condition at the equilibrium

$$-rac{\lambda_2}{\lambda_1}>-rac{\lambda_3}{\lambda_1}+2,$$

Lorenz map

• f is discontinuous at x = 0 and

$$\lim_{x \to 0^+} f(x) = -1, \qquad \lim_{x \to 0^-} f(x) = 1;$$

• f is differentiable on $I \setminus \{0\}$ and $f'(x) > \sqrt{2},$ for all $x \in I \setminus \{0\};$

• the derivative tends to infinity near 0

 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

• f is discontinuous at x = 0 and $\lim_{x \to 0^+} f(x) = -1, \qquad \lim_{x \to 0^-} f(x) = 1;$

• f is differentiable on $I \setminus \{0\}$ and $f'(x) > \sqrt{2},$ for all $x \in I \setminus \{0\};$

• the derivative tends to infinity near 0

 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

• f is discontinuous at x = 0 and

$$\lim_{x \to 0^+} f(x) = -1, \qquad \lim_{x \to 0^-} f(x) = 1;$$

• f is differentiable on $I \setminus \{0\}$ and $f'(x) > \sqrt{2}$, for all $x \in I \setminus \{0\}$;

the derivative tends to infinity near 0

 $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.$

José Ferreira Alves (CMUP)

• f is discontinuous at x = 0 and

$$\lim_{x \to 0^+} f(x) = -1, \qquad \lim_{x \to 0^-} f(x) = 1;$$

•
$$f$$
 is differentiable on $I\setminus\{0\}$ and $f'(x)>\sqrt{2},$ for all $x\in I\setminus\{0\};$

• the derivative tends to infinity near 0

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^-} f'(x) = +\infty.$$

There is a C^2 neighborhood $\mathcal U$ of X such that for each $Y \in \mathcal U$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset Λ_Y = ∩_{t≥0}Y^t(U) inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y , the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y , the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y , the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;

 there exist (unique) SRB measures for the Lorenz map f_Y, the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y , the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

There is a C^2 neighborhood \mathcal{U} of X such that for each $Y \in \mathcal{U}$

- U is a trapping region containing the cross-section Σ of Y;
- the maximal positively invariant subset $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ inside U is a Lorenz-like attractor;
- the first return Poincaré map P_Y on Σ admits a C^2 uniformly contracting foliation \mathcal{F}_Y .
- the induced one-dimensional quotient map $f_Y = P_Y / \mathcal{F}_Y$ is a C^2 Lorenz map;
- there exist (unique) SRB measures for the Lorenz map f_Y , the Poincaré map P_Y and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust strange attractor.

José Ferreira Alves (CMUP)

May 21, 2012 11 / 28

4 E

▲ @ ▶ ▲ ∃ ▶

Theorem

Each Lorenz map f_Y has a unique ergodic acip $\bar{\mu}_Y$ whose density wrt Lebesgue has bounded variation.

 $ar{\mu}$ is an SRB measure: for Lebesgue almost every $x\in I$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(f^j(x)) = \int \varphi d\bar{\mu},$$

for any continuous function $\varphi: I \to \mathbb{R}$.

Theorem

Each Lorenz attractor Y supports a unique SRB measure $\mu_{
m Y}$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 12 / 28

Theorem

Each Lorenz map f_Y has a unique ergodic acip $\bar{\mu}_Y$ whose density wrt Lebesgue has bounded variation.

 $ar{\mu}$ is an SRB measure: for Lebesgue almost every $x \in I$

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi(f^j(x))=\int\varphi d\bar{\mu},$$

for any continuous function $\varphi: I \to \mathbb{R}$.

Theorem

Each Lorenz attractor Y supports a unique SRB measure μ_{Y}

José Ferreira Alves (CMUP)

Theorem

Each Lorenz map f_Y has a unique ergodic acip $\bar{\mu}_Y$ whose density wrt Lebesgue has bounded variation.

 $ar{\mu}$ is an SRB measure: for Lebesgue almost every $x \in I$

$$\lim_{n\to+\infty}\frac{1}{n}\sum_{j=0}^{n-1}\varphi(f^j(x))=\int\varphi d\bar{\mu},$$

for any continuous function $\varphi: I \to \mathbb{R}$.

Theorem

Each Lorenz attractor Y supports a unique SRB measure μ_Y

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 12 / 28

Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1 -norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz flows are statistically stable.

Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1 -norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz flows are statistically stable.
Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1 -norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz flows are statistically stable.

Statistical stability: continuous variation of the SRB measures with weak* topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the SRB measures in the L^1 -norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz flows are statistically stable.

Given a bounded function $\phi: \Sigma \to \mathbb{R}$, define

$$\phi_+(x) := \sup_{y \in \xi(x)} \phi(y)$$
 and $\phi_-(x) := \inf_{y \in \xi(x)} \phi(y),$

where $\xi(x)$ is the leaf in foliation \mathcal{F} which contains x.

Lemma

Given any continuous function $\phi: \Sigma \to \mathbb{R}$ both limits

$$\lim_{n\to\infty}\int (\phi\circ P^n)_-d\bar{\mu} \quad and \quad \lim_{n\to\infty}\int (\phi\circ P^n)_+d\bar{\mu}$$

exist and they coincide.

Given a bounded function $\phi: \Sigma \to \mathbb{R}$, define

$$\phi_+(x) := \sup_{y \in \xi(x)} \phi(y)$$
 and $\phi_-(x) := \inf_{y \in \xi(x)} \phi(y),$

where $\xi(x)$ is the leaf in foliation \mathcal{F} which contains x.

Lemma

Given any continuous function $\phi: \Sigma \to \mathbb{R}$ both limits

$$\lim_{n\to\infty}\int (\phi\circ P^n)_-d\bar{\mu} \quad and \quad \lim_{n\to\infty}\int (\phi\circ P^n)_+d\bar{\mu}$$

exist and they coincide.

Corollary

There is a (unique) probability P-invariant measure $\tilde{\mu}$ on Σ such that

$$\int \phi \ d\tilde{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_- d\bar{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_+ d\bar{\mu},$$

for every continuous function $\phi : \Sigma \to \mathbb{R}$.

Theorem

The Lorenz-like attractor supports a unique SRB measure μ defined for any continuous function $\varphi: \overline{U} \to \mathbb{R}$ as

$$\int \varphi \, d\mu = \frac{1}{\int \tau d\tilde{\mu}} \int \int_0^{\tau(x)} \varphi(X(x,t)) dt d\tilde{\mu}(x)$$

Corollary

There is a (unique) probability P-invariant measure $\tilde{\mu}$ on Σ such that

$$\int \phi \ d\tilde{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_- d\bar{\mu} = \lim_{n \to \infty} \int (\phi \circ P^n)_+ d\bar{\mu},$$

for every continuous function $\phi: \Sigma \to \mathbb{R}$.

Theorem

The Lorenz-like attractor supports a unique SRB measure μ defined for any continuous function $\varphi: \overline{U} \to \mathbb{R}$ as

$$\int arphi \, d\mu = rac{1}{\int au d ilde{\mu}} \int \int_0^{ au(x)} arphi(X(x,t)) dt d ilde{\mu}(x)$$

Statistical stability for the Poincaré map

Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

 $\tilde{\mu}_n \longrightarrow \tilde{\mu}_0$ in weak^{*} topology,

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \ge 0$.

We need to show that for any continuous $arphi:\Sigma
ightarrow\mathbb{R}$ we have

$$\lim_{n\to\infty}\int\varphi d\tilde{\mu}_n=\int\varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n\to\infty}\int\varphi d\tilde{\mu}_n=\lim_{n\to\infty}\lim_{m\to\infty}\int\inf(\varphi\circ P_n^m)\ d\bar{\mu}_n.$$

Statistical stability for the Poincaré map

Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

 $\tilde{\mu}_n \longrightarrow \tilde{\mu}_0$ in weak^{*} topology,

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \ge 0$.

We need to show that for any continuous $\varphi:\Sigma\to\mathbb{R}$ we have

$$\lim_{n\to\infty}\int \varphi d\tilde{\mu}_n=\int \varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n\to\infty}\int \varphi d\tilde{\mu}_n = \lim_{n\to\infty}\lim_{m\to\infty}\int \inf(\varphi\circ P_n^m)\ d\bar{\mu}_n.$$

Statistical stability for the Poincaré map

Proposition

If X_n is a sequence converging to X_0 in C^2 topology, then

 $\tilde{\mu}_n \longrightarrow \tilde{\mu}_0$ in weak^{*} topology,

where $\tilde{\mu}_n = \tilde{\mu}_{X_n}$ for all $n \ge 0$.

We need to show that for any continuous $\varphi:\Sigma\to\mathbb{R}$ we have

$$\lim_{n\to\infty}\int \varphi d\tilde{\mu}_n=\int \varphi d\tilde{\mu}_0.$$

By definition

$$\lim_{n\to\infty}\int\varphi d\tilde{\mu}_n=\lim_{n\to\infty}\lim_{m\to\infty}\int\inf(\varphi\circ P_n^m)\ d\bar{\mu}_n.$$

We have

$$\begin{split} |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0| \leq \\ |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n| \\ + |\int \inf(\varphi \circ P_0^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0|. \end{split}$$

The second term tends to zero because

$$\bar{\mu}_n \xrightarrow{\mathsf{weak}^*} \bar{\mu}_0.$$

We are left to prove that the first term converges to zero when $n \to \infty$.

We have

$$\begin{split} |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0| \leq \\ |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n| \\ + |\int \inf(\varphi \circ P_0^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0|. \end{split}$$

The second term tends to zero because

$$\bar{\mu}_n \xrightarrow{\text{weak}^*} \bar{\mu}_0.$$

We are left to prove that the first term converges to zero when $n \to \infty$.

We have

$$\begin{split} |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0| \leq \\ |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n| \\ + |\int \inf(\varphi \circ P_0^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_0|. \end{split}$$

The second term tends to zero because

$$\bar{\mu}_n \xrightarrow{\text{weak}^*} \bar{\mu}_0.$$

We are left to prove that the first term converges to zero when $n \to \infty$.

Letting $\lambda = \text{Lebesgue}$

$$\begin{split} |\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n| \\ &= \left| \int \inf(\varphi \circ P_n^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda - \int \inf(\varphi \circ P_0^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda \right| \\ &\leq \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| \left| \frac{d\bar{\mu}_n}{d\lambda} \right| d\lambda \\ &\leq C \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| d\lambda \end{split}$$

The rate of the contraction of the stable foliation on the cross-section can be taken the same for all vector fields. So, the last expression can be made uniformly small. Letting $\lambda = \text{Lebesgue}$

$$\int \inf(\varphi \circ P_n^m) d\bar{\mu}_n - \int \inf(\varphi \circ P_0^m) d\bar{\mu}_n |$$

$$= \left| \int \inf(\varphi \circ P_n^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda - \int \inf(\varphi \circ P_0^m) \frac{d\bar{\mu}_n}{d\lambda} d\lambda \right|$$

$$\leq \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| \left| \frac{d\bar{\mu}_n}{d\lambda} \right| d\lambda$$

$$\leq C \int \left| \inf(\varphi \circ P_n^m) - \inf(\varphi \circ P_0^m) \right| d\lambda$$

The rate of the contraction of the stable foliation on the cross-section can be taken the same for all vector fields. So, the last expression can be made uniformly small.

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

 $\mu_n \longrightarrow \mu_0$, in the weak^{*} topology.

 $\int \varphi \ d\mu_n - \int \varphi \ d\mu_0$ is bounded by the sum of the terms

$$\left|\frac{1}{\int \tau_n \ d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0}\right| \int \int_0^{\tau_0(x)} |\varphi(X_0(x,t))| dt d\tilde{\mu}_0(x),$$

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

 $\mu_n \longrightarrow \mu_0$, in the weak^{*} topology.

$$\left|\int \varphi \ d\mu_n - \int \varphi \ d\mu_0\right|$$
 is bounded by the sum of the terms

$$\left|\frac{1}{\int \tau_n d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0}\right| \int \int_0^{\tau_0(x)} |\varphi(X_0(x,t))| dt d\tilde{\mu}_0(x),$$

$$\frac{1}{\int \tau_n d\tilde{\mu}_n} \left| \int \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt d\tilde{\mu}_n - \int \int_0^{\tau_0(x)} \varphi(X_0(x,t)) dt d\tilde{\mu}_0 \right|$$

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

 $\mu_n \longrightarrow \mu_0$, in the weak^{*} topology.

$$\int \varphi \ d\mu_n - \int \varphi \ d\mu_0 \bigg| \text{ is bounded by the sum of the terms}$$
$$\bigg| \frac{1}{\int \tau_n \ d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0} \bigg| \int \int_0^{\tau_0(x)} |\varphi(X_0(x,t))| dt d\tilde{\mu}_0(x),$$

$$\frac{1}{\int \tau_n d\tilde{\mu}_n} \left| \int \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt d\tilde{\mu}_n - \int \int_0^{\tau_0(x)} \varphi(X_0(x,t)) dt d\tilde{\mu}_0 \right|$$

.

Theorem

Let X_n be any sequence converging to X_0 in C^2 topology. Then

 $\mu_n \longrightarrow \mu_0$, in the weak^{*} topology.

$$\left|\int \varphi \ d\mu_n - \int \varphi \ d\mu_0 \right|$$
 is bounded by the sum of the terms

$$\left|\frac{1}{\int \tau_n \ d\tilde{\mu}_n} - \frac{1}{\int \tau_0 d\tilde{\mu}_0}\right| \int \int_0^{\tau_0(x)} |\varphi(X_0(x,t))| dt d\tilde{\mu}_0(x),$$

$$\frac{1}{\int \tau_n d\tilde{\mu}_n} \left| \int \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt d\tilde{\mu}_n - \int \int_0^{\tau_0(x)} \varphi(X_0(x,t)) dt d\tilde{\mu}_0 \right|$$

The statistical stability of the Poincaré return map and the fact that

$$\tau_n(x, y, 1) \sim -\log|x - c_n|,$$

where the c_n is the discontinuity point of the map f_{X_n} , yield

Lemma

$$\lim_{n\to+\infty}\int\tau_n\ d\tilde{\mu}_n=\int\tau_0\ d\tilde{\mu}_0$$

And defining

$$h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt$$
, for $n \ge 0$

Lemma

$$\lim_{n\to+\infty}\int h_n\ d\tilde{\mu}_n=\int h_0\ d\tilde{\mu}_0.$$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 20 / 28

The statistical stability of the Poincaré return map and the fact that

$$\tau_n(x, y, 1) \sim -\log|x - c_n|,$$

where the c_n is the discontinuity point of the map f_{X_n} , yield

Lemma

$$\lim_{n\to+\infty}\int\tau_n\ d\tilde{\mu}_n=\int\tau_0\ d\tilde{\mu_0}$$

And defining

$$h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt$$
, for $n \ge 0$

Lemma

$$\lim_{n\to+\infty}\int h_n\ d\tilde{\mu}_n=\int h_0\ d\tilde{\mu}_0.$$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 20 / 28

The statistical stability of the Poincaré return map and the fact that

$$\tau_n(x, y, 1) \sim -\log|x - c_n|,$$

where the c_n is the discontinuity point of the map f_{X_n} , yield

Lemma

$$\lim_{n\to+\infty}\int\tau_n\ d\tilde{\mu}_n=\int\tau_0\ d\tilde{\mu_0}$$

And defining

$$h_n(x) = \int_0^{\tau_n(x)} \varphi(X_n(x,t)) dt$$
, for $n \ge 0$

Lemma

$$\lim_{n\to+\infty}\int h_n\ d\tilde{\mu}_n=\int h_0\ d\tilde{\mu}_0.$$

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 20 / 28

Replace the usual expanding condition $\lambda_3 + \lambda_1 > 0$ in the original Lorenz vector field by the contracting condition

 $\lambda_3 + \lambda_1 < 0.$

There is a trapping region U for X_0 on which $\Lambda = \bigcap_{t \ge 0} X_0^t(U)$ is a singular-hyperbolic attractor.

A is 2-dimensionally almost persistent in the C^3 topology: X_0 is a 2-dimensional density point of the set of vector fields Y for which $\Lambda_Y = \bigcap_{t\geq 0} Y^t(U)$ is an attractor.

Replace the usual expanding condition $\lambda_3 + \lambda_1 > 0$ in the original Lorenz vector field by the contracting condition

$$\lambda_3 + \lambda_1 < 0.$$

There is a trapping region U for X_0 on which $\Lambda = \bigcap_{t \ge 0} X_0^t(U)$ is a singular-hyperbolic attractor.

A is 2-dimensionally almost persistent in the C^3 topology: X_0 is a 2-dimensional density point of the set of vector fields Y for which $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ is an attractor.

Replace the usual expanding condition $\lambda_3 + \lambda_1 > 0$ in the original Lorenz vector field by the contracting condition

$$\lambda_3 + \lambda_1 < 0.$$

There is a trapping region U for X_0 on which $\Lambda = \bigcap_{t \ge 0} X_0^t(U)$ is a singular-hyperbolic attractor.

A is 2-dimensionally almost persistent in the C^3 topology: X_0 is a 2-dimensional density point of the set of vector fields Y for which $\Lambda_Y = \bigcap_{t \ge 0} Y^t(U)$ is an attractor.

The quotient map $f_0: I \setminus \{0\} \rightarrow I$ satisfies:

- $\lim_{x \to 0^{\pm}} f_0(x) = \mp 1;$
- ±1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

The quotient map $f_0: I \setminus \{0\} \rightarrow I$ satisfies:

- $\lim_{x\to 0^{\pm}} f_0(x) = \mp 1;$
- ±1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

The quotient map $f_0: I \setminus \{0\} \rightarrow I$ satisfies:

- $\lim_{x\to 0^{\pm}} f_0(x) = \mp 1;$
- ± 1 are pre-periodic and repelling;

• f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

The quotient map $f_0: I \setminus \{0\} \to I$ satisfies:

•
$$\lim_{x \to 0^{\pm}} f_0(x) = \mp 1;$$

- ± 1 are pre-periodic and repelling;
- f_0 is of class C^3 on $I \setminus \{0\}$ with negative Schwarzian derivative;

Theorem (Rovella)

There is $E \subseteq [0, 1]$ with full density at 0 such that: • for all $a \in E$, f_a is of class C^3 on $x \in I \setminus \{0\}$ and satisfies

 $|K_2|x|^{s-1} \le f'_a(x) \le K_1|x|^{s-1};$

2 there exists $\lambda > 1$ such that for $a \in E$

 $(f_a^n)'(\pm 1) > \lambda^n$ for all $n \ge 0$;

③ there is $\alpha > 0$ such that for all $a \in E$

 $|f_a^{n-1}(\pm 1)| > e^{-\alpha n}$ for all $n \ge 1$

Theorem (Metzger)

Each f_a admits an absolutely continuous invariant probability μ_a which is unique and ergodic.

José Ferreira Alves (CMUP)

May 21, 2012 23 / 28

Theorem (Rovella)

There is $E \subseteq [0, 1]$ with full density at 0 such that: • for all $a \in E$, f_a is of class C^3 on $x \in I \setminus \{0\}$ and satisfies

 $|K_2|x|^{s-1} \le f'_a(x) \le K_1|x|^{s-1};$

2 there exists $\lambda > 1$ such that for $a \in E$

 $(f_a^n)'(\pm 1) > \lambda^n$ for all $n \ge 0$;

③ there is $\alpha > 0$ such that for all $a \in E$

 $|f_a^{n-1}(\pm 1)| > e^{-\alpha n}$ for all $n \ge 1$

Theorem (Metzger)

Each f_a admits an absolutely continuous invariant probability μ_a which is unique and ergodic.

José Ferreira Alves (CMUP)

May 21, 2012 23 / 28

Assume *f* is nonuniformly expanding:

$$\exists c > 0 : \liminf_{n \to \infty} rac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x))) > c,$$
 Lebesgue a.e. x

with slow recurrence to the critical set:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} -\log d_{\delta}(f^i(x), \mathcal{C}) \leq \epsilon, \quad \text{Lebesgue a.e. } x$$

where d_{δ} is the δ -truncated distance is defined as

$$d_{\delta}(x,y) = \begin{cases} |x-y| & \text{if } |x-y| \le \delta, \\ 1 & \text{if } |x-y| > \delta. \end{cases}$$

José Ferreira Alves (CMUP)

May 21, 2012 24 / 28

Assume *f* is nonuniformly expanding:

$$\exists c > 0 : \liminf_{n o \infty} rac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x))) > c,$$
 Lebesgue a.e. x

with slow recurrence to the critical set:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} -\log d_{\delta}(f^i(x), \mathcal{C}) \leq \epsilon, \quad \text{Lebesgue a.e. } x$$

where d_{δ} is the δ -truncated distance is defined as

$$d_{\delta}(x,y) = \begin{cases} |x-y| & \text{if } |x-y| \le \delta, \\ 1 & \text{if } |x-y| > \delta. \end{cases}$$

José Ferreira Alves (CMUP)

May 21, 2012 24 / 28

Assume *f* is nonuniformly expanding:

$$\exists c > 0 : \liminf_{n o \infty} rac{1}{n} \sum_{i=0}^{n-1} \log(f'(f^i(x))) > c,$$
 Lebesgue a.e. x

with slow recurrence to the critical set:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} -\log d_{\delta}(f^{i}(x), \mathcal{C}) \leq \epsilon, \quad \text{Lebesgue a.e. } x$$

where d_{δ} is the $\delta\text{-truncated}$ distance is defined as

$$d_{\delta}(x,y) = \begin{cases} |x-y| & \text{if } |x-y| \le \delta, \\ 1 & \text{if } |x-y| > \delta. \end{cases}$$

This allows us to introduce the expansion time

$$\mathcal{E}^{f}(x) = \min\left\{N \geq 1: \frac{1}{n}\sum_{i=0}^{n-1}\log f'(f^{i}(x)) > d, \forall n \geq N\right\}$$

the recurrence time

$$\mathcal{R}^{f}(x) = \min\left\{N \ge : \frac{1}{n} \sum_{i=0}^{n-1} -\log d_{\delta}(f^{i}(x), \mathcal{C}) < \epsilon, \forall n \ge N\right\}$$

and the tail set at time n

$$\Gamma_n^f = \left\{ x \in I : \mathcal{E}^f(x) > n \quad \text{or} \quad \mathcal{R}^f(x) > n \right\}.$$

Theorem (A.)

Assume there are C > 1 and $\gamma > 1$ such that $|\Gamma_n^f| \leq Cn^{-\gamma}$ for all $n \geq 1$ and $f \in \mathbf{F}$. Then, each $f \in \mathbf{F}$ is strongly statistically stable.

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 25 / 28

This allows us to introduce the expansion time

$$\mathcal{E}^{f}(x) = \min\left\{N \geq 1: \frac{1}{n}\sum_{i=0}^{n-1}\log f'(f^{i}(x)) > d, \forall n \geq N\right\}$$

the recurrence time

$$\mathcal{R}^{f}(x) = \min\left\{N \geq : \frac{1}{n}\sum_{i=0}^{n-1} -\log d_{\delta}(f^{i}(x), \mathcal{C}) < \epsilon, \forall n \geq N\right\}$$

and the tail set at time n

$$\Gamma_n^f = \left\{ x \in I : \mathcal{E}^f(x) > n \quad \text{or} \quad \mathcal{R}^f(x) > n \right\}.$$

Theorem (A.)

Assume there are C > 1 and $\gamma > 1$ such that $|\Gamma_n^f| \leq Cn^{-\gamma}$ for all $n \geq 1$ and $f \in \mathbf{F}$. Then, each $f \in \mathbf{F}$ is strongly statistically stable.

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 25 / 28

This allows us to introduce the expansion time

$$\mathcal{E}^{f}(x) = \min\left\{N \geq 1: \frac{1}{n}\sum_{i=0}^{n-1}\log f'(f^{i}(x)) > d, \forall n \geq N\right\}$$

the recurrence time

$$\mathcal{R}^{f}(x) = \min\left\{N \geq : \frac{1}{n}\sum_{i=0}^{n-1} -\log d_{\delta}(f^{i}(x), \mathcal{C}) < \epsilon, \forall n \geq N\right\}$$

and the tail set at time n

$$\Gamma_n^f = \left\{ x \in I : \mathcal{E}^f(x) > n \quad \text{or} \quad \mathcal{R}^f(x) > n \right\}.$$

Theorem (A.)

Assume there are C > 1 and $\gamma > 1$ such that $|\Gamma_n^t| \leq Cn^{-\gamma}$ for all $n \geq 1$ and $f \in \mathbf{F}$. Then, each $f \in \mathbf{F}$ is strongly statistically stable.

José Ferreira Alves (CMUP)

Statistical stability for Lorenz attractors

May 21, 2012 25 / 28
This allows us to introduce the expansion time

$$\mathcal{E}^{f}(x) = \min\left\{N \geq 1: \frac{1}{n}\sum_{i=0}^{n-1}\log f'(f^{i}(x)) > d, \forall n \geq N\right\}$$

the recurrence time

$$\mathcal{R}^{f}(x) = \min\left\{N \geq : \frac{1}{n}\sum_{i=0}^{n-1} -\log d_{\delta}(f^{i}(x), \mathcal{C}) < \epsilon, \forall n \geq N\right\}$$

and the tail set at time n

$$\Gamma_n^f = \left\{ x \in I : \mathcal{E}^f(x) > n \quad \text{or} \quad \mathcal{R}^f(x) > n
ight\}.$$

Theorem (A.)

Assume there are C > 1 and $\gamma > 1$ such that $|\Gamma_n^f| \leq Cn^{-\gamma}$ for all $n \geq 1$ and $f \in \mathbf{F}$. Then, each $f \in \mathbf{F}$ is strongly statistically stable.

José Ferreira Alves (CMUP)

May 21, 2012 25 / 28

Theorem (A.,Soufi)

Rovella maps are nonuniformly expanding with slow recurrence to the critical set. Moreover, there are $C, \tau > 0$ such that for all $n \in \mathbb{N}$ and $a \in E$,

$$|\Gamma_n| \leq C e^{-\tau n}.$$

Corollary

Rovella maps are strongly statistically stable.

Theorem (A.,Soufi)

Rovella maps are nonuniformly expanding with slow recurrence to the critical set. Moreover, there are $C, \tau > 0$ such that for all $n \in \mathbb{N}$ and $a \in E$,

$$\left| \Gamma_n \right| \leq C e^{-\tau n}.$$

Corollary

Rovella maps are strongly statistically stable.

Problems

- Statistical (in)stability in the full set of parameters.
- Statistical stability for Rovella flows.
- Statistical (in)stability for contracting Lorenz flows.

Problems

- Statistical (in)stability in the full set of parameters.
- Statistical stability for Rovella flows.

Statistical (in)stability for contracting Lorenz flows.

Problems

- Statistical (in)stability in the full set of parameters.
- Statistical stability for Rovella flows.
- Statistical (in)stability for contracting Lorenz flows.

Thank you!

-