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Lorenz system

Lorenz (1963) introduced a system of differential equations X in R
3

having an attractor with sensitive dependence on the initial conditions.
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Geometric model

A geometric model for Lorenz equations was introduced in the seventies by
Guckenheimer and Williams.

José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 3 / 28



Singularity

The vector field X is linear in a neighborhood of the singularity (0, 0, 0)
whose eigenvalues satisfy

0 < −λ3 < λ1 < −λ2,
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Cross-section

There is a cross-section Σ intersecting the stable manifold of the
singularity along a curve Γ.
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Local behaviour

τ(x , y , 1) = − 1

λ1
log |x |
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Return to Σ

τ(x , y , 1) = − 1

λ1
log |x |+ T0,
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The attractor

The geometric model admits a Lorenz-like attractor Λ:

Λ is an invariant set under the flow;

there is an open neighborhood U of Λ such that

Λ =
⋂

t>0

Xt(U);

Λ contains a dense orbit;

it has sensitive dependence on the initial conditions in U;

Λ contains the singularity O.

Λ is a singular-hyperbolic attractor.
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Poincaré return map

The return map P admits a stable foliation F on Σ with the properties:

invariant: the image by P of a leaf ξ in Σ distinct from Γ is contained
in another stable leaf;

contracting: the diameter of Pn(ξ) goes to zero when n → ∞,
uniformly over all leaves;

it induces a map f on the quotient space Σ/F ∼ [−1, 1] = I .

The foliation F is C 1-Hölder when the vector field X is C 2.
Assuming the strong dissipative condition at the equilibrium

−λ2

λ1
> −λ3

λ1
+ 2,

then F is C 2, and the one-dimensional quotient map f is C 2 smooth away
from the singularity.

José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 9 / 28
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Lorenz map

f is discontinuous at x = 0 and

lim
x→0+

f (x) = −1, lim
x→0−

f (x) = 1;

f is differentiable on I \ {0} and

f ′(x) >
√
2, for all x ∈ I \ {0};

the derivative tends to infinity near 0

lim
x→0+

f ′(x) = lim
x→0−

f ′(x) = +∞.
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Robustness

There is a C 2 neighborhood U of X such that for each Y ∈ U
U is a trapping region containing the cross-section Σ of Y ;

the maximal positively invariant subset ΛY = ∩t≥0Y
t(U) inside U is

a Lorenz-like attractor;

the first return Poincaré map PY on Σ admits a C 2 uniformly
contracting foliation FY .

the induced one-dimensional quotient map fY = PY /FY is a C 2

Lorenz map;

there exist (unique) SRB measures for the Lorenz map fY , the
Poincaré map PY and the flow Y on U.

Theorem (Tucker)

For the classical parameter values, the Lorenz equations support a robust
strange attractor.
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the first return Poincaré map PY on Σ admits a C 2 uniformly
contracting foliation FY .

the induced one-dimensional quotient map fY = PY /FY is a C 2

Lorenz map;

there exist (unique) SRB measures for the Lorenz map fY , the
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SRB measures

Theorem

Each Lorenz map fY has a unique ergodic acip µ̄Y whose density wrt
Lebesgue has bounded variation.

µ̄ is an SRB measure: for Lebesgue almost every x ∈ I

lim
n→+∞

1

n

n−1
∑

j=0

ϕ(f j(x)) =

∫

ϕd µ̄,

for any continuous function ϕ : I → R.

Theorem

Each Lorenz attractor Y supports a unique SRB measure µY
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Statistical stability

Statistical stability: continuous variation of the SRB measures with weak∗

topology as a function of the dynamical system.

Strong statistical stability: continuous variation of the densities of the
SRB measures in the L1-norm.

Theorem (Keller)

Lorenz maps are strongly statistically stable.

Theorem (A., Soufi)

Lorenz flows are statistically stable.
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SRB measures for the Poincaré return maps

Given a bounded function φ : Σ → R, define

φ+(x) := sup
y∈ξ(x)

φ(y) and φ−(x) := inf
y∈ξ(x)

φ(y),

where ξ(x) is the leaf in foliation F which contains x .

Lemma

Given any continuous function φ : Σ → R both limits

lim
n→∞

∫

(φ ◦ Pn)−d µ̄ and lim
n→∞

∫

(φ ◦ Pn)+d µ̄

exist and they coincide.

José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 14 / 28



SRB measures for the Poincaré return maps
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Corollary

There is a (unique) probability P-invariant measure µ̃ on Σ such that

∫

φ d µ̃ = lim
n→∞

∫

(φ ◦ Pn)−d µ̄ = lim
n→∞

∫

(φ ◦ Pn)+d µ̄,

for every continuous function φ : Σ → R.

Theorem

The Lorenz-like attractor supports a unique SRB measure µ defined for
any continuous function ϕ : Ū → R as

∫

ϕ dµ =
1

∫

τd µ̃

∫ ∫ τ(x)

0
ϕ(X (x , t))dtd µ̃(x)
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Statistical stability for the Poincaré map

Proposition

If Xn is a sequence converging to X0 in C 2 topology, then

µ̃n −→ µ̃0 in weak∗ topology,

where µ̃n = µ̃Xn
for all n ≥ 0.

We need to show that for any continuous ϕ : Σ → R we have

lim
n→∞

∫

ϕd µ̃n =

∫

ϕd µ̃0.

By definition

lim
n→∞

∫

ϕd µ̃n = lim
n→∞

lim
m→∞

∫

inf(ϕ ◦ Pm
n ) d µ̄n.
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We have

|
∫

inf(ϕ ◦ Pm
n )d µ̄n −

∫

inf(ϕ ◦ Pm
0 )d µ̄0| ≤

|
∫

inf(ϕ ◦ Pm
n )d µ̄n −

∫

inf(ϕ ◦ Pm
0 )d µ̄n|

+ |
∫

inf(ϕ ◦ Pm
0 )d µ̄n −

∫

inf(ϕ ◦ Pm
0 )d µ̄0|.

The second term tends to zero because

µ̄n
weak∗−−−→ µ̄0.

We are left to prove that the first term converges to zero when n → ∞.
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Letting λ = Lebesgue

|
∫

inf(ϕ ◦ Pm
n )d µ̄n −

∫

inf(ϕ ◦ Pm
0 )d µ̄n|

=

∣

∣

∣

∣

∫

inf(ϕ ◦ Pm
n )

d µ̄n

dλ
dλ−

∫

inf(ϕ ◦ Pm
0 )

d µ̄n

dλ
dλ

∣

∣

∣

∣

≤
∫

|inf(ϕ ◦ Pm
n )− inf(ϕ ◦ Pm

0 )|
∣

∣

∣

∣

d µ̄n

dλ

∣

∣

∣

∣

dλ

≤ C

∫

|inf(ϕ ◦ Pm
n )− inf(ϕ ◦ Pm

0 )|dλ

The rate of the contraction of the stable foliation on the cross-section can
be taken the same for all vector fields. So, the last expression can be made
uniformly small.
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José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 18 / 28



Statistical stability for the flow

Theorem

Let Xn be any sequence converging to X0 in C 2 topology. Then

µn −→ µ0, in the weak∗ topology.

∣

∣

∣

∣

∫

ϕ dµn −
∫

ϕ dµ0

∣

∣

∣

∣

is bounded by the sum of the terms

∣

∣

∣

∣

1
∫

τn d µ̃n

− 1
∫

τ0d µ̃0

∣

∣

∣

∣

∫ ∫ τ0(x)

0
|ϕ(X0(x , t))|dtd µ̃0(x),

and

1
∫

τnd µ̃n

∣

∣

∣

∣

∣

∫ ∫ τn(x)

0
ϕ(Xn(x , t))dtd µ̃n −

∫ ∫ τ0(x)

0
ϕ(X0(x , t))dtd µ̃0

∣

∣

∣

∣

∣

.
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The statistical stability of the Poincaré return map and the fact that

τn(x , y , 1) ∼ − log |x − cn|,

where the cn is the discontinuity point of the map fXn
, yield

Lemma

lim
n→+∞

∫

τn d µ̃n =

∫

τ0 d µ̃0

And defining

hn(x) =

∫ τn(x)

0
ϕ(Xn(x , t)) dt, for n ≥ 0

Lemma

lim
n→+∞

∫

hn d µ̃n =

∫

h0 d µ̃0.
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Contracting Lorenz flow

Replace the usual expanding condition λ3 + λ1 > 0 in the original Lorenz
vector field by the contracting condition

λ3 + λ1 < 0.

There is a trapping region U for X0 on which Λ = ∩t≥0X
t
0 (U) is a

singular-hyperbolic attractor.

Λ is 2-dimensionally almost persistent in the C 3 topology: X0 is a
2-dimensional density point of the set of vector fields Y for which
ΛY = ∩t≥0Y

t(U) is an attractor.
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The quotient map f0 : I \ {0} → I satisfies:

lim
x→0±

f0(x) = ∓1;

±1 are pre-periodic and repelling;

f0 is of class C 3 on I \ {0} with negative Schwarzian derivative;

Figure: One-dimensional map
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Theorem (Rovella)

There is E ⊆ [0, 1] with full density at 0 such that:

1 for all a ∈ E, fa is of class C 3 on x ∈ I \ {0} and satisfies

K2|x |s−1 ≤ f ′a(x) ≤ K1|x |s−1;

2 there exists λ > 1 such that for a ∈ E

(f na )
′(±1) > λn for all n ≥ 0;

3 there is α > 0 such that for all a ∈ E

|f n−1
a (±1)| > e−αn for all n ≥ 1

Theorem (Metzger)

Each fa admits an absolutely continuous invariant probability µa which is
unique and ergodic.
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Assume f is nonuniformly expanding:

∃c > 0 : lim inf
n→∞

1

n

n−1
∑

i=0

log(f ′(f i(x))) > c , Lebesgue a.e. x

with slow recurrence to the critical set:

∀ǫ > 0 ∃δ > 0 : lim sup
n→∞

1

n

n−1
∑

i=0

− log dδ(f
i (x), C) ≤ ǫ, Lebesgue a.e. x

where dδ is the δ-truncated distance is defined as

dδ(x , y) =

{

|x − y | if |x − y | ≤ δ,
1 if |x − y | > δ.
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This allows us to introduce the expansion time

E f (x) = min

{

N ≥ 1 :
1

n

n−1
∑

i=0

log f ′(f i (x)) > d ,∀n ≥ N

}

the recurrence time

Rf (x) = min

{

N ≥:
1

n

n−1
∑

i=0

− log dδ(f
i (x), C) < ǫ,∀n ≥ N

}

and the tail set at time n

Γfn =
{

x ∈ I : E f (x) > n or Rf (x) > n
}

.

Theorem (A.)

Assume there are C > 1 and γ > 1 such that
∣

∣Γfn
∣

∣ ≤ Cn−γ for all n ≥ 1
and f ∈ F. Then, each f ∈ F is strongly statistically stable.
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Theorem (A.,Soufi)

Rovella maps are nonuniformly expanding with slow recurrence to the
critical set. Moreover, there are C , τ > 0 such that for all n ∈ N and
a ∈ E,

∣

∣

∣
Γn

∣

∣

∣
≤ Ce−τn.

Corollary

Rovella maps are strongly statistically stable.
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José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 26 / 28



Problems
1 Statistical (in)stability in the full set of parameters.

2 Statistical stability for Rovella flows.

3 Statistical (in)stability for contracting Lorenz flows.
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José Ferreira Alves (CMUP) Statistical stability for Lorenz attractors May 21, 2012 27 / 28



Thank you!
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