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Impacts of ozone on health & environment

* Present-day annual ozone impacts in EU:
— 20,000 deaths brought forward
— 20 million respiratory hospital days

— 50 million restricted activity days in young adults due
to respiratory symptoms

— €6.7 billion loss of arable crops

— Peffects on semi-natural vegetation and carbon
sequestration
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. Some input from stratosphere (10-20% at mid latitudes)

. Photochemical production from natural and anthropogenic NO,
and VOC
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O, concentrations have roughly

doubled since the early 1900's.




SEASONAL VARIATION OF SURFACE OZONE

DJF Surface O,/ ppbv MAM Surface O, / ppbv

JJA Surface O, / ppbv
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Ensemble mean of 26 ACCENT Photocomp models
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OZONE IN THE FUTURE...

 Will depend strongly on the trajectory of
anthropogenic emissions, in particular NOx,
but also CH,, CO and VOCs.

e |[PCC SRES probably too pessimistic; new
projections from IIASA expect air quality
legislation to significantly reduce NOXx
emissions by 2050

e Climate change is likely to impact ozone

Emlag;irl-lydmlngy




UNDER CURRENT LEGISLATION, NOX EMISSIONS SHOULD REDUCE IN
MOST PLACES:
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METHANE EMISSIONS 2000-2100
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« Ozone concentrations are expected to increase (doubling
this century?) due to emissions (NO, VOC) throughout the
N Hemisphere.

o Surface temperatures will increase

« Water Vapour pressure deficits and CO, concentrations at
the surface will increase reducing stomatal conductance

e Non-stomatal sinks become more efficient

* The partitioning of radiant energy at the surface will change,
Increasing sensible heat and reducing ET
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Mean of 3
models
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OZONE EFFECTS

e IPCC (2007): Tropospheric O, is the third largest
greenhouse gas contributor to radiative forcing of

climate change:
(Oris it even more important for climate?

e Ground level O, is a serious air pollutant (it is a
reactive oxidant), affecting human health and
damaging crops and natural vegetation.
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Radative forcing relative to 1900 (W m—2)

INDIRECT AND DIRECT RADIATIVE FORCINGS FROM TROPOSPHERIC OZONE
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e Current legislation should modestly reduce ozone in
Europe and North America

e Ozone in rapidly developing regions is projected to
increase

e Climate changes will erode benefits of CLE and may
lead to higher ozone in most low and mid latitude
regions

e Fully interactive Earth system models are required
to simulate the full range of feedbacks

Centre for
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 Ozone is clearly important and is likely to
remain so for some time

e So....what are the effects on terrestrial
ecosystems?
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High levels of
ozone increase
human mortality

‘ﬁ— Central estimate
s l—— 95% posterior interval

Percent increase in mortality risk
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Figure 3. Exposure-response curve for 05 and
mortality using the spline approach: percentage

increase in daily nonaccidental mortality at various
05 concentrations.
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What are the impacts to crops caused by O;?

Reduced growth

Wheat Rice
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Plants grown in ambient air with high levels of O; pollution
Plants grown in filtered air (pollutant free), Lahore, Pakistan
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Effects of ozone on wheat
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Soybean responses to elevated [O;] under FACE

Institute for Genomic Biology, UIUC
leakey@life.uiuc.edu




O; treatment at SoyFACE
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These dose-response relationships have been used to perform risk assessments
to estimate yield losses...
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Year 2000 global economic losses estimated to cost $14-26 billion

For economies largely based on agriculture , O; induced damage is estimated to
offset a significant portion (20 - 80%) of the year 2000 GDP growth rate.
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Concentration (AOT40) vs. stomatal flux (AFstY) risk
assessments
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Ozone feedback

» Ozone effects will become chronic
throughout the Northern Hemisphere in
cropland and semi-natural vegetation

e Crop breeding programmes could moderate
yield effects

 The largest effects may be in reducing the
Carbon sink of semi-natural vegetation,
especially forests

Centre for
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Integrated Assessment
of Black Carbon

and Tropospheric Ozone
Summary for Decision Makers




Outline

 The current state of the global atmosphere,
and UNFCCC

* A process to identify sensible control
measures with many benefits and few losers
(win-wins)

 Why focus on short term radiative forcers?

e The UNEP BC and Ozone assessment process
and its outputs

Emlag;irl-lydmlngy
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We are on track for 4 deg C warming

32
Observed CO2 Emissions vs. IPCC Scenarios
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Progress in controlling global emissions

e Some countries /regions are committed to

large reductions in emissions e.g. 80% by 2050
for the UK

e Some countries have not agreed to control
GHG emissions.

e UNFCCC has not proved to be very successful
so far......and the process is difficult




Global radiative forcing of past emissions
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air pollutants as
Short-Lived Climate Forcers

air pollution policies climate
air pollution climate change policies

- EU Climate and Energy Package
- Decarbonisation




UNEP Assessment

* Accept that we still need to act on CO,
emissions, large reductions are necessary

e Therefore not interfere with UNFCCC

e However there are many problems we can
address:

e Black carbon and ozone damage human
health and climate,

e There are many proven measures which could
reduce both BC and ozone

Emlag;irl-lydmlngy




To simulate the control measures we need:

* Global model(s) of emission, atmospheric
chemistry and removal processes

e Detailed spatial resolution within regions to

identify the damage and benefits of reduction
measures

* |[ntegrated assessment models to compare
costs of damage and control measures




Modelled surface ozone concentration
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THREE GROUPS OF PROMISING MEASURES (UNEP, 2011)
BASED ON IIASA/GAINS EMISSIONS FOR 2005 + GWP100S
FROM LITERATURE

“CH,"“ measures Technical “BC” measures Non-technical measures
1. Recovery of coal mine 1. Modern coke ovens 1. Ban of high-emitting
gas 2. Modern brick kilns vehicles
2. Production of crude oil 3. Diesel particle filters 2. Ban of open burning of
and natural gas _ _ agricultural waste
4. Briquettes instead of - _
3. Gas leakages at coal for heating 3. Elimination of biomass
pipelines and _ cook stoves
5. Improved biomass cook

distribution nets
stoves

4. \Waste recyclin
yeing 6. Pellets stoves and

Wastewater treatment boilers (in
6. Farm-scale anaerobic industrialized
digestion countries)

7. Aeration of rice

ddi
pacaies 130 measures (out of 2000) reduce warming, the selected 16 reduce 90% of it.

Centre for A 100% implementation of the measures is assumed in the study




UNEP outcome applied to EU27

Methane emission reductions from measures
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Global: 16 measures remove 41% of total CH, baseline emissions
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Black Carbon emission reductions from 16 measures
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Benefits

CH,4 BEC Tech BC Reg
measures measures measures
Physical Impacts
Avoided warming in 2050 (°C) 0.28 = 0.10 0.12 (+0.06/-0.09) .07 (+.04/-0.09)

Annually avoided crop yield losses
imillions metric tons; sum of
wheat, rice, maize, and soy)

Annually avoided premature
deaths (thousands)

Valuation

Qimate, billions $US

($US per metric ton CH,)

Crops, billions $U5%

($US per metric ton CH,)

Health, billions SUS

($US per metric ton CH,)

27 (+42/=20)

47 (+40/~34)

331 £ 118
(2381 = 850)
4.2 £ 1.2
(29 = &)
148 £ 99
(1080 = 721)

24 (+72/=21)

1720 (+152%/-1188)

142 (+71/=108)
3.6 2.6

3717 (+3236/=-2563)

2 (+13/=3)

619 (+639/-440)

83 (+47/~108)
0.4 £0.6

1425 (+1475/=1015)




*Worldwide implementation of 16 measures will have a relatively rapid impact on global
mean temperature (GMT) : 0.5° C (80% of expected GMT within 20 yrs!).

*Reduction of 0.7 to 4.7 million premature deaths avoided (mainly in S and E Asia
* 30 to 135 million metric tonnes yield increase in cereal crops

*Ozone reduction measures, especially through CH,, are an absolute no- regret policy for
air pollution and climate. CH, — O; benefits in crop yields occur at hemispheric scale.

*We still have to greatly reduce CO2 emissions, but the measures presented by this
assessment provide an excellent opportunity to contribute to reducing climate change, and
offer important benefits for human health and crop production
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