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Abstract

These are notes from a series of lectures given by the author at the Inter-
national Conference on Geometric Analysis, held at ICTP (Trieste, Italy),
25-29 june 2012.

We explain recent developments in the theory of degenerate complex
Monge-Ampère equations, with applications towards the Kähler-Einstein
equation and the study of the Kähler-Ricci flow on mildly singular projective
algebraic varieties.
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Introduction

Complex Monge-Ampère equations have been one of the most powerful tools
in Kähler geometry since Aubin and Yau’s classical works [Aub78, Yau78],
culminating in Yau’s solution to the Calabi conjecture. A notable application
is the construction of Kähler-Einstein metrics on compact Kähler manifolds.

Whereas their existence on manifolds with trivial or ample canonical class
was settled as a corollary of the Calabi conjecture, determining necessary and
sufficient conditions on a Fano manifold to carry a Kähler-Einstein metric is
still an open problem that attracts a lot of attention.

In recent years, following Tsuji’s pioneering work [Tsu88], degenerate
complex Monge-Ampère equations have been intensively studied by many
authors. In relation to the Minimal Model Program, they led to the construc-
tion of singular Kähler-Einstein metrics with zero or negative Ricci curvature
[EGZ09] or, more generally, of canonical volume forms on compact Kähler
manifolds with nonnegative Kodaira dimension [ST09].

Making sense of and constructing singular Kähler-Einstein metrics on
(possibly singular) Fano varieties requires more advanced tools in the study
of degenerate complex Monge-Ampère equations. First steps in this direction
are [BBGZ09] and [BBEGZ11]. The former combines a variational approach
with the finite energy formalism of [GZ07, BEGZ10] to give a new perspective
on the classical results of Ding-Tian [Tian]; the latter pushes this approach
further and studies the convergence of the normalized Kähler-Ricci flow, gen-
eralizing a deep result of Perelman-Tian-Zhu [TZ07].

These lectures serve as an introduction to those recent works [BBGZ09,
BBEGZ11]. We survey the theory of Kähler-Einstein metrics/currents in
Lecture 1, explaining their equivalent formulation in terms of degenerate
complex Monge-Ampère equations. We explain the variational approach to
solving the latter in Lecture 2 and apply these results in Lecture 3 to show
how the Kähler-Ricci flow can be used to detect a Kähler-Einstein current.

Acknowledgements. We thank the organizers for their invitation, espe-
cially Claudio Arezzo for his warm encouragements.
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Lecture 1

Singular Kähler-Einstein currents

1.1 The Kähler-Einstein equation

1.1.1 The Calabi conjecture

Let X be an n-dimensional compact Kähler manifold and fix ω an arbitrary
Kähler form. If we write locally

ω =
∑

ωαβ
i

π
dzα ∧ dzβ,

then the Ricci form of ω is

Ric(ω) := −
∑ ∂2 log (detωpq)

∂zα∂zβ

i

π
dzα ∧ dzβ.

Observe that Ric(ω) is a closed (1, 1)-form on X such that for any other
Kähler form ω′ on X, the following holds globally:

Ric(ω′) = Ric(ω)− ddc [logω′n/ωn] .

Here d = ∂ + ∂ and dc = (∂ − ∂)/2iπ are both real operators.
In particular Ric(ω′) and Ric(ω) represent the same cohomology class,

which turns out to be c1(X). Conversely, given η a closed differential form
representing c1(X), Calabi asked in [Cal57] whether one could find a Kähler
form ω such that

Ric(ω) = η.

This problem, known as the Calabi conjecture, remained open for two decades,
until Yau [Yau78] solved it positively.
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1.1.2 The associated complex Monge-Ampère equation

The Calabi conjecture reduces to solving a complex Monge-Ampère equation
as we now explain. Fix α ∈ H1,1(X,R) a Kähler class. Fix η ∈ c1(X) and ω
a Kähler form in α. Since Ric(ω) also represents c1(X), it follows from the
∂∂-lemma that there exists h ∈ C∞(X,R) such that

Ric(ω) = η + ddch.

We now seek for ωφ := ω+ddcφ a new Kähler form in α such that Ric(ωφ) =
η. Since

Ric(ωφ) = Ric(ω)− ddc log
(
(ω + ddcφ)n

ωn

)
,

the equation Ric(ωφ) = η is thus equivalent to

ddc
{
h− log

(
(ω + ddcφ)n

ωn

)}
= 0.

The function inside the brackets is pluriharmonic hence constant since X is
compact: initially shifting h by a constant, our problem is thus equivalent to
solving the complex Monge-Ampère equation

(CY ) (ω + ddcφ)n = ehωn.

Note that h necessarily satisfies the normalizing condition∫
X

ehωn =

∫
X

ωn = Vα.

Theorem 1.1.1 (Yau 78). The equation (CY) admits a solution φ ∈ C∞(X,R)
such that ωφ := ω + ddcφ is a Kähler form.

The solution is unique, up to an additive constant, as was shown by Calabi.

1.1.3 The Kähler-Einstein equation

The following metrics are the main objects of interest for us in this course:

Definition 1.1.2. A Kähler metric ω is Kähler-Einstein if there exists λ ∈ R
such that

Ric(ω) = λω.
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The existence of such a metric requires c1(X) to have a definite sign,
since c1(X) ∈ R{ω}. This is always satisfied in dimension n = 1, but not in
dimension 2: in the simple case where X = S1 × S2 is the product of two
compact Riemann surfaces, then c1(X) is proportional to a Kähler class if
and only if S1 and S2 are of the same type.

Note that Ric(εω) = Ric(ω) for any ε > 0, hence there are essentially
three cases to be considered, λ ∈ {−1, 0,+1}.

Fix λ ∈ R such that λ{ω} = c1(X) and h ∈ C∞(X,R) such that

Ric(ω) = λω + ddch.

We now seek for a Kähler form ωφ := ω + ddcφ such that Ric(ωφ) = λωφ.
Since

Ric(ωφ) = Ric(ω)− ddc log
(
(ω + ddcφ)n

ωn

)
,

the equation Ric(ωφ) = λωφ is thus equivalent to

ddc
{
h− λφ− log

(
(ω + ddcφ)n

ωn

)}
= 0.

The function inside brackets is pluriharmonic hence constant. Shifting h by
a constant, our problem is thus equivalent to solving the complex Monge-
Ampère equation
(MA)λ (ω + ddcφ)n = e−λφ+hωn.

This contains the Calabi conjecture as a particular case.

1.2 MMP and singular K-E metrics
Let X be a manifold of general type, i.e. a compact Kähler manifold whose
canonical bundle KX is big: this means that there are asymptotically "many"
pluricanonical sections (so many that one can birationally embed X into a
complex projective space), or, equivalently, that one can find a positive sin-
gular current T which dominates a Kähler form and represents c1(KX). This
is the "right" higher dimensional analogue of hyperbolic Riemann surfaces.

It has been shown recently by Birkar-Cascini-Hacon-McKernan [BCHM10]
that the canonical ring

RX =
⊕
k∈N

H0(X,Kk
X)
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is finitely generated, hence Xcan = Proj(RX) the canonical model associated
to X has only canonical singularities and ample canonical bundle

KXcan > 0.

It is natural to wonder whether there is a unique Kähler-Einstein metric
on the regular part of Xcan, generalizing the classical situation when KX is
ample (in which case X = Xcan).

The Minimal Model Program (MMP for short, or Mori program) stud-
ies more generally the problem of classifying higher dimensional algebraic
manifolds up to birational equivalence. While the classification of algebraic
surfaces (complex dimension two !) has been understood for decades, the
situation is incredibly more complicated in (complex) dimension ≥ 3.

It has been realized long ago that one has to enlarge the picture and
consider mildly singular varieties. The purpose of this section is to define the
corresponding singularities and Kähler-Einstein equations, and to explain
how these can be interpreted in terms of degenerate complex Monge-Ampère
equations. For more information on the MMP, we refer the reader to [KM].

1.2.1 Canonical and log terminal singularities

The complex analytic varieties X we are considering are normal, in particular
their singular set Xsing is a complex subvariety of complex codimension ≥ 2.
We let Xreg denote the set of smooth points.

Recall that a normal variety X is Q-Gorenstein if its canonical divisor
KX exists as a Q-line bundle, which means that there exists r ∈ N and a line
bundle L on X such that L|Xreg = rKXreg .

Let X be a Q-Gorenstein variety and choose a log resolution of X, i.e. a
projective birational morphism π : X ′ → X which is an isomorphism over
Xreg and whose exceptional divisor E =

∑
iEi has simple normal crossings.

There is a unique collection of rational numbers ai, called the discrepancies
of X (with respect to the chosen log resolution) such that

KX′ ∼Q π
∗KX +

∑
i

aiEi.

Definition 1.2.1. By definition, X has log terminal singularities (resp.
canonical singularities) if ai > −1 (resp. ai ≥ 0) for all i.

This definition is independent of the choice of a log resolution; this will
be a consequence of the following analytic interpretation of log terminal sin-
gularities as a finite volume condition.
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After replacing X with a small open set, we may choose a non-zero section
σ of the line bundle rKX for some r ∈ N∗. Restricting toXreg we get a smooth
positive volume form by setting

µσ :=
(
irn

2

σ ∧ σ̄
)1/r

(1.2.1)

Such measures are called adapted measures in [EGZ09]. The key fact is:

Lemma 1.2.2. Let zi be a local equation of Ei, defined on a neighborhood
U ⊂ X ′ of a given point of E. Then

(π∗µσ)U\E =
∏
i

|zi|2aidV

for some smooth volume form dV on U .

As a consequence we see that a Q-Gorenstein variety X has log terminal
singularities iff every adapted measure µσ has locally finite mass near points
of Xsing. The construction of adapted measures can be globalized as follows:
let ϕ be a smooth metric of the Q-line bundle KX . Then

µϕ :=

(
irn

2
σ ∧ σ̄
|σ|rϕ

)1/r

(1.2.2)

becomes independent of the choice of a local non-zero section σ of rKX , hence
defines a smooth positive volume form on Xreg, which has locally finite mass
near points of Xsing iff X is log terminal.

Example 1.2.3. Let S be a normal algebraic surface. The following are
equivalent:

1. S has only canonical singularities.

2. S is locally isomorphic to C2/G, G ⊂ SL2(C) a finite subgroup.

3. The exceptional divisors of the minimal resolution πmin of S, have simple
normal crossings, their components are (-2) smooth rational curves, their
incidence graphs are of type A-D-E (Du Val singularities).

The log terminal surface singularities are precisely the singularities of the
form X = C2/G, G ⊂ GL2(C) a finite subgroup.

Example 1.2.4. In higher dimension, quotient singularities are still log ter-
minal. Fix n > 0 and let H ⊂ CPn+1 be a smooth degree d hypersurface.
The affine cone over H has only canonical singularities iff d ≤ n + 1. More
generally the hypersurface singularities of type A−D − E are canonical.

In particular, the ordinary double point x2 + y2 + z2 + t2 = 0 has only
canonical singularities but it is not a quotient singularity.
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1.2.2 Degenerate complex Monge-Ampère equations

Singular Ricci curvature

Let X be a Gorenstein compact Kähler variety. Let ωX be a Kähler form on
X. Its Ricci curvature form is defined as

Ric(ωX) := −ddcϕ = ddc log h,

where h = e−ϕ is a smooth metric of KX such that ωnX = µϕ. We let the
reader check that this is equivalent to the previous formulation when X is
smooth.

Definition 1.2.5. A Kähler metric ωX on a Gorenstein compact Kähler
variety X is called a singular Kähler-Einstein metric if

Ric(ωX) = λωX

for some λ ∈ R.

As in the smooth case, these can only exist when c1(X) has a definite sign.

Resolving the singularities

The Kähler-Einstein problems boils down again to solving a complex Monge-
Ampère equation,

(ωX + ddcψ)n = e−λψµϕ

It is more convenient to work in a desingularization: if π : X ′ → X is a log
resolution of X, the above Monge-Ampère equation transfers on X ′ as

(ω + ddcφ)n = e−λφµ,

where
ω = π∗ωX

is semi-positive and big, which simply means here that
∫
X
ωn > 0, and

µ = π∗µϕ = fdV

is absolutely continuous, smooth above Xreg, with density in Lp for some
p > 1 (it may have zeroes and/or poles above Xsing, depending on the type
of singularities). Note that φ is ω-psh if and only if ψ is ωX-psh, as follows
from Zariski’s main theorem (the fibers are connected).

These equations are degenerate in two ways: not only is the right hand
side measure degenerate, but the reference form ω (or rather its cohomology
class) also lacks positivity: this is a source of difficulty, in particular for the
regularity theory.

We explain in the sequel how one can try and solve such degenerate
complex Monge-Ampère equations.
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1.3 Known results

1.3.1 Non-positive curvature

When X is a manifold with c1(X) < 0 (i.e. KX is ample), it was shown
independently by Aubin [Aub78] and Yau [Yau78] that X admits a unique
Kähler-Einstein metric. Yau [Yau78] also settled positively the case of man-
ifolds with c1(X) = 0, since then the latter have been called Calabi-Yau
manifolds.

These results have been extended to the case of varieties with log terminal
singularities in [Tsu88, Sug90, EGZ09, TZha06]:

Theorem 1.3.1. Let X be a projective variety with log terminal singularities
such that KX is ample. Then KX contains a unique Kähler-Einstein current
with negative Ricci curvature, which is a smooth Kähler form on Xreg and
has globally bounded potentials.

It follows therefore from [BCHM10] that a manifold of general type admits
a canonical current of negative Ricci curvature. This result has been proved
again in [BEGZ10] independently of [BCHM10].

Theorem 1.3.2. Let X be a compact Kähler variety with log terminal singu-
larities and KX ∼ 0. Then each Kähler cohomology class contains a unique
Ricci flat Kähler-Einstein current, which is a smooth Kähler form on Xreg

and has globally bounded potentials.

It is an important issue to study the behavior of these Kähler-Einstein
currents near the singular points of X, a largely open problem.

Tosatti has observed in [Tos09] that the resulting metrics in Xreg are not
complete. It has been proved in [EGZ11] that the potentials of these currents
are actually globally continuous (see also [DZ10]). The case of orbifolds (quo-
tient singularities) shows that these potentials cannot be more than globally
Hölder continuous.

1.3.2 Positive curvature

We let now X be a Q-Fano variety with log terminal singularity; the Kähler-
Einstein problem is then far more delicate.

1.3.2.1 Curves

If dimCX = 1, X is the Riemann sphere CP1 and (a suitable multiple of)
the Fubini-Study Kähler form is a Kähler-Einstein metric.

10



1.3.2.2 Surfaces

When dimCX = 2 it is not always possible to solve (MA)1. In this case X
is a DelPezzo surface, biholomorphic either to CP1×CP1 or CP2 which both
admit the (product) Fubini-Study metric as a Kähler-Einstein metric, or else
to Xr, the blow up of CP2 at r points in general position, 1 ≤ r ≤ 8.

Various authors (notably Yau [TY87], Siu [Siu88], Tian [Tian87], Nadel
[Nad90]) studied the Kähler-Einstein problem on DelPezzo surfaces in the
eighties. The final and difficult step was made by Tian [Tian90] who proved
the following:

Theorem 1.3.3. The DelPezzo surface Xr admits a Kähler-Einstein metric
if and only if r ̸= 1, 2.

The interested reader will find an up-to-date proof of this result in [Tos12].
He will also find some results in the non-smooth (orbifold) case in [GK07].

1.3.2.3 Higher dimension

The situation becomes much more difficult and largely open in higher di-
mension, despite many important works (it would be a difficult and long
task to give a list of references, we rather refer the reader to the survey notes
[Tian, PS10]).

There is a finite but long list (105 families) of Fano threefolds. It is un-
known, for most of them, whether they admit or not a Kähler-Einstein met-
ric. Among them, the Mukai-Umemura manifold is particularly interesting:
this manifold admits a Kähler-Einstein metric as was shown by Donaldson
[Don08], and there are arbitrary small deformations of it which do (resp.
do not) admit a Kähler-Einstein metric as shown by Donaldson (resp. Tian
[Tian97]).

There are even more families in dimension n ≥ 4. Those which are toric
admit a Kähler-Einstein metric if and only if the Futaki invariant vanishes
(see [WZ04]), the non-toric case is essentially open and has motivated the
conjecture of Yau-Tian-Donaldson (see [PS10] for a recent account on
this leading conjecture which will not be discussed in these notes).

1.3.2.4 Fano varieties

Ding and Tian have developed in [Ding88, DT92] a variational interpretation
of the Kähler-Einstein problem which allowed Tian to produce in [Tian97] an
analytic characterization of the existence of these objects on Fano manifolds.

We explain this characterization hereafter and we will generalize it to the
context of Q-Fano varieties in Lecture 2, following [BBGZ09, BBEGZ11]:
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Theorem 1.3.4. Let X be Q-Fano variety whose Mabuchi functional is
proper. Then there exists a unique Kähler-Einstein current of positive Ricci
curvature. It is a smooth Kähler form on Xreg and has continuous potentials.

The Mabuchi functional was initially defined and studied by Mabuchi
[Mab86] and Bando [Ban87]. We will recall its definition in Lecture 3.

Bando and Mabuchi have shown in [BM87] that any two Kähler-Einstein
metrics on a Fano manifold can be connected by the holomorphic flow of
a holomorphic vector field. This result has been generalized recently by
Berndtsson [Bern11].

In the sequel we’ll make the simplifying assumption that X does not
admit non-zero holomorphic vector field, so that it admits a unique Kähler-
Einstein metric, if any. Let us stress that the properness of the Mabuchi
functional implies that there is no non-zero holomorphic vector field.

1.4 How to solve complex Monge-Ampère equa-
tions ?

A naive idea to solve degenerate complex Monge-Ampère equations of the
type, say MA(φ) = µ, is to treat first the case when µ is a linear combination
of Dirac masses, and then proceed by approximation.

This works quite well for the real Monge-Ampère equation (see [RT77] or
[Gut01, Theorem 1.6.2]), but fails miserably in the complex case: one does
not even know, in general, how to treat the case of a single Dirac mass [CG09]
! The difficulty lies in the lack of regularity of quasi-plurisubharmonic func-
tions (qpsh for short). In particular the complex Monge-Ampère operator
is not well defined for all qpsh functions, and it is not continuous for the
L1-topology (the natural topology in this context).

We therefore present different methods, starting with the historical con-
tinuity method advocated by Calabi [Cal57] to solve the Calabi conjecture,
which was successfully completed by Yau [Yau78].

1.4.1 Continuity method

The continuity method is a classical tool to try and solve non linear PDE’s.
It consists in deforming the PDE of interest into a simpler one for which one
already knows the existence of a solution.

For the Calabi conjecture, one can use the following path,

(CY )t, (ω + ddcφt)
n =

[
teh + (1− t)

]
ωn,
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where 0 ≤ t ≤ 1 and φt ∈ PSH(X,ω) is normalized so that
∫
X
φt ω

n = 0 (to
guarantee uniqueness). The equation of interest corresponds to t = 1 while
(CY )0 admits the obvious (and unique) solution φ0 ≡ 0.

The goal is then to show that the set S ⊂ [0, 1] of parameters for which
there is a (smooth) solution is both open and closed in [0, 1]: since [0, 1] is
connected and 0 ∈ S, it will then follow that S = [0, 1] hence 1 ∈ S.

The openness follows by linearizing the equation (this involves the Laplace
operator associated to ωt = ω+ddcφt) and using the inverse function theorem.
One then needs to establish various a priori estimates to show that S is closed.
The reader will find details e.g. in [Tian].

The situation is a bit more delicate when ω is merely semi-positive and
big (the Laplace operator ∆ω is for instance no longer invertible). One can
approximate ω by ω + εωX , where ωX is Kähler and ε↘ 0 decreases to 0+.

When the left hand side µ = fdV is also degenerate, one can regularize
it, use Yau’s solution to the Calabi conjecture and try and pass to the limit.
This is the approach used in [Kol98, GZ07, EGZ09].

When the reference cohomology class is merely big (see [BEGZ10]), it is
not clear how to smoothly deform the equation unless the class is also nef.
The regularity of solutions is an interesting open problem in this general
context.

It is thus important to develop alternative soft methods to construct weak
solutions to degenerate complex Monge-Ampère equations, as we explain in
the forthcoming sections. Techniques from pluripotential theory (e.g. [Kol98,
Ceg98, GZ05]) play then a central role. A recent work by Szekelehydi-Tosatti
[SzTo09] shows how the Kähler-Ricci flow can also be used to study the
regularity properties of weak solutions.

1.4.2 Variational approach

Given φ : X → R ∪ {−∞} an upper semi-continuous function, we say that
φ is ω-plurisubharmonic (ω-psh for short) if φ is locally given as the sum of
a smooth and a plurisubharmonic function, and ω + ddcφ ≥ 0 in the weak
sense of currents. We let PSH(X,ω) denote the set of all ω-psh functions.

For φ ∈ PSH(X,ω) ∩ C∞(X), we set

E(φ) :=
1

(n+ 1)V

n∑
j=0

∫
X

φ(ω + ddcφ)j ∧ ωn−j.

We let the reader check, by using Stokes formula, that

d

dt
E(φ+ tv)|t=0 =

∫
X

vMA(φ), where MA(φ) := (ω + ddcφ)n/V.
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The functional E is thus a primitive of the complex Monge-Ampère operator,
in particular φ 7→ E(φ) is non-decreasing since E ′ =MA ≥ 0.

Definition 1.4.1. We assume here that X is Fano manifold, ω ∈ c1(X) and
h ∈ C∞(X,R) is such that Ric(ω) = ω − ddch. The Ding functional is

F(φ) := E(φ) + log

[∫
X

e−φ−h
ωn

V

]
,

where V =
∫
X
ωn = volω(X).

The Euler-Lagrange equation of the functional F is obtained by checking
that φ is a critical point for F if and only if it satisfies

MA(φ) =
e−φ−hωn∫
X
e−φ−hωn

so that ω + ddcφ is Kähler-Einstein.
Observe that F(φ + C) = F(φ), for all C ∈ R, thus F actually is a

functional acting on the metrics ωφ := ω + ddcφ. It is natural to try and
extremize the functional F . This motivates the following:

Definition 1.4.2. We say that F is proper if F(φj)→ −∞ whenever φj ∈
PSH(X,ω) ∩ C∞(X) is such that E(φj)→ −∞ and

∫
X
φj ω

n = 0.

The importance of this notion was made clear in a series of works by Ding
and Tian in the 90’s, culminating with the following deep result of [Tian97]:

Theorem 1.4.3. Let X be a Fano manifold with no holomorphic vector field.
There exists a Kähler-Einstein metric if and only if F is proper.

A key point in the proof is a Moser-Trudinger type inequality which has
been obtained in an optimal form by Phong-Song-Sturm-Weinkove [PSSW08].
Establishing fine Moser-Trudinger inequalities in a singular context is a chal-
lenging open problem (see [BerBer11] for some results in this direction).

Remark 1.4.4. It turns out that F is proper if and only if so is the Mabuchi
functional M, as we shall see later on.

We will explain a partial generalization of this result in Lecture 2 following
[BBGZ09]. It has interesting applications, such as the study of the long term
behavior of the Kähler-Ricci flow, as we shall explain in Lecture 3.
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1.4.3 The Kähler-Ricci flow approach

The Ricci flow is the parabolic evolution equation

(KRF )
∂ωt
∂t

= −Ric(ωt) with initial data ω0.

When ω0 is a Kähler form, so is ωt, for all t > 0, hence it is called the Kähler-
Ricci flow (KRF for short). We say here just a few words on the behavior
of the KRF on Fano manifolds. Much more information are to be found in
Lecture 3.

Long time existence

The short time existence is guaranteed by standard parabolic theory: in the
Kähler context, this translates into a parabolic scalar equation as we explain
below.

It is more convenient to analyze the long time existence by considering the
normalized Kähler-Ricci flow. When X has non-negative Kodaira dimension
kod(X) ≥ 0, this has been extensively studied by [Cao85, Tsu88, TZha06,
CL06, ST07, ST08, ST09]. We focus here on the Fano case c1(X) > 0 (in
particular kod(X) = −∞). The right normalization is then

(NKRF )
∂ωt
∂t

= −Ric(ωt) + ωt.

One passes from (KRF) to (NKRF) by changing ω(t) in etω(1− e−t). At the
level of cohomology classes,

d{ωt}
dt

= −c1(X) + {ωt} ∈ H1,1(X,R)

therefore {ωt} ≡ c1(X) is constant if we start from ω0 ∈ c1(X). This justifies
the name (normalized KRF) since in this case

volωt(X) = volω0(X) = c1(X)n

is constant. Note that the volume blows up exponentially fast if we rather
start from initial data such that {ω0} > c1(X). One has [Cao85]:

Theorem 1.4.5. Let X be a Fano manifold and ω0 ∈ c1(X) a Kähler form.
Then the normalized Kähler-Ricci flow exists for all t > 0.

The main issue is then whether (ωt) converges as t → +∞. Hopefully
∂ωt/∂t→ 0 and ωt → ωKE such that Ric(ωKE) = ωKE.

Perelman established in 2003 (seminar talk at MIT, see [SeT08]) uniform
estimates for the Ricci deviation along the NKRF, which allowed to prove
the following (see [TZ07, PSS07]):
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Theorem 1.4.6. Let X be a Fano manifold and ω0 ∈ c1(X) an arbitrary
Kähler form. If F is proper, then the normalized Kähler-Ricci flow (ωt)
converges, as t→ +∞, towards the unique Kähler-Einstein metric ωKE.

The Yau-Tian-Donaldson conjecture aims at giving algebro-geometric in-
terpretation of the analytic properness condition. We refer the reader to
[PS10, Don10] and the reference therein.

The situation is much more delicate in the presence of holomorphic vector
fields. The convergence of the (NKRF) for instance is an open problem on
the projective space CPn, n ≥ 2 (for n = 1, this is already non-trivial and
was settled by Hamilton [?] and Chow [Chow91]).

1.4.4 Viscosity techniques

A standard PDE approach to second-order degenerate elliptic equations is
the method of viscosity solutions, see [CIL] for a survey. This method is local
in nature - and solves existence and unicity problems for weak solutions very
efficiently.

Whereas the viscosity theory for real Monge-Ampère equations has been
developed by P.L. Lions and others (see e.g.[IL]), the complex case hasn’t
been studied until very recently. There is a viscosity approach to the Dirich-
let problem for the complex Monge-Ampère equation on a smooth hypercon-
vex domain in a Stein manifold in [HL]. This recent article however does not
prove any new results for complex Monge-Ampère equations since this case
serves there as a motivation to develop a deep generalization of plurisub-
harmonic functions to Riemannian manifolds with some special geometric
structure (e.g. exceptional holonomy group).

There has been some recent interest in adapting viscosity methods to solve
degenerate elliptic equations on compact or complete Riemannian manifolds
[AFS]. This theory can be applied to complex Monge-Ampère equations only
in very restricted cases since it requires the Riemann curvature tensor to be
non-negative.

In [EGZ11] we develop the viscosity approach for complex Monge-Ampère
equations on compact complex manifolds. Combining pluripotential and vis-
cosity techniques, we are able to show the following:

Theorem 1.4.7. Let X be a compact complex manifold in the Fujiki class.
Let v be a semi-positive probability measure with Lp-density, p > 1, and fix
ω ≥ 0 a smooth closed real semipositive (1, 1)-form such that

∫
X
ωn = 1. The

unique locally bounded ω-psh function on X normalized by
∫
X
φ = 0 such

that its Monge-Ampère measure satisfies (ω + ddcφ)nBT = v is continuous.
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A proof of the continuity when X is projective under technical assump-
tions has been obtained in [DZ10]. Some advantages of our method are:

• it gives an alternative proof of Kolodziej’s C0-Yau theorem which does
not depend on [Yau78].

• it allows us to easily produce the unique negatively curved singular
Kähler-Einstein metric in the canonical class of a projective manifold of
general type, a result obtained first in [EGZ09] by assuming [BCHM10],
then in [BEGZ10] by means of asymptotic Zariski decompositions.

An important part of [EGZ11] consists in developing a dictionary between
the viscosity notions and the pluripotential ones. The viscosity subsolutions
turn out to be coinciding with the pluripotential ones, however the concept
of viscosity supersolution has no clear analogue in the pluripotential world.
Finding the right analogue (perhaps using the notion of quasi-psh envelope),
is an interesting open question.
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Lecture 2

Variational approach to complex
Monge-Ampère equations

Our goal in this second lecture is to explain a variational approach to solve
degenerate complex Monge-Ampère equations, as proposed in [BBGZ09].

The context is the following: we work on a compact n-dimensional Kähler
manifold (X,ωX) and fix ω ≥ 0 a smooth closed semi-positive (1, 1) form
which is big, i.e. such that

V := Volω(X) :=

∫
X

ωn > 0.

A prototype (see Lecture 1) is ω = π∗ωV , the pull-back of a Kähler form
ωV on a mildly singular variety V , where π : X → V is a resolution of the
singularities of V .

In connection with the Kähler-Einstein equation, we are interested in
solving degenerate complex Monge-Ampère equations of the form

(MA)λ MA(φ) := eλφµ,

where λ ∈ R is a real parameter, φ is ω-plurisubharmonic,

MA(φ) :=
1

V
(ω + ddcφ)n

is the normalized complex Monge-Ampère operator, and

µ = fωnX

is a probability measure, absolutely continuous with respect to the Lebesgue
measure ωnX , with density f ∈ Lp, p > 1. We set

Fλ(φ) := E(φ) +
1

λ
log

[∫
X

e−λφdµ

]
,
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where

E(φ) =
1

(n+ 1)V

n∑
j=0

∫
X

φ(ω + ddcφ)j ∧ ωn−j,

and
F0(φ) = lim

λ→0
Fλ(φ) := E(φ)−

∫
X

φdµ.

Our goal is to explain the proof of the following result [BBGZ09]:

Theorem. If Fλ is proper, then there exists φ ∈ E1(X,ω) an ω-psh function
with finite energy which maximizes Fλ. Any maximizer of Fλ with finite
energy is a critical point of Fλ hence solves (MA)λ.

This result is proved in [BBGZ09] in the more general setting of big
cohomology classes. This requires to introduce the pluripotential theory in
this context which goes beyond the scope of these lecture notes. We refer
the interested reader to [BEGZ10] for the basis of this theory.

We define the properness condition and the finite energy classes later on.
It turns out that Fλ is always proper when λ ≤ 0, or when 0 < λ << 1 is
small enough. However Fλ is not necessarily proper when say λ = +1, and
it is known that one cannot always solve (MA)1 (see Lecture 1).

We shall say just a few words about the regularity issue: while there are
some interesting open problems, it turns out that the solvability of (MA)λ in
the finite energy classes E1(X,ω) is equivalent to its solvability in the smooth
category (whenever µ is smooth), as follows from the work of Kolodziej
[Kol98] and Szekelyhidi-Tosatti in [SzTo09].

We will also briefly discuss the uniqueness issue in the last section.

2.1 Preliminary results

2.1.1 Quasi-plurisubharmonic functions

Recall that a function is quasi-plurisubharmonic if it is locally given as the
sum of a smooth and a psh function. In particular quasi-psh functions are
upper semi-continuous and L1-integrable. Quasi-psh functions are actually
in Lp for all p ≥ 1, and the induced topologies are all equivalent. A much
stronger integrability property actually holds: Skoda’s integrability theorem
[Sko72] asserts indeed that e−εφ ∈ L1(X) if 0 < ε is smaller than 2/ν(φ),
where ν(φ) denotes the maximal logarithmic singularity (Lelong number) of
φ on X.

Quasi-plurisubharmonic functions have gradient in Lr for all r < 2, but
not in L2 as shown by the local model log |z1|.
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We let PSH(X,ω) denote the set of all ω-plurisubharmonic functions.
These are quasi-psh functions φ : X → R ∪ {−∞} such that

ω + ddcφ ≥ 0

in the weak sense of currents. The set PSH(X,ω) is a closed subset of L1(X),
when endowed with the L1-topology.

We let the reader check that the following maximal Lelong number

ν({ω}) := sup{ν(φ, x) |x ∈ X and φ ∈ PSH(X,ω)} < +∞

is finite and only depends on the cohomology class of ω. More generally, if
P is a compact subfamily of PSH(X,ω), we set

ν(P ) := sup{ν(φ, x) |x ∈ X and φ ∈ P} ≤ ν({ω}).

The uniform version of Skoda’s integrability theorem is quite useful [Zer01]:

Theorem 2.1.1. Let P ⊂ PSH(X,ω) be a compact family. If A < 2/ν(P ),
then

sup

{∫
X

e−AφdV | φ ∈ P and sup
X
φ = 0

}
< +∞.

2.1.2 The Bedford-Taylor theory

Bedford and Taylor have observed in [BT82] that one can define the complex
Monge-Ampère operator

MA(φ) :=
1

V
(ω + ddcφ)n

for all bounded ω-psh function: they showed that whenever φj is a sequence of
smooth ω-psh functions locally decreasing to φ, then the smooth probability
measures MA(φj) converge, in the weak sense of Radon measures, towards
a unique probability measure that we denote by MA(φ).

Example 2.1.2. There are only few examples for which one can explicitly
compute this Monge-Ampère measure. When X = CPn is the complex pro-
jective space equipped with the Fubini-Study Kähler form, and

φ[z] = max
0≤i≤n

log |zi| −
1

2
log

[
n∑
i=0

|zi|2
]
,

the reader will check that V = 1 and MA(φ) is the normalized Lebesgue
measure on the torus

T = {[z] ∈ CPn | |z0| = · · · = |zn|}.
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At the heart of Bedford-Taylor’s theory lies the following maximum prin-
ciple: if u, v are bounded ω-plurisubharmonic functions, then

(MP ) 1{v<u}MA(max(u, v)) = 1{v<u}MA(u).

This equality is elementary when u is continuous, as the set {v < u} is
then a Borel open subset of X. When u is merely bounded, this set is only
open in the plurifine topology. Since Monge-Ampère measures of bounded
qpsh functions do not charge pluripolar sets (by the so called Chern-Levine-
Nirenberg inequalities), and since u is nevertheless quasi-continuous, this
gives a heuristic justification for (MP ).

We now show how (MP ) easily implies the so called comparison principle:

Proposition 2.1.3. Let u, v be bounded ω-plurisubharmonic functions. Then∫
{v<u}

MA(u) ≤
∫
{v<u}

MA(v).

Proof. It follows from (MP ) that∫
{v<u}

MA(u) =

∫
{v<u}

MA(max(u, v)) = 1−
∫
{v≥u}

MA(max(u, v))

≤
∫
X

MA(v)−
∫
{v>u}

MA(max(u, v)) =

∫
{v≤u}

MA(v).

Replacing u bu u−ε and letting ε decrease to 0 yields the desired result.

2.1.3 Envelopes

Given a bounded u.s.c. function u : X → R, one can consider its ω-psh
envelope

P (u)(x) := sup{v(x) | v ∈ PSH(X,ω) and v ≤ u}.

The reader will check that P (u) is ω-psh (in particular it is u.s.c.) and
bounded. It is the largest ω-psh function lying below u.

Proposition 2.1.4. The Monge-Ampère measure

MA(P (u)) = V −1(ω + ddcP (u))n

is supported on the contact set {P (u) = u}.
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The proof uses Choquet’s lemma (which insures that the regularized
supremum can be realized through an increasing sequence), the continuity
property of the Monge-Ampère operator along increasing sequences, and a
balayage procedure: on each small "ball" in {P (u) < u}, one can solve a ho-
mogeneous Dirichlet problem and show, by using the comparison principle,
that the resulting sequence still increases towards P (u). The details are left
as an exercise to the reader.

Let us stress, for later use, that the same result holds when the function
P (u) merely has finite energy (i.e. when u and P (u) are not necessarily
bounded but not too singular), a notion that we define in the next section.

2.2 Finite energy classes

2.2.1 The class E(X,ω)
Given φ ∈ PSH(X,ω), we consider its canonical approximants

φj := max(φ,−j) ∈ PSH(X,ω) ∩ L∞(X).

It follows from Bedford-Taylor theory that the measures MA(φj) are well
defined probability measures. Since the φj’s are decreasing, it is natural
to expect that these measures converge (in the weak sense). The following
strong monotonicity property holds:

Lemma 2.2.1. The sequence µj := 1{φ>−j}MA(φj) is an increasing se-
quence of Borel measures.

Proof. It follows from the maximum principle that

1{φj>−k}[ω + ddcφj]
n = 1{φj>−k}[ω + ddcmax(φj,−k)]n.

Now if j ≥ k, then (φj > −k) = (φ > −k) and max(φj,−k) = φk, thus

1{φ>−k}[ω + ddcφj]
n = 1{φ>−k}[ω + ddcφk]

n. (2.2.1)

Observe also that (φ > −k) ⊂ (φ > −j), therefore

j ≥ k −→ 1{φ>−j}[ω + ddcφj]
n ≥ 1{φ>−k}[ω + ddcφk]

n,

in the weak sense of Borel measures.

Since the µj’s all have total mass bounded from above by 1 (the total
mass of the measure MA(φj)), we can consider

µφ := lim
j→+∞

µj,

which is a positive Borel measure on X, with total mass ≤ 1.
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Definition 2.2.2. We set

E(X,ω) := {φ ∈ PSH(X,ω) | µφ(X) = 1} .

For φ ∈ E(X,ω), we set MA(φ) := µφ.

Of course every bounded ω-psh function belongs to E(X,ω) with µφ =
MA(φ), since in this case {φ > −j} = X for j large enough, hence

µφ ≡ µj =MA(φj) =MA(φ).

The class E(X,ω) also contains many ω-psh functions which are unbounded.
When X is a compact Riemann surface (n = dimCX = 1), the set E(X,ω)
is the set of ω-sh functions whose Laplacian does not charge polar sets.

Remark 2.2.3. The functions which belong to the class E(X,ω), although
usually unbounded, have relatively mild singularities. In particular they have
zero Lelong numbers.

Let us stress that the convergence of µj towards µφ holds in the (strong)
sense of Borel measures, i.e. for all Borel sets B,

µφ(B) := lim
j→+∞

µj(B).

In particular when B = P is a pluripolar set, we obtain µj(P ) = 0, hence

µφ(P ) = 0 for all pluripolar sets P.

Conversely, one can show [GZ07, BEGZ10] that a probability measure µ
equals µφ for some φ ∈ E(X,ω) whenever µ does not charge pluripolar sets
(one then says that µ is non-pluripolar).

We shall use without proving it the following important fact:

Theorem 2.2.4. The complex Monge-Ampère operator φ 7→MA(φ) is well
defined on the class E(X,ω).

2.2.2 The class E1(X,ω)
The following class is going to play a central role:

Definition 2.2.5. We let E1(X,ω) denote the class of those functions φ ∈
E(X,ω) such that φ ∈ L1(MA(φ)).
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Set

E(φ) =
1

(n+ 1)V

n∑
j=0

∫
X

φ(ω + ddcφ)j ∧ ωn−j.

One can show, by using the next proposition that

φ ∈ E1(X,ω)←→ E(φ) > −∞,

where E(φ) can be defined first for bounded functions and then setting

E(φ) := inf{E(ψ) |ψ ∈ PSH(X,ω) ∩ L∞(X) and ψ ≥ φ}.

Proposition 2.2.6. The functional E is a primitive of the complex Monge-
Ampère operator, namely whenever φ+ tv belongs to E1(X,ω),

dE(φ+ tv)

dt |t=0
=

∫
X

vMA(φ).

The functional E is concave increasing, satisfies E(φ+ c) = E(φ)+ c for
all c ∈ R, φ ∈ E1(X,ω) , and the cocycle condition

E(φ)− E(ψ) = 1

(n+ 1)V

n∑
j=0

∫
X

(φ− ψ)(ω + ddcφ)j ∧ (ω + ddcψ)n−j.

for all φ, ψ ∈ E1(X,ω).

Proof. By using the continuity property of the Monge-Ampère operators, it
suffices to treat the case of bounded functions. We first justify that E ′ =MA.
Setting φt = φ+ tv, we compute

(n+ 1)V
dE(φt)

dt
=

n∑
j=0

∫
X

v (ω + ddcφt)
j ∧ ωn−j

+
n∑
j=0

j

∫
X

φt dd
cv ∧ (ω + ddcφt)

j−1 ∧ ωn−j.

Integrating by part in the last integral yields∫
X

φt dd
cv∧ (ω+ddcφt)j−1∧ωn−j =

∫
X

v (ωφt−ω)∧ (ω+ddcφt)j−1∧ωn−j+1.

Rearranging the second sum yields a telescopic series and we end up with

(n+ 1)V
dE(φt)

dt
= (n+ 1)

∫
X

v (ω + ddcφt)
n,
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as claimed.
If we formally replace ω by ωψ and φ by φ− ψ in all these computations

(this amounts to changing the representative of the cohomology class {ω}),
we end up similarly with

g′(t) =
dG(φ+ tv)

dt |t=0
=

∫
X

v
(ωψ + ddc[φ− ψ])n

V
=

∫
X

vMA(φ),

where

G(φ) :=
1

(n+ 1)V

n∑
j=0

∫
X

(φ− ψ)(ω + ddcφ)j ∧ (ω + ddcψ)n−j.

For v = ψ − φ and e(t) = E(φ + tv), we therefore obtain e′ ≡ g′ and
e(0) = E(φ), e(1) = E(ψ), while g(0) = G(φ) and g(1) = G(ψ) = 0. This
yields the cocycle condition G(φ) = E(φ)− E(ψ).

The invariance under translations E(φ + c) = E(φ) + c is immediate,
it remains to show that E is concave (it is increasing as E ′ = MA is a
non-negative measure). Set again, for v = ψ − φ,

e(t) := E(φ+ tv) = E(tψ + (1− t)φ).

We have already shown that

e′(t) =

∫
X

vMA(tψ + (1− t)φ) = V −1

∫
X

v (tωψ + (1− t)ωφ)n .

Taking derivative again yields

e′′(t) =
n

V

∫
X

vddcv ∧ (tωψ + (1− t)ωφ)n−1 ≤ 0,

as follows from Stokes theorem.

Proposition 2.2.7. For all C > 0 the subsets

E1C(X,ω) := {φ ∈ E1(X,ω) |E(φ) ≥ −C and φ ≤ 0}

are compact and convex.

Proof. The convexity property easily follows from the concavity of E. We let
the reader check that E is upper semi-continuous, hence E1C(X,ω) is a closed
subset of the set

FC := {φ ∈ PSH(X,ω) | − C ≤ sup
X
φ ≤ 0}

which is easily seen to be compact.
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2.3 Solutions in E1(X,ω)

2.3.1 Euler-Lagrange equations

Given λ ∈ R, we consider the functional Fλ : E1(X,ω)→ R defined by

Fλ(φ) = E(φ) +
1

λ
log

[∫
X

e−λφdµ

]
.

Note that E(φ) is well defined for all functions φ ∈ E1(X,ω). The second
term is easily seen to be well defined when λ ≤ 0 (since ω-psh functions are
bounded from above on X), while its finiteness follows from Skoda’s integra-
bility theorem, Hölder’s inequality and the fact that functions in E1(X,ω)
have zero Lelong numbers when λ > 0.

Our first basic observation is that (MA)λ is the Euler-Lagrange equation
of the functional Fλ:

Lemma 2.3.1.

dFλ(φ+ tv)

dt |t=0
=

∫
X

vMA(φ)−
∫
X

v
e−λφdµ∫
X
e−λφdµ

.

Therefore if φ is a ω-plurisubharmonic critical point of Fλ, then φ+ c is
a solution of (MA)λ for an appropriate choice of c ∈ R.

It is understood here that e−λφµ∫
X e−λφdµ

= µ, when λ = 0 (there is no need to
change φ in φ+ c in this case).

Proof. We have already observed that

dE(φ+ tv)

dt |t=0
=

∫
X

vMA(φ)

while the second term comes from the derivative of the log term.
If φ is a ω-plurisubharmonic critical point of Fλ, the above derivative

vanishes for all test functions v ∈ C∞(X,R), therefore

MA(φ) =
e−λφµ∫
X
e−λφdµ

.

When λ = 0, this is thus a solution to (MA)0. When λ ̸= 0, we note that

φ̃ := φ+
1

λ
log

[∫
X

e−λφdµ

]
is a solution to (MA)λ.

26



Lemma 2.3.2. The functional Fλ : E1(X,ω) → R is invariant by transla-
tions and it is upper semi-continuous on each compact subset E1C(X,ω).

Proof. The invariance by translations is straightforward. Recall that φ 7→
E(φ) is upper semi-continuous (the class E1(X,ω) is endowed with the in-
duced L1-topology). We check the semi-continuity property separately for
each case λ > 0, λ = 0, λ > 0. We leave the cases λ ≤ 0 to the reader and
treat the most difficult one:

Case λ > 0. We can assume without loss of generality that λ = +1 (up
to rescaling ω) We need to check that

φ ∈ E1C(X,ω) 7→
∫
X

e−φdµ ∈ R

is upper semi-continuous. Here µ = fωn is absolutely continuous with respect
to Lebesgue measure, with density f ∈ Lp(ωn) for some p > 1. It follows from
Fatou’s lemma that φ ∈ E1(X,ω) 7→

∫
X
e−φdµ ∈ R is lower semi-continuous.

To establish an upper-semi continuity property we restrict ourselves to the
compact convex subset E1C(X,ω): let φj be a sequence in E1C(X,ω) converging
to φ; since all these functions have zero Lelong number, it follows from
Skoda’s uniform integrability theorem and Hölder inequality that∫

X

e−2(φj+φ)dµ =

∫
X

e−2(φj+φ)fdV ≤ ∥f∥Lp

(∫
X

e−2q(φj+φ)dV

)1/q

≤ C ′.

Now∣∣∣∣∫
X

e−φjdµ−
∫
X

e−φdµ

∣∣∣∣ ≤ ∫
X

|φj − φ|e−(φj+φ)dµ ≤ C ′||φj − φ||L2(µ),

as follows from Cauchy-Schwarz inequality and the elementary inequality∣∣ea − eb∣∣ ≤ |a− b| ea+b, for all a, b ≥ 0.

The conclusion follows since (φj) converges to φ in L2(µ).

2.3.2 Properness of the functional

Definition 2.3.3. We say that the functional Fλ is proper if whenever φj ∈
E1(X,ω) are such that E(φj)→ −∞ and

∫
X
φjω

n = 0, then Fλ(φj)→ −∞.

In many articles, this condition is expressed by saying that Fλ(φj)→ −∞
whenever J(φj) → −∞, where J(φ) = E(φ) − 1

V

∫
X
φωn is the translation
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invariant functional associated to E. Note that there exists C0 > 0 such that
for all φ ∈ PSH(X,ω),∫

X

φωn ≤ sup
X
φ ≤

∫
X

φωn + C0,

thus one can equivalently normalize φ by asking for supX φ = 0.
An important issue is to determine whether Fλ is proper. This turns out

to be always the case when λ ≤ 0. This is not necessarily so when λ > 0 and
indeed one can not always solve (MA)λ when λ > 0.

Theorem 2.3.4.
(i) Fλ(φ) ≤ E(φ)− supX φ+ Cµ,λ is always proper when λ < 0;
(ii) F0 is proper: there exists C > 0 such that for all φ ∈ E1(X,ω)

F0(φ) ≤ E(φ)− sup
X
φ+ C

∣∣∣∣E(φ)− sup
X
φ

∣∣∣∣1/2 .
(iii) There exists α({ω}) > 0 such that for all 0 < λ < α({ω}), there

exists Cλ > 0 such that for all φ ∈ E1(X,ω),

Fλ(φ) ≤ E(φ)− sup
X
φ+ Cλ,

hence Fλ is proper for 0 < λ < α({ω}).

Proof. The first point is straightforward: it suffices to check, setting τ =
−λ > 0, that there exists δ > 0 such that∫

X

eτ(φ−supX φ)dµ ≥ δ > 0

for all φ ∈ PSH(X,ω). This easily follows from the fact that the set of
normalized τω-psh functions is compact.

We assume now that λ = 0. It follows from Hölder’s inequality that
µ = fωnX verifies E1(X,ω) ⊂ L1(µ). We let the reader check that in this
case, for each C > 0 there exists MC > 0 such that

∀ψ ∈ E1C(X,ω),
∫
X

ψdµ ≥ −MC .

Fix φ ∈ E1(X,ω) such that supX φ = 0 and E(φ) ≥ −1. We set ε :=
|E(φ)|−1/2 ∈]0, 1] and consider

ψ := εφ =
φ

|E(φ)|1/2
∈ PSH(X,ω).

28



Observe that

E(ψ) =
ε

(n+ 1)V

n∑
j=0

∫
X

φωjψ ∧ ω
n−j.

We let the reader check that there exists N ∈ N such that for all j ≥ 1,

ωjψ ∧ ω
n−j ≤ ωj +Nε

n∑
l=1

ωlφ ∧ ωn−l.

We infer, since φ, ψ ≤ 0,

E(ψ) ≥ 1

V
φωn + ε2N ′E(φ) ≥ −C.

Since I(ψ) :=
∫
X
ψdµ is uniformly bounded on E1C(X,ω), this yields∫
X

φdµ = |E(φ)|1/2
∫
X

ψ dµ ≥ −C ′|E(φ)|1/2,

hence the proof of (ii) is complete.
We finally treat the case λ > 0. The upper bound (iii) is a consequence

of the uniform upper bound∫
X

e−λ(φ−supX φ)fωn ≤ C

which follows from Hölder inequality and Skoda’s uniform integrability the-
orem (see Theorem 2.1.1 ): for all φ ∈ PSH(X,ω),∫

X

e−qλ(φ−supX φ)ωn ≤ C(qλ)

since the set of normalized ω-psh functions ψ = φ−supX φ is compact, hence
these integrals are uniformly bounded from above as soon as λ is so small
that the Lelong numbers of the functions qλψ are smaller than 2.

2.3.3 Maximizers are critical points

Theorem 2.3.5. If Fλ is proper, then there exists φ ∈ E1(X,ω) which solves
(MA)λ and such that

Fλ(φ) = sup
E1(X,ω)

Fλ.
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Proof. Since Fλ is invariant by translations and proper, we can find C > 0
so large that

sup
E1(X,ω)

Fλ = sup
E1
C(X,ω)

Fλ,

where we recall that

E1C(X,ω) := {φ ∈ E1(X,ω) |E(φ) ≥ −C and φ ≤ 0}

is a compact convex subset of E1(X,ω). Now Fλ is upper semi-continuous
on E1C(X,ω), thus we can find φ ∈ E1C(X,ω) ⊂ E1(X,ω) which maximizes
the functional Fλ on E1(X,ω).

If φ where known to be smooth and strictly ω-psh, we could consider
φ+ tv for t > 0 small and v an arbitrary smooth function and conclude that
φ is a critical point of Fλ, hence φ+ c solves (MA)λ (by Lemma 2.3.1).

This turns out to be the case when µ is a smooth volume form, however
this requires a lot of extra work and our measures µ are here allowed to
vanish, hence we cannot expect φ to be strictly ω-psh.

We therefore use the following detour. Fix v ∈ C0(X,R) an arbitrary
continuous function and consider

g(t) := E ◦ P (φ+ tv) +
1

λ
log

[∫
X

e−λ(φ+tv)dµ

]
,

where, given h an upper semi-continuous function on X, we let

P (h)(x) := sup{ψ(x) ∈ R |ψ ∈ PSH(X,ω) and ψ ≤ h}

denote the ω-psh envelope of h (see section 2.1.3). We show in Theorem 2.3.6
below that the function g is differentiable at the origin, with

g′(0) = ⟨MA(φ), v⟩ −
⟨

e−λφµ∫
X
e−λφdµ

, v

⟩
.

Since φ ∈ E1(X,ω) and tv is bounded below, we see that P (φ + tv) ∈
E1(X,ω). Now P (φ+ tv) ≤ φ+ tv hence E ◦ P (φ+ tv) ≤ E(φ+ tv) and

g(t) ≤ Fλ ◦ P (φ+ tv) ≤ g(0),

as φ is a maximizer. We infer g′(0) = 0, which finishes the proof.
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2.3.4 The projection theorem

The goal of this section is to prove the following result of Berman-Boucksom
[BeBo10], on which relies the variational approach:

Theorem 2.3.6. Fix φ ∈ E1(X,ω) and v ∈ C0(X,R). Then t 7→ E◦P (φ+tv)
is differentiable at zero, with

dE ◦ P (φ+ tv)

dt |t=0
=

∫
X

vMA(φ).

Proof. We first let the reader convince him/herself that it suffices to treat
the case when v is smooth. We shall use this assumption by the end of the
proof. We first claim that the quantities

E ◦ P (φ+ tv)− E(φ)
t

and
∫
X

P (φ+ tv)− φ
t

MA(φ)

have the same asymptotic as t → 0. It follows on the one hand from the
concavity of E together with E ′ =MA that

E ◦ P (φ+ tv) ≤ E(φ) + E ′(φ) · [P (φ+ tv)− φ]

hence
E ◦ P (φ+ tv)− E(φ) ≤

∫
X

[P (φ+ tv)− φ] MA(φ).

On the other hand the projection P is concave hence

P (φ+ tsv) = P ((1− t)φ+ t(φ+ sv)) ≥ (1− t)P (φ) + tP (φ+ sv)

yields, by using the monotonicity of E,

E ◦ P (φ+ tsv) ≥ E (φ+ t[P (φ+ sv)− φ])

= E(φ) + t

∫
X

[P (φ+ sv)− φ]MA(φ) + o(t),

where the last equality corresponds to the differentiability of E at φ. Thus

E ◦ P (φ+ tsv)− E(φ)
st

≥
∫
X

P (φ+ sv)− φ
s

MA(φ) + o(1)

where s > 0 is arbitrary and t→ 0. This proves our first claim.
We now want to prove that∫

X

P (φ+ tv)− φ
t

MA(φ) =

∫
X

vMA(φ) + o(1),
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which is equivalent to showing that
∫
X
ftMA(φ)→ 0 as t→ 0, where

ft =
P (φ+ tv)− φ− tv

t
.

Observe that ft ≤ 0 since by definition P (φ + tv) ≤ φ + tv. Note also that
the projection P is uniformly 1-Lipschitz,

sup
X
|P (φ1)− P (φ2)| ≤ sup

X
|φ1 − φ2|

hence supX |P (φ+ tv)−P (φ)| ≤ t supX |v| and there exists C > 0 such that
infX ft ≥ −C. It therefore suffices to show that

MA(φ)({ft < 0}) =MA(φ)({P (φ+ tv) < φ+ tv}) t→0−→ 0.

This follows from the comparison principle as we now explain. Since v
is smooth, we can find ε > 0 such that v is εω-psh. To simplify we assume
ε = 1 in the sequel. Set Ωt := {P (φ+ tv) < φ+ tv} and use the comparison
principle to deduce that∫

Ωt

MA(φ) ≤ V −1

∫
Ωt

(ωφ + tωv)
n ≤ V −1

∫
Ωt

(ωP (φ+tv) + tω)n.

Since MA(P (φ + tv)) vanishes on the set Ωt = {P (φ + tv) < φ + tv} (by
Proposition 2.1.4), we can develop the last term to obtain∫

Ωt

MA(φ) ≤ (1 + t)n − 1 = O(t),

and the proof is complete.

2.4 Kähler-Einstein currents

2.4.1 Uniqueness

Theorem 2.4.1. The solutions to (MA)λ is unique (respectively unique up
to an additive constant) when λ < 0 (resp. λ = 0).

Proof. The proof is easy when λ < 0 and follows from the comparison prin-
ciple: indeed if ψ is another solution of (MA)λ, then

MA(ψ) = eτψµ = eτ(ψ−φ)MA(φ)
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setting τ = −λ > 0, and the comparison principle shows that∫
(φ<ψ)

MA(ψ) =

∫
(φ<ψ)

eτ(ψ−φ)MA(ψ) ≤
∫
(φ<ψ)

MA(φ),

hence µ(φ < ψ) = 0. We infer ψ ≤ φ almost everywhere with respect
to Lebesgue measure, hence everywhere by quasi-plurisubharmonicity. By
symmetry we conclude that φ ≡ ψ.

Assume now λ = 0 and φ, ψ ∈ E1(X,ω) verify MA(φ) = MA(ψ) = µ.
Observe that 0 =MA(φ)−MA(ψ) = ddc(φ− ψ) ∧ S, where

S =
n−1∑
j=0

ωjφ ∧ ω
n−1−j
ψ ≥ 0.

Integrating against (ψ − φ) and using Stokes theorem yields

0 =

∫
X

d(φ− ψ) ∧ dc(φ− ψ) ∧ S ≥ 0.

This shows that (φ − ψ) is constant when ωφ, ωψ are Kähler forms (this
argument is due to Calabi). Tricky integration by parts allow to extend this
argument to the case of general functions in E1(X,ω) (see [Blo03, Kol05,
GZ07, Din09, BEGZ10] for more details).

The uniqueness problem is very delicate and largely open when λ > 0.
When {ω} = c1(X) is the First Chern class of X which is thus weak Fano,
it follows from the work of Bando-Mabuchi [BM87] and Berndtsson [Bern11]
that any two solutions to (MA)λ –when they exist– are connected by the
time-one map of a holomorphic flow. In particular we note for later use the
following:

Theorem 2.4.2. When {ω} = c1(X) and H0(X,TX) = {0}, there exists at
most one solution to (MA)1.

2.4.2 The variational characterization of K-E currents

We now specialise to the case where X has mild singularities and the co-
homology class λ{ω} = c1(X) is proportional to the first Chern class of X,
so that solutions of (MA)λ correspond to Kähler-Einstein currents of finite
energy (cf Lecture 1).

The following result summarizes previous results and will be used as such
in Lecture 3:
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Theorem 2.4.3. Let X be a Q-Gorenstein variety with only klt singularities.
Let α ∈ H1,1(X,R) be a Kähler class and λ ∈ R such that c1(X) = λα.

We assume that the functional Fλ is proper so that there exists a unique
Kähler-Einstein current TKE ∈ α with finite energy. Fix T ∈ E1(α) a positive
current with finite energy. The following are equivalent:

1. T maximizes the functional Fλ;

2. T = TKE is the unique Kähler-Einstein current.

By convention we write here T ∈ E1(α) if T = ω+ddcφ with φ ∈ E1(X,ω).
This does not depend on the choice of representatives. Note that there can
be no non zero holomorphic vector field if Fλ is proper.

It was first realized by Ding-Tian [DT92] that, when X is a Kähler-
Einstein Fano manifold with no holomorphic vector field, the Kähler-Einstein
metric is the unique Kähler metric maximizing F1. This result being ex-
tended to the class of finite energy currents allows to use the soft compacity
criteria available in these Sobolev-like spaces, we have in particular the fol-
lowing useful result:

Corollary 2.4.4. Under the same assumptions as above, assume that Tj ∈
E1C(α) is a sequence of positive currents with uniformly bounded energies. If
Fλ(Tj) increases towards supE1 Fλ, then Tj weakly converges towards TKE.

An interesting application will be given in Lecture 3, when we will study
the long term behavior of the normalized Kähler-Ricci flow on Fano varieties.

2.4.3 Regularity

Since we are dealing from the beginning with probability measures µ = fωnX
whose density is in Lp, p > 1, it follows from the work of Kolodziej [Kol98]
and its extensions to non Kähler classes [EGZ09, BEGZ10] that the solution
φ ∈ E1(X,ω) to

MA(φ) = eλφµ

is actually bounded.
When µ is moreover a smooth volume form, it was proved by Yau [Yau78]

that φ is smooth, when λ ≤ 0 and ω is a Kähler form. Yau’s proof was
extended to the case of Fano manifolds (see [Tian]).

The regularity theory has been extended to the case of varieties by vari-
ous authors (see [Tsu88, TZha06, ST07, Pau08, EGZ09]). An elegant result
of Szekelyhidi-Tosatti [SzTo09] insures that, for many Monge-Ampère type
equations and when the reference cohomology class is Kähler, any bounded

34



solution is automatically smooth. This result can be extended to some cases
where the class is non Kähler (see [ST09, BBEGZ11]), providing smooth so-
lutions on the ample locus of the reference class (equivalently on the regular
part of a variety, when the original problem comes from a singular setting).

A major open problem is then to understand the asymptotic regular-
ity/behavior at the boundary of the ample locus/near singular points. We
refer the reader to [EGZ11] for a first result in this direction.
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Lecture 3

Convergence of the singular
Kähler-Ricci flow

The Ricci flow, first introduced by Hamilton [Ham82, Ham88] three decades
ago, is the equation

∂gt
∂t

= −Ric(gt),

evolving a Riemannian metric by its Ricci curvature. When the initial metric
g0 is Kähler, so is gt for all t > 0 and the flow is thus called the Kähler-Ricci
flow.

The Kähler-Ricci flow was used by H.D.Cao [Cao85] to give a new proof
of the existence of Kähler-Einstein metrics of non positive curvature. The
idea was pushed further by Tsuji [Tsu88], Tian-Zhang [TZha06] and Song-
Tian [ST07, ST08, ST09] who studied extensively the case of manifolds with
non-negative Kodaira dimension. We refer the interested reader to the survey
by [SW] for a neat treatment of these cases.

The situation is far less understood on manifolds of Kodaira dimension
−∞, and the Kähler-Einstein problem is still largely open on Fano manifolds,
despite several works and progress by many authors.

The goal of this third lecture is to explain how the (normalized) Kähler-
Ricci flow can be used to detect the unique Kähler-Einstein current, on a
Kähler-Einstein Fano variety with no holomorphic vector field, following
[BBEGZ11]. This result was first obtained on smooth Fano manifolds in
[TZ07] (see also [PSS07]), by using deep estimates of Perelman. We provide
an alternative approach, by using the variational characterization explained
in Lecture 2.
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3.1 Perelman’s theorem
Let X be a Fano manifold. It follows from the work of Bando-Mabuchi
[BM87] and Ding-Tian [DT92, Tian97] that X admits a unique Kähler-
Einstein metric ωKE if and only if the Mabuchi functional is proper.

It is natural to wonder whether the Kähler-Ricci flow can detect it, hence
serve as a useful tool in studying the Kähler-Einstein problem on Fano man-
ifolds. Perelman established in 2003 deep estimates (see [SeT08]), which
allowed Tian and Zhu [TZ07] to prove the following:

Theorem 3.1.1. Let X be a Fano manifold whose Mabuchi functional is
proper. Fix ω0 ∈ c1(X) an arbitrary Kähler form. Then the normalized
Kähler-Ricci flow {

∂ωt

∂t
= −Ric(ωt) + ωt

ωt|t=0 = ω0

C∞-converges, as t→ +∞, to the unique Kähler-Einstein metric ωKE.

In other words, the normalized Kähler-Ricci flow detects the (unique)
Kähler-Einstein metric if it exists.

This result has been generalized by Tian and Zhu [TZ07] to the case of
Kähler-Ricci soliton. Other generalizations by Phong and his collaborators
can be found in [PS06, PSS07, PSSW08, PS10]. All proofs rely on deep
estimates due to Perelman [SeT08].

It is natural to try and understand similar problems on Fano varieties,
i.e. allowing for mild singularities like those arising in the Minimal Model
Program. The goal of this third lecture is to explain the proof of the following
result [BBEGZ11]:

Theorem 3.1.2. Let X be a Q-Fano variety whose Mabuchi functional is
proper. Fix ω0 ∈ c1(X) an arbitrary Kähler form. Then the normalized
Kähler-Ricci flow {

∂ωt

∂t
= −Ric(ωt) + ωt

ωt|t=0 = ω0

weakly converges, as t→ +∞, to the unique Kähler-Einstein current TKE.

Recall that a Q-Fano variety means here a normal variety whose anti-
canonical bundle −KX is Q-Cartier and ample, and such that X has only log
terminal singularities. The existence and uniqueness of such Kähler-Einstein
currents was addressed in Lecture 2.

Since Perelman’s estimates are not available in this singular context, we
actually need to produce an alternative proof of Theorem 3.1.1. This is cer-
tainly of independent interest and we will actually focus on the smooth case
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to simplify the exposition. The drawback is of course that the convergence
only holds in a weak (energy) sense.

The idea of the proof is to show that (ωt)t>0 are relatively compact in the
finite energy class E1(X,ω) and form a maximizing sequence for the Ding
functional F . Any cluster point will thus be Kähler-Einstein current (by the
variational characterization from Lecture 2), but the properness assumption
insures that there is no non-trivial holomorphic vector field, hence a unique
Kähler-Einstein current by Bando-Mabuchi-Berndtsson’ uniqueness result.
Here is a sketch of the proof:

(i) we first observe that the MabuchiM and the Ding F functionals are
non decreasing along the normalized Kähler-Ricci flow;

(ii) the properness assumption insures then that the ωt’s have uniformly
bounded energies, hence belong to a compact sublevel set of finite energy;

(iii) if we can show that F(ωt) increases towards the absolute maximum
of F , every cluster point of (ωt) will maximize F hence coincide with the
unique Kähler-Einstein current with finite energy, thus ωt → TKE;

(iv) the last step consists in carefully selecting a subsequence tj → +∞
along which one can insure that F(ωtj) ↗ supF : this is done by choosing
tj so that the time derivative

∂ωtj

∂t
→ 0 and by noting that the ωt’s have

uniformly bounded entropies.
Comparison with Perelman-Tian-Zhu’s result. Although convergence results
in the smooth category (see [TZ07, PSS07]) are not formulated in a varia-
tional manner, one can try and prove them following the scheme we’ve just
presented. The difficult task is then Step 2 (show relative compactness of the
ωt’s in C∞) which requires the use of Perelman deep estimates and further
extra work, while Step 4 (the delicate part here) is then a formality.
The plan of the lecture is as follows. We actually work at the level of poten-
tials, so our first task is to explain how the normalized Kähler-Ricci flow can
be reduced to a scalar parabolic equation on potentials. We then establish
each step of the sketch in the (simpler) smooth setting, and we briefly address
the singular context in the last section.

3.2 Reduction to a scalar parabolic equation
The Ricci flow is the parabolic evolution equation

(KRF )
∂ωt
∂t

= −Ric(ωt) with initial data ω0.

When ω0 is a Kähler form, so is ωt, hence it is called the Kähler-Ricci flow.
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3.2.1 Long time existence

The short time existence is guaranteed by standard parabolic theory: in the
Kähler context, this translates into a parabolic scalar equation as we explain
below.

It is more convenient to analyze the long time existence by considering
the normalized Kähler-Ricci flow. For a Fano manifold this is

(NKRF )
∂ωt
∂t

= −Ric(ωt) + ωt.

One passes from (KRF) to (NKRF) by changing ω(t) in etω(1− e−t). At the
level of cohomology classes,

d{ωt}
dt

= −c1(X) + {ωt} ∈ H1,1(X,R)

therefore {ωt} ≡ c1(X) is constant if we start from ω0 ∈ c1(X). This justifies
the name (NKRF) since in this case

volωt(X) = volω0(X) = c1(X)n

is constant. Note that the volume blows up exponentially fast if {ω0} >
c1(X). The following result is due to H.D.Cao [Cao85]:

Theorem 3.2.1. Let X be a Fano manifold and pick a Kähler form ω0 ∈
c1(X). Then the normalized Kähler-Ricci flow exists for all times t > 0.

The main issue is then whether (ωt) converges as t → +∞. Hopefully
∂ωt/∂t→ 0 and ωt → ωKE such that Ric(ωKE) = ωKE.

3.2.2 Normalization of potentials

Let ω = ω0 ∈ c1(X) denote the initial data. Since ωt is cohomologous to ω,
we can find φt ∈ PSH(X,ω) a smooth function such that ωt = ω + ddcφt.
The function φt is defined up to a time dependent additive constant. Then

dωt
dt

= ddcφ̇t = −Ric(ωt) + ω + ddcφt,

where φ̇t := ∂φt/∂t. Let h ∈ C∞(X,R) be the unique function such that

Ric(ω) = ω − ddch, normalized so that
∫
X

e−hωn = V.
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We also consider ht ∈ C∞(X,R) the unique function such that

Ric(ωt) = ωt − ddcht, normalized so that
∫
X

e−htωnt = V.

The following deep estimates of Perelman are crucial in analyzing the smooth
convergence of the normalized flow:

Theorem 3.2.2 (Perelman 03). The Ricci deviation ht is uniformly bounded
along the flow, as well as its gradient and Laplacian,

sup
t>0
||ht||+ ||∇ht||+ ||∆ht|| < +∞.

The gradient and Laplacian are here computed with respect to the (evolv-
ing) metric ωt := ω + ddcφt. We refer the reader to [SeT08] for a proof and
to [TZ07, PSS07, PS10] for applications in various contexts. Our goal in the
sequel is actually to avoid using these estimates which are not available in
the singular setting.

Observe that Ric(ωt) = ω − ddch− ddc log (ωnt /ωn), hence

ddc
{
log

(
ωnt
ωn

)
+ h+ φt − φ̇t

}
= 0,

therefore
(ω + ddcφt)

n = eφ̇t−φt−h−β(t)ωn,

for some normalizing constant β(t).
Note also that ddcφ̇t = −Ric(ωt) + ωt = ddcht hence

φ̇t(x) = ht(x) + α(t)

for some time dependent constant α(t). Our plan is to show the convergence
of the metrics ωt = ω+ddcφt by studying the properties of the potentials φt,
so we should be very careful in the way we normalize the latter.

Observe that ω0 = ω + ddcφ0 = ω, hence φ0(x) ≡ c0 ∈ R is a constant
which may play an important role, depending on the choice of normalization.

There are at least two "natural" choices of normalization. One can impose
β ≡ 0, by changing φt(x) in φt(x) +B(t) with B′−B = −β, as proposed by
Chen-Tian in [CT02]. This yields

(ω + ddcφt)
n = eφ̇t−φt−hωn.

One can then further change φt(x) in φt(x) + κet without affecting the pre-
vious flow equation. It is then crucial to choose c0 suitably, since it clearly
affects (by an exponential term) the long term behavior of φt(x).
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One may on the other hand prefer to impose α ≡ 0, as we choose to do
in the sequel, following [BBEGZ11]. This normalization is probably the one
Perelman had in mind1, as it then yields φ̇t ≡ ht and allows to apply directly
Perelman’s deep estimates. We let the reader verify that this is equivalent
to choosing

β(t) = log

[
1

V

∫
X

e−φt−h0ωn
]

so that
φ̇t = log

[
MA(φt)

µ(φt)

]
,

where

MA(φt) :=
1

V
(ω + ddcφt)

n and µ(φt) :=
e−φt−h0ωn∫
X
e−φt−h0ωn

are both probability measures.
Note that the equation is now invariant under φt(x) 7→ φt(x)−c0, so that

we can assume without loss of generality that c0 = 0.

3.3 Monotonicity of functionals along the flow

3.3.1 Ding functional

Recall that Ding’s functional is defined by

F(φ) := E(φ) + log

[
1

V

∫
e−φ−hωn

]
,

where

E(φ) =
1

(n+ 1)V

n∑
j=0

∫
X

φωjφ ∧ ωn−j

is the primitive of the Monge-Ampère operator normalized so that E(0) = 0.

Lemma 3.3.1. The functional F is non-decreasing along the normalized
Kähler-Ricci flow. More precisely,

dF(φt)
dt

= HMA(φt)(µt) +Hµt(MA(φt)) ≥ 0.

1In his 2003 seminar talk at MIT, Perelman apparently focused on his key estimates
and did not say much about the remaining details.
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Here Hµ(ν) denotes the relative entropy of the probability measure ν with
respect to the probability measure µ. It is defined by

Hµ(ν) =

∫
X

log

(
ν

µ

)
dν

if ν is absolutely continuous with respect to µ, and Hµ(ν) = +∞ otherwise.
It follows from the concavity of the logarithm that

Hµ(ν) = −
∫
X

log
(µ
ν

)
dν ≥ − log (µ(X)) = 0,

with strict inequality unless ν = µ.

Proof. Recall that F(φ) = E(φ) + log
[∫
X
e−φ−h0 ωn/V

]
, where E is a prim-

itive of the complex Monge-Ampère operator. We thus obtain along the
NKRF,

dE(φt)

dt
=

∫
X

φ̇tMA(φt) =

∫
X

log

(
MA(φt)

µt

)
MA(φt) = Hµt(MA(φt)),

while
d log

[∫
X
e−φt−h0 ωn

]
dt

= −
∫
X

φ̇tdµt = HMA(φt)(µt).

This proves the lemma.

Since the relative entropy Hµ(ν) is positive unless µ ≡ ν, the normalized
Kähler-Ricci flow is increasing unless we have reached a fixed point, i.e. a
Kähler-Einstein metric.

Pinsker’s inequality (see [Villani, Remark 22.12]) gives an explicit lower
bound for Hµ(ν) in terms of the total variation of the signed measure µ− ν:
for all Borel subsets A ⊂ X,

Hµ(ν) ≥ ν(A) log

[
ν(A)

µ(A)

]
+ [1− ν(A)] log

[
1− ν(A)
1− µ(A)

]
≥ 2∥ν(A)− µ(A)∥2,

where the first inequality follows from the concavity of the logarithm, while
the second is the elementary inequality, for all 0 < a, b < 1,

a log
(a
b

)
+ (1− a) log

(
1− a
1− b

)
≥ 2(a− b)2.

We infer Hµ(ν) ≥ 2∥µ− ν∥2, hence:

Corollary 3.3.2.
dF(φt)
dt

≥ 4∥MA(φt)− µt∥2.
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3.3.2 Mabuchi functional

Recall that the scalar curvature of a Kähler form ω is the trace of the Ricci
curvature,

Scal(ω) := n
Ric(ω) ∧ ωn−1

ωn
.

Its mean value is denoted by

Scal(ω) := V −1

∫
X

Scal(ω)ωn = n
c1(X) · {ω}n−1

{ω}n
.

The Mabuchi energy2 is defined by its derivative: if ωt = ω + ddcψt is any
path of Kähler forms within the cohomology class {ω}, then

dM(ψt)

dt
:= V −1

∫
X

ψ̇t

[
Scal(ωt)− Scal(ωt)

]
ωnt .

We normalize M so that M(0) = 0. As we work here with ω ∈ c1(X), we
obtain Scal(ωt) = n. Since

Ric(ωt) = ωt − ddcht,

we observe that

Scal(ωt)− Scal(ωt) = −∆ωtht := −n
ddcht ∧ ωn−1

t

ωnt
.

Now ddcφ̇t = ddcht thus along the normalized Kähler-Ricci flow,

dM(φt)

dt
= − 1

V

∫
X

φ̇t∆ωt(φ̇t)ω
n
t = +

n

V

∫
X

dφ̇t ∧ dcφ̇t ∧ ωn−1
t ≥ 0.

We have thus proved the following important property:

Lemma 3.3.3. The Mabuchi energy is non-decreasing along the normalized
Kähler-Ricci flow. More precisely,

dM(φt)

dt
=
n

V

∫
X

dφ̇t ∧ dcφ̇t ∧ ωn−1
t ≥ 0.

When the Mabuchi functional is bounded from above, the previous com-
putation yields in particular∫ +∞

0

∥∇tφ̇t∥2L2(X)dt < +∞.

We refer the reader to the discussion before Lemma 1 in [PSS07] for more
details on how this condition can be used for a suitable choice of c0.

2The Mabuchi energy is often denoted by K or ν in the literature; our sign convention
is the opposite of the traditional one, so we call it hereM to avoid any confusion.
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3.3.3 Comparison of functionals

Lemma 3.3.4. Along the normalized Kähler-Ricci flow, one has

1

V

∫
X

φ̇tω
n
t =

1

V

∫
X

h0 ω
n + F(φt)−M(φt).

Proof. Recall that

φ̇t = log(ωnt /ω
n) + φt + h0 + β(t), with β(t) = log

[
1

V

∫
X

e−φt−h0ωn
]
.

We let a(t) =
∫
X
φ̇tMA(φt) denote the left hand side and compute

a′(t) =

∫
X

φ̈tMA(φt)−
dM(φt)

dt
,

where
φ̈t = ∆ωtφ̇t + φ̇t + β′(t).

Therefore

a′(t) = a(t) + β′(t)− dM(φt)

dt
=

d

dt
{F(φt)−M(φt)} ,

noting that a(t) = dE(φt)
dt

.
The conclusion follows since a(0) =

∫
X
h ωn

V
while F(0) =M(0) = 0.

We now show that the Mabuchi energy and the F functional are bounded
from above simultaneously. This seems to have been noticed only recently
(see [Li08, CLW09]).

Proposition 3.3.5. Let X be a Fano manifold. The Mabuchi functionalM
is bounded from above if and only if the F functional is so. Moreover

supM = supF +

∫
X

h0
ωn

V
.

Proof. We have noticed in previous lemma that

M(φt) +
1

V

∫
X

φ̇tω
n
t = F(φt) +

1

V

∫
X

h0 ω
n.

It follows from Perelman’s estimates that φ̇t is uniformly bounded along the
flow. Thus M(φt) is bounded if and only if F(φt) is so. We assume such is
the case. The error term a(t) = 1

V

∫
X
φ̇tω

n
t is non-negative, with

0 ≤ a(t) =
dE(φt)

dt
.
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Since F(φt) = E(φt)+β(t) is bounded from above and t 7→ β(t) is increasing,
the energies t 7→ E(φt) are bounded from above as well. Thus

∫ +∞
a(t)dt <

+∞, hence there exists tj → +∞ such that a(tj)→ 0. We infer

sup
t>0
M(φt) = sup

t>0
F(φt) +

∫
X

h0
ωn

V
.

It is actually possible to avoid Perelman’s estimates and obtain the same
result. We have already noted that the "error term" a(t) = 1

V

∫
X
φ̇tω

n
t is

non-negative which yields an inequality. To obtain the reverse inequality, we
fix φ ∈ E1(X,ω) and let ψ ∈ E1(X,ω) be a solution to

MA(ψ) = µ(φ).

The existence of ψ is guaranteed by [GZ07, BEGZ10], the curvature ωψ may
be called the Ricci inverse of ωφ, following [Kel09, Rub08]. We let the reader
check that

M(ψ) ≥ F(φ) + 1

V

∫
X

h0 ω
n,

which yields the desired bound.

3.4 Bounding the entropies

3.4.1 Finite energy classes

Since E ′ = MA ≥ 0 is a non negative measure, the mapping φ 7→ E(φ)
is non decreasing. This allows to extend the definition of E to non smooth
ω-plurisubharmonic functions, by setting

E(φ) := inf{E(ψ) |ψ ∈ PSH(X,ω) ∩ C∞(X,R) with ψ ≥ φ}.

Recall here that PSH(X,ω) denotes the set of ω-psh functions, i.e. those
functions φ : X → R ∪ {−∞} which are locally given as the sum of a
plurisubharmonic and a smooth function, and such that ω + ddcφ ≥ 0 in
the sense of currents. The set PSH(X,ω) is naturally endowed with the
L1-topology, as well as with any of the Lp-topologies, p ≥ 1, which are all
equivalent on it.

The set PSH(X,ω) is closed for these topologies, and the subsets

{φ ∈ PSH(X,ω) | − C ≤ sup
X
φ ≤ +C ′}

are compact for all C,C ′ ≥ 0 (this is Hartog’s celebrated lemma [GZ05]).
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Definition 3.4.1. We set

E1(X,ω) := {φ ∈ PSH(X,ω) |E(φ) > −∞}

and for all C ≥ 0,

E1C(X,ω) := {φ ∈ PSH(X,ω) |E(φ) ≥ −C and φ ≤ +C}.

These classes have been discussed in Lecture 2, so we only list here the
most important facts:

1. the complex Monge-Ampère operator MA(φ) := V −1(ω + ddcφ)n is
well-defined on the class E1(X,ω);

2. for all C ≥ 0, the sets E1C(X,ω) are compact;

3. the operator MA is not continuous for the L1-topology, however if
φj, φ ∈ E1(X,ω) are s.t. φj → φ in L1 and

∫
X
|φj − φ|MA(φj) → 0,

then MA(φj)→MA(φ) and moreover E(φj)→ E(φ);

4. if F is proper, then there exists a unique φ ∈ E1(X,ω) such that
MA(φ) = µ(φ), it is the unique maximizer of F .

Recall here that F is proper means, setting φ̃j := φj−supX φj, that F(φ̃j)→
−∞ whenever E(φ̃j)→ −∞. We can now summarize the information we’ve
obtained so far:

• the functional F is invariant by translations and non decreasing along
the normalized Kähler-Ricci flow, hence (F(φ̃t))t>0 is bounded;

• the functional F is assumed to be proper so (E(φ̃t))t>0 is bounded as
well hence the functions φ̃t belong to a compact subset E1C(X,ω);

• it suffices to prove that there is only one cluster point (the Kähler-
Einstein potential), and this will be the case if we can find one sub-
sequence φ̃tj such that F(φ̃tj) increases, as tj → +∞, towards the
absolute maximum of F : this is our next goal.

3.4.2 Maximizing subsequences

The final step consists in making a careful choice of a subsequence (φ̃tj) which
is "maximizing", i.e. such that F(φ̃tj)↗ supF . In the sequel we denote by
ϕj := φ̃tj such a subsequence, to simplify notations.
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Since F is bounded from above, it follows from Corollary 3.3.2 that one
can select a subsequence such that

MA(ϕj)− µ(ϕj)→ 0.

Extracting again if necessary, we can further assume that

ϕj → ϕ and µ(ϕj)→ µ(ϕ).

If we could show that MA(ϕj)→MA(ϕ), we would conclude that

MA(ϕ) = µ(ϕ)

hence ϕ is a Kähler-Einstein potential: it would then follow from [BBGZ09]
(see Lecture 2) that ϕ maximizes the functional F , hence

lim↗ F(φ̃t) = lim↗ F(ϕj) = F(ϕ) = supF .

This would thus show that (φ̃t) is a maximizing family, hence φ̃t converges,
as t→ +∞, towards the unique (normalized) Kähler-Einstein potential.

It thus only remains to show that MA(ϕj)→MA(ϕ). Recall that

MA(ϕj) = Fjµ,

where µ = e−hωn/V and

Ft = eφ̇t
e−φ̃t∫

X
e−φ̃t dµ

.

If we knew that the densities Ft are uniformly in Lp for some p > 1, it would
follow from Hölder inequality that∫

X

|ϕj − ϕ|MA(ϕj) =

∫
X

|ϕj − ϕ|Fjdµ ≤ C||ϕj − ϕ||Lq(µ) → 0.

The ϕj’s would thus converge "in energy" towards ϕ and we would be done.
We don’t have such strong control on the densities, we can however get

a uniform control on their entropies:

Lemma 3.4.2. We have

0 ≤M(φ̃t) = E(φ̃t)−
∫
X

Ft logFtdµ−
∫
X

φ̃tMA(φ̃t) +

∫
X

h
ωn

V
.

In particular there exists C > 0 such that for all t > 0,

0 ≤
∫
X

Ft logFtdµ ≤ C.
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Proof. This is a straightforward consequence of Lemma 3.3.4. Observe indeed
that ∫

Ft logFtdµ =

∫
φ̇tMA(φ̃t)−

∫
φ̃tMA(φ̃t)− log

[∫
e−φ̃tdµ

]
while

F(φ̃t) = E(φ̃t) + log

[∫
e−φ̃tdµ

]
,

thus

E(φ̃t)−
∫
Ft logFtdµ−

∫
φ̃tMA(φ̃t)

= F(φ̃t)−
∫
φ̇tMA(φ̃t) =M(φ̃t)−

∫
X

h
ωn

V
,

as follows from Lemma 3.3.4.

We can therefore replace Hölder’s inequality by Hölder-Young inequality:
we let the reader check that χ(t) = (t + 1) log(t + 1) − t defines a convex
increasing weight on R+, whose Legendre transform is

χ∗(s) := sup{st− χ(t) | t ≥ 0} = es − s− 1.

Young’s additive inequality states that for all s, t ≥ 0,

st ≤ χ(t) + χ∗(s),

while Hölder-Young multiplicative inequality yields∫
X

|ϕj − ϕ|MA(ϕj) =

∫
X

|ϕj − ϕ|Fjdµ ≤ C ′∥ϕj − ϕ∥Lχ∗ (µ),

where

∥ϕj − ϕ∥Lχ∗
(µ) := inf

{
α > 0

∣∣ ∫
X

χ∗
(
|ϕj − ϕ|

α

)
dµ ≤ 1

}
denotes the Luxemburg norm of the functions ϕj−ϕ, which converges to zero
as j → +∞. This completes the proof of the theorem.
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3.5 Concluding remarks

3.5.1 Weak Kähler-Ricci flow

J.Song and G.Tian have proposed in [ST09] to study the interplay between
the Minimal Model Program (MMP for short) and the long run properties
of the (normalized) Kähler-Ricci flow.

An optimistic goal, in view of the successful use of the Ricci flow towards
proving the Poincaré conjecture, would be to establish that the Kähler-Ricci
flow produces in finitely many steps a minimal model of the initial variety,
and can then be run in infinite time to produce a canonical (e.g. Kähler-
Einstein) metric. This requires to define and study the Kähler-Ricci flow on
varieties, starting from a non smooth initial datum.

This program has been studied intensively by Tian and his co-authors on
manifolds of non-negative Kodaira dimension (see notably [TZha06, ST07,
ST08, ST09]). The remaining cases of manifolds X with kod(X) = −∞ is
largely open (see [SW] for some results and references) and most works have
focused on the case of Fano manifolds. The work [BBEGZ11] is the first step
towards such a study in a mildly singular context.

It would be too technical to give here the precise definitions and state-
ments that allow to make sense of the (weak) Kähler-Ricci flow in this sin-
gular setting, we rather refer the interested reader to [ST09, BBEGZ11].

3.5.2 Open problems

There is a huge number of open problems related to the study of the long
term behavior of the (normalized) Kähler-Ricci flow. We only indicate two,
in relation with the result we’ve just exposed.

Problem 1. Let X be a Q-Fano Kähler-Einstein Fano manifold with no
holomorphic vector field, such that M is proper and there exists a unique
Kähler-Einstein current which is known to be smooth on Xreg.

We know by Theorem 3.1.2 that the normalized Kähler-Ricci flow weakly
converges to the unique Kähler-Einstein current. Does the convergence hold
in the C∞-sense on Xreg ?

This certainly requires to extend (at least) some of Perelman’s estimates
to this singular context, an interesting but delicate task.

Problem 2. Let X be a Kähler-Einstein Fano manifold with non trivial
holomorphic vector fields. What is the long term behavior of the normalized
Kähler-Ricci flow starting from an arbitrary Kähler form in c1(X) ?
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When X = CP1 is the Riemann sphere, it follows from the work of Hamil-
ton [?] and Chow [Chow91] that it converges -after renormalization- towards
a Kähler-Einstein metric. Even the case X = CPn, n ≥ 2, of the complex
projective space is largely open in higher dimension. The interested reader
will find in [SW] some results and references, when the initial metric has
enough symmetries.
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