Description |
|
ICTP-ESF School and Conference on Geometric Analysis | (smr 2345)
Go to day
-
-
08:30 - 10:45
Registration and administrative formalities
Location: Leonardo da Vinci Building, Lobby - 08:30 Registration and administrative formalities 2h15'
-
10:45 - 11:00
Opening
- 10:45 Opening 15'
-
11:00 - 12:00
Applications of Hamilton's Compactness theorem (1)
-
11:00
Applications of Hamilton's Compactness theorem (1)
1h0'
Speaker: P.M. Topping (University of Warwick, U.K.)
-
11:00
Applications of Hamilton's Compactness theorem (1)
1h0'
-
12:00 - 14:00
Lunch Break
- 12:00 Lunch Break 2h0'
-
14:00 - 16:00
Introduction to Kähler Geometry (1)
-
14:00
Introduction to Kähler Geometry (1)
2h0'
Speaker: C. Arezzo (ICTP)
-
14:00
Introduction to Kähler Geometry (1)
2h0'
-
16:00 - 16:30
Break
- 16:00 Break 30'
-
16:30 - 18:30
Kähler Ricci flow and Einstein metrics (1)
-
16:30
Kähler Ricci flow and Einstein metrics (1)
2h0'
Speaker: G. Tian (Princeton University & Peking University)
-
16:30
Kähler Ricci flow and Einstein metrics (1)
2h0'
-
08:30 - 10:45
Registration and administrative formalities
-
-
09:30 - 11:30
The analysis of Willmore surfaces (1)
-
09:30
The analysis of Willmore surfaces (1)
2h0'
Speaker: T. Riviere (ETH-Zentrum, Zürich, Switzerland) Material: lecture notes
-
09:30
The analysis of Willmore surfaces (1)
2h0'
-
11:30 - 13:00
Lunch Break
- 11:30 Lunch Break 1h30'
-
13:00 - 15:00
Introduction to Kähler Geometry (2)
-
13:00
Introduction to Kähler Geometry (2)
2h0'
Speaker: C. Arezzo (ICTP)
-
13:00
Introduction to Kähler Geometry (2)
2h0'
-
15:00 - 15:30
Break
- 15:00 Break 30'
-
15:30 - 16:30
Applications of Hamilton's Compactness Theorem (2)
-
15:30
Applications of Hamilton's Compactness Theorem (2)
1h0'
Speaker: P.M. Topping (University of Warwick, U.K.)
-
15:30
Applications of Hamilton's Compactness Theorem (2)
1h0'
-
09:30 - 11:30
The analysis of Willmore surfaces (1)
-
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (3)
-
09:00
Applications of Hamilton's Compactness Theorem (3)
1h0'
Speaker: P.M. Topping (University of Warwick, U.K.)
-
09:00
Applications of Hamilton's Compactness Theorem (3)
1h0'
-
10:00 - 10:30
Break
- 10:00 Break 30'
-
10:30 - 12:30
The analysis of Willmore surfaces (2)
-
10:30
The analysis of Willmore surfaces (2)
2h0'
Speaker: T. Riviere (ETH-Zentrum, Zürich, Switzerland) Material: lecture notes
-
10:30
The analysis of Willmore surfaces (2)
2h0'
-
12:30 - 13:00
Lunch Break
- 12:30 Lunch Break 30'
-
13:00 - 15:00
The Positive Mass Theorem (1)
-
13:00
The Positive Mass Theorem (1)
2h0'
Speaker: R. Schoen (Stanford University, USA) Material: lecture notes
-
13:00
The Positive Mass Theorem (1)
2h0'
-
15:00 - 15:30
Break
- 15:00 Break 30'
-
15:30 - 17:30
Kähler Ricci flow and Einstein metrics (2)
-
15:30
Kähler Ricci flow and Einstein metrics (2)
2h0'
Speaker: G. Tian (Princeton University & Peking University)
-
15:30
Kähler Ricci flow and Einstein metrics (2)
2h0'
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (3)
-
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (4)
-
09:00
Applications of Hamilton's Compactness Theorem (4)
1h0'
Speaker: P.M. Topping (University of Warwick, U.K.)
-
09:00
Applications of Hamilton's Compactness Theorem (4)
1h0'
-
10:00 - 10:30
Break
- 10:00 Break 30'
-
10:30 - 12:30
The analysis of Willmore surfaces (3)
-
10:30
The analysis of Willmore surfaces (3)
2h0'
Speaker: T. Riviere (ETH-Zentrum, Zürich, Switzerland) Material: lecture notes
-
10:30
The analysis of Willmore surfaces (3)
2h0'
-
12:30 - 13:30
Lunch Break
- 12:30 Lunch Break 1h0'
-
13:30 - 15:30
Compact constant mean curvature surfaces and nonlinear PDE's (1)
-
13:30
Compact constant mean curvature surfaces and nonlinear PDE's (1)
2h0'
Speaker: F. Pacard (École Polytechnique, Palaiseau, France)
-
13:30
Compact constant mean curvature surfaces and nonlinear PDE's (1)
2h0'
-
16:30 - 18:00
Calabi-Yau Manifolds with Hodge Numbers that are small and large
-
16:30
Calabi-Yau Manifolds with Hodge Numbers that are small and large
1h30'
Speaker: P. Candelas (University of Oxford, U.K.)
-
16:30
Calabi-Yau Manifolds with Hodge Numbers that are small and large
1h30'
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (4)
-
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (5)
-
09:00
Applications of Hamilton's Compactness Theorem (5)
1h0'
Speaker: P.M. Topping (University of Warwick, U.K.)
-
09:00
Applications of Hamilton's Compactness Theorem (5)
1h0'
-
10:00 - 10:30
Break
- 10:00 Break 30'
-
10:30 - 12:30
The Positive Mass Theorem (2)
-
10:30
The Positive Mass Theorem (2)
2h0'
Speaker: R. Schoen (Stanford University, USA) Material: lecture notes
-
10:30
The Positive Mass Theorem (2)
2h0'
-
12:30 - 14:00
Lunch Break
- 12:30 Lunch Break 1h30'
-
14:00 - 16:00
Compact constant mean curvature surfaces and nonlinear PDE's (2)
-
14:00
Compact constant mean curvature surfaces and nonlinear PDE's (2)
2h0'
Speaker: F. Pacard (École Polytechnique, Palaiseau, France)
-
14:00
Compact constant mean curvature surfaces and nonlinear PDE's (2)
2h0'
-
09:00 - 10:00
Applications of Hamilton's Compactness Theorem (5)
-
-
09:30 - 11:30
Compact constant mean curvature surfaces and nonlinear PDE's (3)
-
09:30
Compact constant mean curvature surfaces and nonlinear PDE's (3)
2h0'
Speaker: F. Pacard (École Polytechnique, Palaiseau, France)
-
09:30
Compact constant mean curvature surfaces and nonlinear PDE's (3)
2h0'
-
11:30 - 13:00
Lunch Break
- 11:30 Lunch Break 1h30'
-
13:00 - 15:00
Kähler Ricci flow and Einstein metrics (3)
-
13:00
Kähler Ricci flow and Einstein metrics (3)
2h0'
Speaker: G. Tian (Princeton University & Peking University)
-
13:00
Kähler Ricci flow and Einstein metrics (3)
2h0'
-
15:00 - 15:30
Break
- 15:00 Break 30'
-
15:30 - 17:30
The Positive Mass Theorem (3)
-
15:30
The Positive Mass Theorem (3)
2h0'
Speaker: R. Schoen (Stanford University, USA) Material: lecture notes
-
15:30
The Positive Mass Theorem (3)
2h0'
-
09:30 - 11:30
Compact constant mean curvature surfaces and nonlinear PDE's (3)
-
-
09:30 - 11:30
The Positive Mass Theorem (4)
-
09:30
The Positive Mass Theorem (4)
2h0'
Speaker: R. Schoen (Stanford University, USA) Material: lecture notes
-
09:30
The Positive Mass Theorem (4)
2h0'
-
11:30 - 14:30
Lunch Break
- 11:30 Lunch Break 3h0'
-
14:30 - 16:30
Ricci Flow, Sphere Theorems and Bryant Soliton (1)
-
14:30
Ricci Flow, Sphere Theorems and Bryant Soliton (1)
2h0'
Speaker: S. Brendle (Stanford University, USA)
-
14:30
Ricci Flow, Sphere Theorems and Bryant Soliton (1)
2h0'
-
09:30 - 11:30
The Positive Mass Theorem (4)
-
-
09:30 - 11:30
Ricci Flow, Sphere Theorems and Bryant Soliton (2)
-
09:30
Ricci Flow, Sphere Theorems and Bryant Soliton (2)
2h0'
Speaker: S. Brendle (Stanford University, USA)
-
09:30
Ricci Flow, Sphere Theorems and Bryant Soliton (2)
2h0'
-
11:30 - 14:30
Lunch Break
- 11:30 Lunch Break 3h0'
-
14:30 - 16:30
The Positive Mass Theorem (5)
-
14:30
The Positive Mass Theorem (5)
2h0'
Speaker: R. Schoen (Stanford University, USA) Material: lecture notes
-
14:30
The Positive Mass Theorem (5)
2h0'
-
09:30 - 11:30
Ricci Flow, Sphere Theorems and Bryant Soliton (2)
-
-
09:30 - 11:30
Ricci Flow, Sphere Theorems and Bryant Soliton (3)
-
09:30
Ricci Flow, Sphere Theorems and Bryant Soliton (3)
2h0'
Speaker: S. Brendle (Stanford University, USA)
-
09:30
Ricci Flow, Sphere Theorems and Bryant Soliton (3)
2h0'
-
11:30 - 14:30
Lunch Break
- 11:30 Lunch Break 3h0'
-
14:30 - 16:30
Compact constant mean curvature surfaces and nonlinear PDE's (4)
-
14:30
Compact constant mean curvature surfaces and nonlinear PDE's (4)
2h0'
Speaker: F. Pacard (École Polytechnique, Palaiseau, France)
-
14:30
Compact constant mean curvature surfaces and nonlinear PDE's (4)
2h0'
-
09:30 - 11:30
Ricci Flow, Sphere Theorems and Bryant Soliton (3)
-
-
08:30 - 10:00
REGISTRATION OF THE CONFERENCE PARTICIPANTS
Location: Leonardo da Vinci Building, Lobby - 08:30 REGISTRATION OF THE CONFERENCE PARTICIPANTS 1h30'
-
10:00 - 13:00
Canonical metrics on projective algebraic varieties. A variational approach to degenerate complex Monge-Ampere equations. Uniform a priori estimates.
-
10:00
Canonical metrics on projective algebraic varieties. A variational approach to degenerate complex Monge-Ampere equations. Uniform a priori estimates.
3h0'
Speaker: V. Guedj (Paul Sabatier University, Toulouse, France) Material: lecture notes
-
10:00
Canonical metrics on projective algebraic varieties. A variational approach to degenerate complex Monge-Ampere equations. Uniform a priori estimates.
3h0'
-
13:00 - 16:00
Lunch Break
- 13:00 Lunch Break 3h0'
-
16:00 - 17:00
Real-Monge-Ampere equations and Kähler-Ricci solitons on toric log Fano varieties
-
16:00
Real-Monge-Ampere equations and Kähler-Ricci solitons on toric log Fano varieties
1h0'
Speaker: R. Berman (Chalmers University, Gothenburg, Sweden)
-
16:00
Real-Monge-Ampere equations and Kähler-Ricci solitons on toric log Fano varieties
1h0'
-
17:00 - 18:00
V-solitons and Kähler-Ricci flow on symplectic quotients
-
17:00
V-solitons and Kähler-Ricci flow on symplectic quotients
1h0'
Speaker: G. La Nave (University of Illinois at Urbana Champaign, USA)
-
17:00
V-solitons and Kähler-Ricci flow on symplectic quotients
1h0'
-
08:30 - 10:00
REGISTRATION OF THE CONFERENCE PARTICIPANTS
-
-
09:30 - 10:20
On the Wilmore Conjecture - "Overview"
-
09:30
On the Wilmore Conjecture - "Overview"
50'
Speaker: A. Neves (Imperial College, London, UK)
-
09:30
On the Wilmore Conjecture - "Overview"
50'
-
10:30 - 11:20
On the Willmore Conjecture - "Canonical families"
-
10:30
On the Willmore Conjecture - "Canonical families"
50'
Speaker: F.C. Marques (IMPA, Rio de Janeiro, Brazil)
-
10:30
On the Willmore Conjecture - "Canonical families"
50'
-
11:30 - 14:30
Lunch Break
- 11:30 Lunch Break 3h0'
-
14:30 - 15:20
On the Wilmore Conjecture - "Min-max and Width"
-
14:30
On the Wilmore Conjecture - "Min-max and Width"
50'
Speaker: A. Neves (Imperial College, London, UK)
-
14:30
On the Wilmore Conjecture - "Min-max and Width"
50'
-
15:30 - 16:20
On the Willmore Conjecture - "Proofs of Main Theorems"
-
15:30
On the Willmore Conjecture - "Proofs of Main Theorems"
50'
Speaker: F.C. Marques (IMPA, Rio de Janeiro, Brazil)
-
15:30
On the Willmore Conjecture - "Proofs of Main Theorems"
50'
-
16:30 - 17:30
Compactness of $W^{2,2}$ branched conformal immersions of surfaces and applications
-
16:30
Compactness of $W^{2,2}$ branched conformal immersions of surfaces and applications
1h0'
Speaker: J. Chen (University of British Columbia, Vancouver, Canada)
-
16:30
Compactness of $W^{2,2}$ branched conformal immersions of surfaces and applications
1h0'
-
09:30 - 10:20
On the Wilmore Conjecture - "Overview"
-
-
09:00 - 12:00
Hermitian Metrics, Einstein Manifolds, and Conformal Geometry
-
09:00
Hermitian Metrics, Einstein Manifolds, and Conformal Geometry
3h0'
Speaker: C. LeBrun (SUNY at Stony Brook, USA) Material: slides
-
09:00
Hermitian Metrics, Einstein Manifolds, and Conformal Geometry
3h0'
-
19:00 - 21:00
Reception
Location: Adriatico Guest House (Terrace) - 19:00 Reception 2h0'
-
09:00 - 12:00
Hermitian Metrics, Einstein Manifolds, and Conformal Geometry
-
-
09:00 - 10:00
Perelman's entropy and Kähler-Ricci flow on a Fano manifold
-
09:00
Perelman's entropy and Kähler-Ricci flow on a Fano manifold
1h0'
Speaker: X. Zhu (Peking University, China)
-
09:00
Perelman's entropy and Kähler-Ricci flow on a Fano manifold
1h0'
-
10:00 - 10:15
Break
- 10:00 Break 15'
-
10:15 - 11:15
On the symplectic mean curvature flows
-
10:15
On the symplectic mean curvature flows
1h0'
Speaker: J. Li (Academy of Mathematics & Systems Science, Beijing, China)
-
10:15
On the symplectic mean curvature flows
1h0'
-
11:30 - 12:30
Quantization and Mabuchi energy
-
11:30
Quantization and Mabuchi energy
1h0'
Speaker: J. Fine (Université Libre de Bruxelles, Belgium) Material: slides
-
11:30
Quantization and Mabuchi energy
1h0'
-
12:30 - 15:30
Lunch Break
- 12:30 Lunch Break 3h0'
-
15:30 - 16:30
Variational analysis of singular Liouville equations
-
15:30
Variational analysis of singular Liouville equations
1h0'
Speaker: A. Malchiodi (SISSA, Trieste, Italy)
-
15:30
Variational analysis of singular Liouville equations
1h0'
-
16:30 - 17:30
Structure of Gromov-Hausdorff limit of Kähler-Einstein manifolds
-
16:30
Structure of Gromov-Hausdorff limit of Kähler-Einstein manifolds
1h0'
Speaker: S. Sun (Imperial College of Science and Technology, London, UK)
-
16:30
Structure of Gromov-Hausdorff limit of Kähler-Einstein manifolds
1h0'
-
09:00 - 10:00
Perelman's entropy and Kähler-Ricci flow on a Fano manifold
-
-
09:00 - 10:00
On the uniqueness of extremal Kähler metrics
-
09:00
On the uniqueness of extremal Kähler metrics
1h0'
Speaker: A. Della Vedova (Princeton University, USA)
-
09:00
On the uniqueness of extremal Kähler metrics
1h0'
-
10:00 - 10:15
Break
- 10:00 Break 15'
-
10:15 - 11:15
Deformation and gluing constructions for scalar curvature
-
10:15
Deformation and gluing constructions for scalar curvature
1h0'
Speaker: J. Corvino (Lafayette College, Easton. USA)
-
10:15
Deformation and gluing constructions for scalar curvature
1h0'
-
11:30 - 12:30
Solutions of the constraint equations with non-constant mean curvature
-
11:30
Solutions of the constraint equations with non-constant mean curvature
1h0'
Speaker: R. Gicquaud (Université de Tours, France)
-
11:30
Solutions of the constraint equations with non-constant mean curvature
1h0'
-
09:00 - 10:00
On the uniqueness of extremal Kähler metrics