Summer School on Quantum Many-Body Physics of Ultra-Cold Atoms and Molecules

Lecture 1: Overview of tools in cold atom experiments (11:30 am, July 12, 2012)

Lecture 2: In situ imaging: density, fluctuations, correlations and equation of state (3:30 pm, July 12, 2012)

Lecture 3: Scale invariance, universality and quantum criticality of 2D quantum gases (9 am, July 13, 2012)

WORKSHOP ON QUANTUM SIMULATIONS WITH ULTRACOLD ATOMS

Talk: Exploring Universal Quantum Physics in few- and many-body atomic systems (9:40am, July 17, 2012)

Cheng Chin, James Franck institute and Department of Physics, University of Chicago

Summer School on Quantum Many-Body Physics of Ultra-Cold Atoms and Molecules

Lecture 1: Overview of tools in cold atom experiments (11:30 am, July 12, 2012)

Lecture 2: In situ imaging: density, fluctuations, correlations and equation of state (3:30 pm, July 12, 2012)

Lecture 3: Scale invariance, universality and quantum criticality of 2D quantum gases (9 am, July 13, 2012)

WORKSHOP ON QUANTUM SIMULATIONS WITH ULTRACOLD ATOMS

Talk: Exploring Universal Quantum Physics in few- and many-body atomic systems (9:40am, July 17, 2012)

Cheng Chin, James Franck institute and Department of Physics, University of Chicago

What is an optical lattice?

Standing waves $I(x) = I_0 \sin^2 k_x x$

mirror

$$P = \varepsilon E$$

$$V = -\int P \cdot dE = -\frac{1}{2} \varepsilon E^2 = -\frac{1}{2} \alpha_{AC} I$$

 α_{AC} : AC polarizability

$$V(x) = -\frac{1}{2}\alpha_{AC}I_0\sin^2 k_x x$$

AC polarizability

Real atom: multiple transitions

Arora et al. PRA 84 043401 (2011)

Proto group, NIST & JQI

Optical lattice in higher dimensions

$$V(\vec{x}) = -\frac{1}{2}\alpha(\omega) < |Re[\sum_{i} \vec{E}_{i}e^{i(\vec{k}_{i}\cdot\vec{x} - \omega_{i}t + \phi_{i})}]|^{2} >$$

Band structure in optical lattice

$$-\frac{\hbar^2}{2m}\partial_x^2\psi_i(x) + V\sin^2(kx)\psi_i(x) = E_i\psi_i(x)$$

Origin of the band structure: Bragg diffraction

Basic properties of particles in optical lattices

Eigen-states are delocalized Bloch waves $\phi_q(x)=e^{iqx}f(x)$ q is quasi-momentum Eigen-energy E(q) is the dispersion

Localized wave packets, Wannier states, are defined as

$$w(x-x_i) = \sqrt{\frac{d}{2\pi}} \int_{-\pi/d}^{\pi/d} e^{iqx_i} \phi_q(x) dq$$

Hamiltonian in the Wannier state basis is

... are the Fourier expansion of E(q)

Energy scales in optical lattices

Basic properties of particles in optical lattices

... are the Fourier expansion of E(q)

Eigen-states are delocalized Bloch waves $\phi_q(x)=e^{iqx}f(x)$ q is quasi-momentum Eigen-energy E(q) is the dispersion

Localized wave packets, Wannier states, are defined as

$$w(x-x_i) = \sqrt{\frac{d}{2\pi}} \int_{-\pi/d}^{\pi/d} e^{iqx_i} \phi_q(x) dq$$

Hamiltonian in the Wannier state basis is

$$-\pi/d \quad 0 \quad \pi/d$$
Quasi-momentum
$$< w_i \mid H \mid w_j > = \begin{bmatrix} 0 & -t & t_2 & -t_3 & \dots \\ -t & 0 & -t & t_2 & \dots \\ t_2 & -t & 0 & -t & \dots \\ -t_3 & t_2 & -t & 0 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

$$t: \text{ nearest neighbor tunneling } t_2: \text{ next nearest neighbor tunneling } \dots \dots \dots \dots \dots$$

Interaction of atoms in lattices

General wave function
$$\hat{\psi} = \sum_{i} \hat{a}_{i} w(x - x_{i})$$

$$V = \frac{1}{2} \int \hat{\psi}^{+}(x_1) \hat{\psi}^{+}(x_2) V(x_1 - x_2) \hat{\psi}(x_1) \hat{\psi}(x_2) dx_1 dx_2$$

$$\approx \frac{U}{2} \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1)$$

$$U = \frac{\hbar\omega}{\sqrt{2\pi}} \frac{a}{\ell}$$

V(x): (contact) interaction n_i particle number at site I

a: scattering length

 ω : mean trap frequency

l : mean oscillator length

Bose-Hubbard model (Fisher et al., PRB 1989, Greiner et al., Nature 2002)

$$\hat{H} = - t \sum_{\langle i,j \rangle} (\hat{b}_i^+ \hat{b}_j^- + \hat{b}_j^+ \hat{b}_i^-) + U \sum_i \frac{\hat{n}_i (\hat{n}_i - 1)}{2} - \sum_i \mu_i \hat{n}_i^-$$

Tunneling

Interaction

Trap potential

Density distribution

t >> U **Superfluid**

t << U
Mott insulator

Number statistics

Quantum phase transition of bosons in 2D lattices

Ads-CFT duality: Sachdev, Nature physics (2007)

Critical thermodynamics: Zhou and Ho, PRL (2010) $\frac{n - n_c}{T^{d/z + 1 - 1/\nu z}} = h(\frac{\mu - \mu_c}{T^{1/\nu z}})$

Hazzard and Mueller, PRA (2011)

AdS-CFT duality

Figure: Subir Sachdev (2011) Juan Maldacena (1997)

Evolution of early universe

Source: NASA/WMAP Science Team

Cesium-133 Bose-Einstein condensate apparatus

First cold atom apparatus at Univ. of Chicago (10/2006)

Fast evaporative cooling and Bose condensation (11/07/2007)

Hung, Zhang, Gemelke, and Chin, PRA (2008)

Preparation of a 2D quantum gas

Atoms in a 2D optical lattice

Microscope objective

Gemelke, **Zhang**, Hung, Chin, Nature 460, 995 (2009)

Perform in situ absorption imaging

Microscope objective

A closer look

Density profiles of atoms in 2D optical lattices

$$\delta n = n - \langle n \rangle$$

Extract temperature T and chemical potential μ_m

$$\mu = \mu_m - V(r)$$

Theory:

Ho & Zhou, Nature Physics 6, 131 ('10)

Exp:

Dalibard ('10), Zwierlein ('12), Chin ('11), ...

Extracting T and μ_m by fitting the low-density thermal tail based on a mean-field formula

$$n(r) = d^{-2} \sum_{l=1}^{\infty} \left[I_0 \left(\frac{2lt}{k_B T} \right) \right]^2 \exp \left[\frac{l \left(\mu_m - V(r) - 2Und^2 \right)}{k_B T} \right]$$

 $d = 0.532 \mu \text{m}$; t: tunneling; U: interaction; I_0 : 0^{th} Bessel

Equation of state of a 2D gas And scale invariance

$$\widetilde{n} = n\lambda_{dB}^2 = F(\frac{\mu}{kT})$$

—— Mean-field (superfluid)

Prokof'ev and Svistunov, PRA (2002)

Chicago Experiment: Hung, Zhang, Gemelke and CC, Nature 470, 236-239 (2011) ENS experiment: Yefsah et. Al., arXiv:1106.0188 (2011)

Thermodynamics tomography (equilibrium)

Thermodynamics tomography

