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Periodic Aedeystenri donthddattise models

- Introduced in mid 1960s or earlier

- Still not solved (just a reminder, today is 07/03/2012)

- Admit description in terms of Feynman diagrams



Feynman Diagrams & Physics of strongly correlated many-body systems

In the absence of small parameters, are they useful in higher orders?

Z(p ’ CU) =< > =

Oops N.Abel, 1828:

W “Divergent series are
ow the devil's invention...”

And if they are, how to handle millions and billions of skeleton graphs?

Steven Weinberg, Physics Today, Aug. 2011 :

“Also, it was easy to imagine
any number of quantum field
theories of strong interactions
but what could anyone do with
them?”
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Feynman Diagrams & Physics of strongly correlated many-body systems

In the absence of small parameters, are they useful in higher orders?

2(p,w) =<

Sign-blessing for
regularized (if needed)
Wow skeleton graphs!

And if they are, how to handle millions and billions of skeleton graphs?

Teach computers QFT rules and wander among
diagrams using random numbers ! —> BDMC

From current strong-coupling
theories based on one lowest
order skeleton graph (MF,
RPA, GW, SCBA, GG, GG, ...

Unbiased solutions beased
on millions of graphs with
extrapolation to the infinite
diagram order



Skeleton diagrams up to high-order: do they make sense for g =1 ?

Diverge for large 2 even if
are convergent for small g.
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Dyson: Expansion in
powers of g is asymptotic
if for some (e.g. complex) g
one finds pathological
behavior.

Electrongas: e —ie

Bosons: U—-U

[collapse to infinite density]

A, A

N

Asymptotic series for g =1

Math. Statement:
# of skeleton graphs

e 2n n3/2

asymptotic series with
zero conv. radius
(n! beats any power)

nl —

with zero convergence radius




Skeleton diagrams up to high-order: do they make sense for g =1 ?

Divergent series outside
of finite convergence radius
can be re-summed.
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Dyson:

- Does not apply to the resonant Fermi
gas and the Fermi-Hubbard model at
finite T.

- not known if it applies to skeleton

graphs which are NOT series in bareg':

cf. the BCS answer v
(one lowest-order diagram) A « ¢ &

- Regularization techniques
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3/2n!

# of graphsis « 2" n
but due to sign-blessing
they may compensate
each other to accuracy
better then 1/ 1! leading
to finite conv. radius



Re-summation of divergent series with finite convergence radius.

co

Example: A=Y, =3-9/2+9-81/4+ .= 6pen
KaKoOW TOo /=b

Define a function f N A
: n, b
such that: N _2IN

1 > fn Ny =€ (Gauss)
Sfoy =1 for n<< N ’

__ _—énln(n) .
fn,N — (0 for n>N ]Fn,N =e (Lindeloef)

>
N* n
Construct sums AN = C, nN and extrapolate ]{flgolo AN to getA
n=0
A
AN

>1/N



Conventional Sign-problem vs Sign-blessing

Sign-problem: Computational complexity is exponential in system volume

: 7 d
(diagrams for Z) Lepy & €XP {#L /J’} and error bars explode before a reliable

exptrapolation to [, — o can be made

Feynamn diagrams: No [ — o limit to take, selfconsistent formulation, admit

(for InZ)

analytic results and partial resummations.

Sign-blessing: Number of diagram of order # is factorial « 72" 1> *thus the

(diagrams for InZ ) . .
only hope for good series convergence properties is sign alter-

nation of diagrams leading to their cancellation. Still,

3/2 . :
ICPU x n!2"n”'* i.e. Smaller and smaller error bars are likely

to come at exponential price (unless convergence is exponential).



Yes, they were real thing, not a cartoon!
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P, T)/Po(1, T)

Answering Weinberg’ s question:
Equation of State for ultracold fermions & neutron matter at unitarity

Van Houcke, Werner, Kozik, Svistunov, NP,
Ku, Sommer, Cheuk, Schirotzek, Zwierlein
‘12

\ Uncertainty due to location of

the g = woresonance B =834x1.5G

BDMC results

MIT experiment

virial expansion (3d order)

Ideal Fermi gas

QMC for connected Feynman diagrams NOT particles!
A D

Sign blessing SigMem



Standard Monte Carlo setup:

- configuration space (depends on the model
and it’ s representation)

~ F
- each cnf. has a weight factor W

- quantity of interest A — < A>

b
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-E_ IT
Statistics: E e 'm0
{states}

State

Anything: E F(V) O(V)

{v=any set
of variables}

Connected Feynman
Anything = diagrams, e.g. for the
proper self-energy

diagram order
V =< topology

internal variables

»

Monte Carlo'

Monte Carlo'

»

Monte Carlo'

MC

O

State
{states}

states generated from g
probability distribution ¢ "~

MC

2 eiarg[F(V)]O(v)

14

states generated from
probability distribution | F'(V) |

Answer to S. Weinberg’s
question

MC

2 = E sign(F(v))

14



Classical MC
u

1 1 1 1 1 1 u
Z(y)=ff dxidx:K dxy W(X1,X2,K XN,)/)
the number of variables N is constant

Quantum MC (often)

r r ru)

Z($)= ;Zosz d)rc‘1d)rCzK d;n Dn (§;X1,X2,K Xn, )V

—
%
—~
/ Integration variables

term order

Contribution to the answer
different terms of or weight (with differential measures!)
of the same order



r r r um

u, r r r
A(y)=z fo dxidx:K dx, D, (E;xl,xZ,K xn,y)=2DV
n=0

Vv

Monte Carlo (Metropolis) cycle:

Accept with probability

14

1
D. (dx)"
Same order diagrams: ~ F

~0()

DV (dX)n Business as usual

1
D, (dx)"™" r
Updating the diagram order: Y~ ( ) ~ (dx)m —> QOoops

D, (dx)




Balance Equation: If the desired probability density distribution
of different terms in the stochastic sum is R,
then the updating process has to be stationary
with respect to Pv(equilibrium condition). Often R/ = VVV

D, Y QMR = Y D.QMR.,

updates v—v' updates v'—v

— /) — /)
Y Y

Fluxoutof V Fluxto V

'
Qv (V ) Is the probability of proposing an update transforming V to V'

Detailed Balance: solve equation for each pair of updates separately

D, Q (VYR =D, Q. (v) Rv;zgpt

accept



\

Let us be more specific. Equation to solve:

D, (K 132 )y @, (4K b )@y R D (K e b0 R

accept n+m,n ~ “accept
Y ) | Y J \ Y ] —ry—
) (V)
D, Q (v D, Q. .(v
1 1
new variables X .1, K , X,
are proposed from the
normalized probability distribution
Solution: n—>n+m
R _ Raccept _ Dn+m (‘xlﬂK ’xn+m) S27’l+n’l,”l
n+m—n
Raccept Dn (xl’K ’xn) g211,11+m (xl’K ’xn+m)

All differential measures are gone!

Efficiency rules:
- try to keep R~1

- simple analytic function &, , . (x,. . K ,x, )




Configuration space = (diagram order, topology and types of lines, internal variables)

Diagram order

\
)Oda

Vv 't
O% > {ql > Ti > pz}

Diagram topology

This is NOT: write/lenumerate diagram after diagram,
compute its value, and then sum



Polaron problem:

H=H

particle

+ H

environment

+Hcoupling — quasiparticle
E(p=0), m., G(p,?), ...

Electrons in semiconducting crystals (electron-phonon polarons)

® ©

@ @
@ Qo e(pla,a electron
‘ @ O @

a)(p)(b;bq + 1/2) +  phonons
e‘ e'

(Va ab’ +hc) el.-ph.

p-q9 P 9 . .
interaction

M = %M

@ O o o o
@ ®© & @ o
@
Q"QQ

&



electron
P
>
Green function: G(p,r)

phonons

q

>

=S e, + DopE, 1120+ 3|

P9

Va' a b +hec.

q

pP=-q9 P 4

el.-ph. interaction

q
P [;;q

<ap(0)a+p(1:)> =<ap e ™ a’, eTH>

Sum of all Feynman diagrams
Positive definite series in the ( p.T ) representation

u

)




4 7, )
Gp.n)=) | » . : 2
Feynman 0 T, T, 14' T
digrams K J
Graph-to-math correspondence:
ur © r r r r r r r U r
G(p,z')= Zfo dxidx:K dx. D, (§;x1,xz,K xn,p,r) where x.=(q,,7,,7,")

is a product of

q, .
— /ﬁ T, l?l Tlv T, /\ Tl'
ti e—e(pl. )T, '-T;) e—w(Q)(Ti '~7;)

u
Positive definite series in the (p, ‘L’) representation



oiagrams for: (b, (08, (0) @, ,(0) ¢}, (@) b; (Db} (D) )

there are also diagrams for optical conductivity, etc.

Doing MC in the Feynman diagram
configuration space is an endless fun!



The simplest algorithm has three updates:

Insert/Delete pair (increasing/decreasing the diagram order)

q
PP m Ps =P = P
T T,
DV
Dv' /Dv = | I/qz |2 e_w(Q:z)(Tz'—Tz) e—(E(Pz')—g(Pz))(ﬁ—Tz) e—(E(P3 N-e(P))N7,'-77)
D ' g2n+ n D ' 1
R \% 1, v

) DV g271,n+1 (xl’K ’xn+1) ) Dv (n+1) g211,n+1(x191< ’xn+1)

In Delete select the phonon line to be deleted at random



The optimal choice of Qn,n+l (xl,K ) xn+1) depends on the model

Frohlich polaron: € = p° /2m, W, =, V, ~a/q

2 [(p, ')2 —p22 (7 -7,)+[(p; ')2 —P22 (7, '-77)

D, /D o«l g o 2 dgd gd 6dT’

2

q

1. Select 7, anywhere on the interval (0, 7) from uniform prob. density

2. Select 7, 'anywhere to the left of 7, from prob. density g~ ()

(if 7, "> Treject the update)

(42" 12m)(®'-T2) o

3. Select ¢, from Gaussian prob. density ¢

—ay (7,'-15) ~(q,"12m)(z, '
an+1(rznrz '9q2)~€ @ (7 Tz)e (q,"/2m)(7,'-75)



p

New T :
T,

last

Standard “heat bath” probability density ~ e_g(p (T ~Tiagt)

Always accepted, R =1

This is it! Collect statistics for G( p,T). Analyze it using

G(p,t— ) — Zpe_E(p)T , etc.



Diagrammatic Monte Carlo in the generic many-body setup

Feynman diagrams for free energy density

O OING®

U(q). : : X

QO D




Bold (self-consistent) Diagrammatic Monte Carlo

Diagrammatic technique for In(Z ) diagrams: admits partial summation and
self-consistent formulation

No need to compute all diagrams for (& and U:

= D%uaﬁon: @ @ O O + ...
U

G(p,7)

Screening:

U

Calculate irreducible diagrams for>, I, ... to get G, U, .... from Dyson equations



Dyson Equation:

Screening:




More tools: Incorporating DMFT solutions for Eloc

Zloc[Gloc] = all electron propagator lines in all graphs arelocal, G — (G, =G 0O

loc e rr!

2" = at least one electron propagator in the graph is non-local, i.e. the rest of graphs

Gloc = BZ G(p) ddp

l bold DiagMC sampling of

solver for > = Z'(G) MC simulation

Impurity solver . = 2..(GL) /

2(p)=2,, +2'(p)

l

|
G, (p)—Z(p)

G(p) =



More tools: Build diagrams using ladders:

(contact potential)

In terms of “exact” propagators

Dyson Equations: —>— = —>— + _>_@_)_
—— = > T 9—@—)—



Fully dressed skeleton graphs (Heidin):

all accounted for alre




H=HO+H1=E
4

Z=TreP? =Tre P ¢

U.nn.

i Euini

ij" i

= t(n,,n,)b/b,

<ij>

Lattice path-integrals for bosons and
spins are “diagrams’ of closed loops!

B BB
=Tr e P l—le(r) a’r+ffH1(t)H1(1:) dvdt'+...
0 0~

imaginary time

hs

-

-

(1,2)

-+

n, =0,1,2,0)




=

imaginary time

00

Diagrams for

Z=Tre"?

1|

-

-

lattice site

imaginary time

Diagrams for

Gy =TrT, sz (ty) b, (7)) e

=

R

01

— e

lattice site

The rest is conventional worm algorithm in continuous time



