Studying Dark Energy with *eROSITA* Galaxy Clusters

2014

Thomas Reiprich Argelander Institute for Astronomy Bonn University http://dark-energy.net

Overview

- Conclusion: With eROSITA, we will constrain w_{DE} to <3% using ALL massive galaxy clusters in the observable Universe.
- What are clusters?
- How can they be used to constrain cosmological parameters?
- Why use X-rays to study them?
- What is *eROSITA*?
- Forecasts and comparison to other DE probes.

Galaxy Clusters

- Clusters of ~1,000 galaxies.
- Largest, most massive (~10¹⁵ M_{\odot}) collapsed objects in the Universe.

Israel et al. (2010) ... photo-z by eye ...

Chandra

Intracluster Medium (ICM)

- Hot: $T \sim (10^7 10^8)$ K; $k_B T \sim (1 10)$ keV.
- Low density: <0.1 particles/cm⁻³.
- $M_{\rm ICM} \simeq 10 \ M_{\rm stars}$. $L_{\rm X} \simeq (10^{44} 10^{45}) \ {\rm erg/s}$.
- $M_{\rm total} \simeq 10 M_{\rm ICM}$. D $\simeq 10^7$ Lightyears.

European Space Agency

X-Ray Mass Determination

Gas Temperature and Density

Why Use Clusters for Cosmology? Great History!

- First evidence for dark matter (30s).
- Strongest evidence for $\Omega_{\rm M}$ <1 (90s).
- First evidence for $\sigma_8 < 0.9$ (00s).
- Clearest evidence for existence of dark matter and its small interaction cross section (00s).
- First Stage IV dark energy probe (10s).

Why Use Clusters for Cosmology? Versatile and Multi-λ!

Methods

- Baryons (fraction, *apparent* evolution),
- M/L * luminosity density,
- power spectrum (normalization, shape, evolution, baryonic wiggles),
- mergers (frequency, evolution),
- SZ + X-rays \Rightarrow H_0 ,
- mass function (amplitude, shape, evolution),

•

Wavebands

- Optical/infrared (galaxies, lensing),
- Sub-/mm (SZ-effect),
- Radio (radio halos / relics, WATs / NATs),
- gamma rays (?),
- X-rays,

. . . .

As we'll see, masses important; selection observable, L_x , correlates well with mass.

Why is Cluster Growth Sensitive to Underlying Cosmology?

Galaxy Cluster Evolution and Equation of State of Dark Energy

 Growth of structure depends on expansion rate; i.e., on the Hubble parameter H(z) = H₀ E(z):

$$\ddot{\delta} + 2H\dot{\delta} = 4\pi G\bar{\rho}\delta$$

$$E^{2}(z) \equiv \Omega_{\rm r}(1+z)^{4} + \Omega_{\rm m}(1+z)^{3} + \Omega_{\rm k}(1+z)^{2} + \Omega_{\rm DE}e^{3\int_{0}^{z}[1+w(z')]d\ln(1+z')} + \Omega_{\rm DE}e^{3}E^{3}E^{3}E^{3}E^{3}E^{3}E^{3}E$$

- H(z) depends on equation of state, $w_{\text{DE}} = p/(\rho c^2)$.
- Evolution of cluster number density depends on *w*!
- And on whether or not the first equation needs to be modified.

Cluster Mass Function

Cluster mass function is *exponentially* sensitive to the growth factor.

 $\frac{dn(M,z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}_0}{M} \frac{\delta_c^0(z)}{\sigma(M)^2} \left| \frac{d\sigma(M)}{dM} \right| \exp\left(-\frac{\delta_c^0(z)^2}{2\,\sigma(M)^2}\right)$

This has been known since the 70's (e.g., Press & Schechter).

Accurate masses and search volumes needed. Observable-mass relation is important.

V. Springel

Galaxy Cluster Evolution

Galaxy cluster mass function

z = 0.05

z = 0.6

solid: w = -1, dashed: w = -0.5, dotted: w = -1.25.

 $dn/dM [(h_{50}^{3} Mpc^{-3} (10^{14} h_{50}^{-1} M_{sun})^{-1}]$

Current Constraints on *w* from ~10² X-Ray Clusters

Allen et al. (2008), Mantz et al. (2008, 2010)

Vikhlinin et al. (2009)

Similar constraints available from SZ cluster surveys.

The (Near) Future: *eROSITA* ~10⁵ X-Ray Clusters

Spektr-RG mission Navigator platform ART-XC / *eROSITA*

Figure 3.1.1: Schematic view of the location of the L2 orbit of SRG. At the position of the earth, a scaled picture of the geocoronal emission is shown. Unlike any other X-ray satellite launched to date, eROSITA will become the first telescope to observe the X-ray sky from L2, unaffected by geocoronal X-ray emission (composite image courtesy of K. Dennerl).

Telescope Structure

From P. Predehl

From P. Predehl

Mirror System

Spider Wheel with heaters integrated

FM-3 Mirror Module with 39/54 shells

VOB in action: Integration of a Shell

Preparation of PANTER X-ray Tests (FM-3c)

X-ray Baffle

Stand for Integration and Metrology of Baffle Shells

Integration and Metrology of X-ray Baffle onto Mirror Module

Camera

Heart of the Camera: CCD-Module

Integrated Camera (with massive Copper Housing)

Cold part of Camera (with test sensors)

From P. Predehl

Preparation of Thermal Test

Miscellaneous

Filter Wheel

Electron Deflector (on Shaker)

Camera Radiator, upper part with VCHP-Reservoirs

From P. Predeh

Preparation of Thermal Test with Heatpipe System

Comparison with other Surveys

Adapted from Merloni et al. (arXiv:1209.3114)

Expected eROSITA Exposure Map

Projected Cosmological Constraints

- *eROSITA*-specific forecasts, taking into account photons registered at detector; assume that clusters get detected if at least 50 source photons received.
- Include cluster physics; scatter in L_x-M relation accounted for, fit scaling relation parameters simultaneously with cosmology ("self-cal").

- Take into account expected redshift uncertainty.
- Apply two cosmological tests simultaneously; evolution of (i) cluster mass function and (ii) angular clustering.
- Several assumptions, e.g., hardware works, flat Universe, fiducial cosmology and L_x-M relation, redshifts, one sky for all,

Limiting Mass

Close to actual experiment: predict cluster abundance as function of X-ray photons detected on *eROSITA* CCDs

eROSITA Compared to DES and Euclid

Data Stage IV	Redshifts	Prior Scenario	Model	$\Delta f_{ m NL}^{ m local}$	$\Delta \sigma_8$	$\Delta \Omega_{\rm m}$	Δw_0	Δw_a	$\mathrm{FoM}^{\mathrm{DEFT},1\sigma}$
eROSITA	photo-z	Pessimistic	LCDM+PNG	8.1	0.012	0.0101	-	-	-
eROSITA	spectro-z	Optimistic	LCDM+PNG	6.4	0.007	0.0060	-	_	-
eROSITA + Planck	photo-z	Pessimistic	LCDM+PNG	6.5	0.006	0.0021	-	-	-
eROSITA + Planck	spectro-z	Optimistic	LCDM+PNG	5.0	0.004	0.0015	-	-	-
eROSITA	photo-z	Pessimistic	w0CDM+PNG	8.2	0.016	0.0109	0.066	-	-
eROSITA	spectro-z	Optimistic	w0CDM+PNG	6.6	0.009	0.0063	0.043	-	-
eROSITA + Planck	photo-z	Pessimistic	w0CDM+PNG	6.9	0.007	0.0034	0.026	-	-
eROSITA + Planck	spectro-z	Optimistic	w0CDM+PNG	5.6	0.005	0.0025	0.023	<3%	-
eROSITA	photo-z	Pessimistic	wCDM+PNG	8.2	0.018	0.0120	0.098	0.27	57.4
eROSITA	spectro-z	Optimistic	wCDM+PNG	6.6	0.011	0.0066	0.075	0.23	103.1
eROSITA + Planck	photo-z	Pessimistic	wCDM+PNG	7.0	0.007	0.0036	0.059	0.21	179.4
eROSITA + Planck	spectro-z	Optimistic	wCDM+PNG	5.7	0.006	0.0026	0.048	0.16	263.3
								>300	for $f_{\text{NII}}=0$
DES Stage III	photo-z	WL+2D photometric	wCDM+PNG	8.6	0.009	0.0082	0.093	0.61	
DES + Planck	photo-z	WL+2D photometric	wCDM+PNG	8.2	0.009	0.0074	0.090	0.35	-1
Euclid Stage IV	photo-z	WL+2D photometric	wCDM + PNG	4.7	0.005	0.0048	0.054	0.32	-
Euclid	spectro-z	WL+2D spectroscopic	wCDM + PNG	5.7	0.005	0.0051	0.051	0.35	-
Euclid + Planck	photo-z	WL+2D photometric	wCDM + PNG	4.5	0.005	0.0044	0.052	0.20	-
Euclid + Planck	spectro-z	WL+2D spectroscopic	wCDM + PNG	5.3	0.005	0.0037	0.035	0.15	- :

Pillepich, Porciani, Reiprich, in prep.; Merloni et al. (arXiv:1209.3114). DES and Euclid from Giannantonio et al. 2012.

Challenges

- Getting redshifts for all clusters. -> X-ray-z, photo-z, spectro-z.
- L_x-M relation might be more complex (e.g., mass and redshift dependent scatter). -> Multiwavelength mass-calibration program.
- Handling AGN (X-ray–emitting supermassive black holes) contamination. -> Detailed simulations of the *eROSITA* sky, pointed follow-up observations.

Summary of Conclusions

- *eROSITA* will be launched in about 2 years.
- It will discover 100k clusters, among them *all* massive ones in the observable Universe.
- It will likely be the first "Stage IV" dark energy probe world-wide.
- It will yield competitive and complementary constraints on dark energy, e.g., Δw_{DE} <3%, but also on modified gravity, neutrinos, primordial non-Gaussianity,
- Even tighter constraints possible through lowscatter mass proxies (e.g., T) from survey (~10⁴ clusters) and pointed phase follow-up.

