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* probes of fundamental physics

* probes of high-energy astrophysics
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Why Investigate binary neutron stars?

® \We know they exist as opposed
to binary BHs, whose existence s
expected but never observed.

e Excellent sources of gravitational
waves (GWs) and are expected to
be most common source for

advanced detectors

i *\Ve expect them related to SGRBs:
sl cnergies released ~ 0%V erg,

eDespite decades of observations no
self-consistent model has yet been
produced to explain them
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Mathematical framework

Numerical relativity (NR) solves Einstein equations in those regimes in
which no approximation holds: eg in the most nonlinear regimes of the
theory. We build codes which we consider as “theoretical laboratories'.
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The two-body problem in GR

* For BHs we know what to expect:

BH + BH === B + oravitational waves (GWs)

* For NSs the question is more subtle: the merger leads to an
hyper-massive neutron star (HMNS), ie a metastable equilibrium:
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All complications are in the intermediate stages; the rewards high:

e studying the HMNS will show strong and precise imprint on the EOS

* studying the BH+torus will tell us on the central engine of GRBs

NOTE: with advanced detectors we expect to have a realistic
rate of ~40 BNSs inspirals a year,ie ~ | a week  (Abadie+ 2010)



‘merger - HNNS w—)p B + torus”

Quantitative differences are produced by:

- the gravitational mass:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time



Animations: Kaehler, Giacomazzo, LR

MDA, Baiotti, Giacomazzo, LR (PRD 2008, CQG 2008)
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Waveforms: cold EOS
high-mass binary
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Animations: Kaehler, Giacomazzo, LR
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Waveforms: cold EOS

high-mass binary low-mass binary
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‘merger - HNNS w—)p B + torus”

Quantitative differences are produced by:

- the gravitational mass:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- the EOS (“cold” or “hot”):
a binary with an EOS with large thermal capacity (ie hotter after
merger) will have more pressure support and collapse later

~IELE: =
“cold” is a polytropic EQS: p = K p
“hot”" is an ideal-fluid EOS: p = pe(I" — 1)



Animations: Kaehler, Giacomazzo, Rezzolla
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Waveforms: hot EOS
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Imprint of the EOS: hot vs cold
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Imprint of the EOS: frequency domal

Andersson et a

1 lll 1 L lll 1 1 L

1o-2t L/ “WBH-BH (200,  |OW-MaASS e
NS-NS (2_,69M;)
10-22 AN / II"\ =
10723 | 3
1d LIG(

10724 - E
D=100Mpc -

10-25 1l L1l 1 1111l

10 100 1000
f (Hz)

104

1021

10-25

3
-(GRG 2009)

llll

BH-BH (200M,)

high-mass -

NS-NS (2.98M,) .

" D=100Mp¢:

1l

10 100

1000
f (Hz)

104

~ With sufficiently sensitive detectors, GWs will work
as the Rosetta stone to decipher the NS interior

P

.-.‘" et



‘merger - HNNS w—)p B + torus”
Quantitative differences are produced by:

- the gravitational mass:
a binary with smaller mass will produce a HMNS further away
from the stability threshold and will collapse at a later time

- the EOS (“cold” or “hot”):
a binary with an EOS with large thermal capacity (ie hotter after
merger) will have more pressure support and collapse later

- mass asymmetries:
tidal disruption before merger; may lead to prompt BH

- radiative processes:
radiative losses will alter the equilibrium of the HMNS

- magnetic fields:
the angular momentum redistribution via magnetic braking or
MRI can increase/decrease time to collapse



0.00 2255 Animations: Glacomazzo, Koppitz, LR

time [ms)

Total mass : 3.37 Ms; mass ratio :0.80;

the toril are generically more massive

the toril are generically more extended

the toril tend to stable quasi-Keplerian configurations
overall unequal-mass systems have all the ingredients

= needed to create a GRB




lorus properties: density

spacetime diagram of rest-mass density along x-direction
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equal mass binary: note unequal mass binary: note
the periodic accretion and  the continuous accretion
the compact size; densities  and the very large size and
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Jorus properties: bound matter

spacetime diagram of local fluid energy: uy;
M3.6q1.00

M3.4q0.80
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equal mass : all matter s clearly ~ unequal mass: some matter Is

oound, e, uy < —1 unbound while other Is ejected at
Note the accretion Is quasl- large distances (cf. scale). In these
beriodic regions r-processes can take place



-xtending the work to hot realistic EOSs
Galeazzi, Kastaun, LR
Ve are now able to perform simulations also with realistic
hot EOSs (Lattimer-Swesty, Shen-et-al, Shen-Horowitz-Teige, etc.)
and taking first steps towards modelling radiative losses (via
“leakage” approach) and r-process nucleosynthesis.

Density T=0.000 ms Density

SHT EOS, Shen et al. 2011
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-xtending the work to hot realistic EOSs

As expected, many of the qualitative features of analytic EOSs
(Ideal-fluid) are present also when considering realistic EOSs:
merger = HMNS — BH+torus: Miorus = 0.024 Mg = 0.6% M,
small but expected for equal-mass binaries

Density I'=31.777 ms Density T'=31.777 ms
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-xtending the work to hot realistic EOSs

Particularly interesting are the evolutions of
the temperature and of the electron fraction

Color range in between | and ~200 MeV

Temperature [=14.24 ms " & Temperature




Temperature

density

~

®)

l ¢ On large scales, temperature and density do not
B track each other; as they do Instead in the HMNS.

& o About |0 Mo are ejected from the HMNS and a
l fraction of this will undergo r-process nucleosynthesis

B o Other fraction will accrete back on the torus or
§ directly onto the BH directly it HMNS has collapsed
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-xtending the work to ideal MHAD

NSs have large magnetic fields and 1t is natural to ask:

* can B-fields be detected during the inspiral!

*NO: present and future GW detectors will not be
sensitive enough to measure the small differences

Glacomazzo, LR, Baiotti (2009)

e can B-fields be detected in the HMNS!?

XYES (in principle): di

time of the

ferent B-fields change the survival

MNS (effect may be degenerate)

Glacomazzo, LR, Baiotti (2010)

* can B-fields grow after BH formation?

X YES: B-fields are subject to instabilities and rotation of
the BH introduces preferred direction for field seometry

LR, Giacomazzo, Baiotti, + (201 |



Animations:, LR, Koppitz

Typical evolution for a magnetized binary
(hot EOS) M = 1.5 M, By = 102 G
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Going beyond BH formation

From a GWV point of view,
the binary becomes silent
after BH formation and
ringdown.

s this really the end of the story!?
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Crashing neutron stars can make gamma-ray burst jets

Neutron stars
Masses: 1.5 suns N S —
Diameters: 17 miles (27 km) I
Separation: 11 miles (18 km) .

Simulation begins 7.4 milliseconds 13.8 milliseconds

Hodmndlam«er 5.6 miles (9km) .

15.3 milliseconds 21.2 milliseconds 26.5 milliseconds
Credit: NASNAEIIZIBJM Koppitz and L. Rezzolla

J/M? = 0.83 Mior = 0.063Ms  tacer =~ Mior/M ~ 0.3 s



rest—maoss density
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| he process In a cartoon

ERese

what are the conditions u
nole can be formed from the collision of
two self-gravitating objects?

uestion Is very simple:

nder which a black

The answer does not exist yet:

FFOESEH

Ticient/necessary conditions are

know

N. Some guidance Is of

hoop conjecture

2
RhOOp < Rs = ZMG/C Not a rigorous condition!

(difficult to measure
energy In a volume in GR)

ered by Thorne’s

Numerical-relativity simulations can provide clues



| he process In a cartoon

metastable object

#" subcritical star

" supercritical

All of this Is rather -
obvious: less obvious Is ‘
that the metastable object

shows a critical behaviour
(Jin et al 2007/, Kellermann, LR et al 2010)

black hole
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A brief introduction to critical behaviour

Given a series of initial data

B . .
parametrized by a scalar quantity
e P the critical solution at P* will

separate two basins of attracting
solutions.

Solutions near the critical one will
>/ survive on the critical manifold for
o*] * | | |
A =~ P21 3 certain time before evolving

A P* : :
X towards the corresponding basin
stable star

The critical solution Is attractive on
the critical manifold C, 1e all but
one mode converge towards Z
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A simple scaling behaviour
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For any value of the boost
we can compute the
threshold between BHs

and NSs and find this
follows a simple scaling law
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A simple scaling behaviour

e e e FOFARYVEIUe OFtRe-boost
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For divergent kinetic energies, the critical BH has infinitesimal mass



Conclusions

* Modelling of binary neutron stars is now mature. All aspects
can be followed accurately: inspiral, merger, collapse to BH=+torus.

* GWs from BNSs are much more complex/rich than those
from BBHSs: can be the Rosetta stone to decipher the NS interior.

* Magnetic fields unlikely to be detected during the inspiral but
important after the merger (amplified by dynamos/instabilities).

*Collisions of selfgravitating fluids show simple scaling behaviour
and extrapolation to LHC scales suggests BHs are unlikely.

*Binary neutron stars are formidable laboratories we are
starting to explore. I'here is still a lot more to do: radiative
transfer, resistive effects, nucleosynthesis, etc. Stay tuned!



