Equations of state of ultra-dense matter

> Alessandro Drago University of Ferrara

- Lab indications of a phase transition
 - Sound velocity
 - Transverse mass
 - Strangeness production
- New experiments proposed
- From labs to stars
 - Isospin dependence
 - Temperature dependence
 - Strangeness (hyperons and quarks)
- One or two M-R relations?
 - Metastability and GRBs
 - The role of LOFT

Lab experiments testing matter at high density and temperature

Heavy Ion Collisions collective velocities of matter

Velocities in the reaction plane

Merdeev, Satarov, Mishustin 2011

Sound velocity

Gazdizicki, Gorenstein, Seyboth 2011

 $S_{NN} = 2 m (E_{beam} + m)$

Steinheimer, Bleicher 2012

Also Russkikh & Ivanov 2006

Transverse mass

$$m_T = (m^2 + p_T^2)^{1/2}$$

Gazdizicki, Gorenstein, Seyboth 2011

Strangeness production

Gazdizicki, Gorenstein, Seyboth 2011

Which densities are tested in HIC?

Central densities during HIC

Freeze-out conditions

From Danielewicz, Lacey & Lynch 2002

Based on AGS data at Elab <= 10 A GeV

Sound velocity in a mixed quark-hadron phase (MIT-bag model)

(Possible) phases of matter at high ρ and T

Experiments on superdense nuclear matter

Experiment	Energy range	Reaction rates
	(Au/Pb beams)	Hz
STAR@RHIC	$\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$	1 – 800
BNL		(limitation by luminosity)
NA61@SPS	E _{kin} = 20 – 160 A GeV	80
CERN	$\sqrt{s_{NN}}$ = 6.4 – 17.4 GeV	(limitation by detector)
MPD@NICA	$\sqrt{s_{NN}}$ = 4.0 – 11.0 GeV	~1000
Dubna		(design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)
CBM@FAIR	$E_{kin} = 2.0 - 35 \text{ A GeV}$	10 ⁵ – 10 ⁷
Darmstadt	$\sqrt{s_{NN}}$ = 2.7 – 8.3 GeV	(limitation by detector)

From lab to stars

Shapiro delay measurement of a 2 solar mass neutron star P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hessels, *Nature*, 467, 1081 (2010)

Isospin dependence of critical densities

Di Toro et al. 2006

Temperature in heavy ion collisions

Ivanov, Russkikh, Toneev 2006

In HIC temperatures exceed 100 MeV for energies larger than a few GeV per nucleon

Phase diagram of neutral quark matter: effect of neutrino trapping and temperature Ruster et al. PRD73 (2006) 034025

Superconducting gaps vanish at temperatures above 100 MeV (or less...): they are not present in matter tested in heavy ion collisions but they can exist in compact stars

Strangeness production

- In heavy ion experiments strangeness can be produced only by strong-interaction and therefore via associated production. The typical fraction of strangeness is less than 10%
- In a compact star strangeness is mainly produced by weak interaction. Hyperons start appearing at densities above (2.5 3) ρ_0
- Hyperons can significantly soften the EoS: is it possible to have a 2 Ms compact star with hyperons? Yes, but...

Hyperonic stars in a non-relativistic BHF Baldo, Burgio, Schulze Phys. Rev. C61 (2000) 055801

The maximum mass of a hyperonic star in BHF is smaller than 1.4 Ms !

Hyperonic stars in a non-relativistic BHF with parametrised 3-body forces between hyperons Vidana et al. Europhys.Lett. 94 (2011) 11002

3-body forces are not sufficent to reach two solar masses Note that the central density is very large, $5 - 9 \rho_0$ A relativistic approach could be needed

Hyperonic stars in a relativistic mean-field with a repulsive vector ϕ -meson interaction Weissenborn, Chatterjee, Schaffner-Bielich Nucl.Phys. A881 (2012) 62

Large maximum masses can be obtained but only if the effective mass of the nucleon is strongly reduced

Hybrid and quark stars can be massive

Alford, Blaschke, Drago, Klaehn, Pagliara, Schaffner-Bielich Nature 445, E7 (2007)

Transitions from a purely hadronic configuration to a configuration containing at least in part deconfined quark matter are possible. Energies of the order of a few 10⁵³ erg are liberated in the transition

Maximum masses for quark stars MIT-bag model with gluonic interaction Weissenborn et al. Astrophys.J. 740 (2011) L14

Maximum masses for quark stars MIT-bag model with CFL condensate Weissenborn et al. Astrophys.J. 740 (2011) L14

160 3-flavor line 1.9 Mo 155 B_{eff}^{1/4} [MeV] 150 $2.1 M_{o}$ 1.97 M_o 2.01 M_o 1.93 M $2.2 M_{o}$ 145 2-flavor line 2.3 M 2.4 M 140 135 20 40 80 60 100 Δ [MeV]

Maximum masses up to 2.2 Ms can be obtained

Metastability of compact stars and GRBs

Magnetar model of GRBs (Metzger et al.)

Transition from a neutron star to a strange (or hybrid) star

Excess of long quiescent times in GRBs

FIG. 1.— BAT count rates (upper panel) and photon index evolution (lower panel) of GRB 110709B. The spectral model is a simple power law.

Nakar & Piran 2002

Zhang et al.2012

The role of LOFT

Theoretical M-R relations

Lattimer & Prakash Phys.Rept.2007

The Equation of State from Observed Masses and Radii of Neutron Stars Steiner, Lattimer, Brown 2011

Bayesian analysis based on LMXBs and on x-ray bursts data

assumption that all neutron stars must lie on the same mass-radius curve

LOFT: measuring masses and radii with (5-10)% precision

Conclusions

- HIC lab results indicate «new physics» at energies between highest AGS and lowest SPS data
- Data are compatible with quark deconfinement or with chiral symmetry restoration
- New experiments are under development in Europe, Russia and maybe USA
- It is highly non trivial to extrapolate from (almost) symmetric matter tested by HIC to β -stable matter inside compact stars (isospin and temperature dependence largely unknown)
- hyperonic stars are maybe possible: hyperons are almost certainly present in a 2 $\rm M_{s}\, star$
- A transition from nuclear matter to quark matter could be able to explain long quiescent times in GRBs (magnetar model followed by quark deconfinement)
- (Time separation between SN and GRB, allowing Fe absorbtion lines)
- Precise data on M and R would complement lab data in providing a mapping of the high density EOS of matter