Workshop on Recent Developments in Astronuclear and Astroparticle Physics, ICTP, Trieste, Nov. 19 -23, 2012

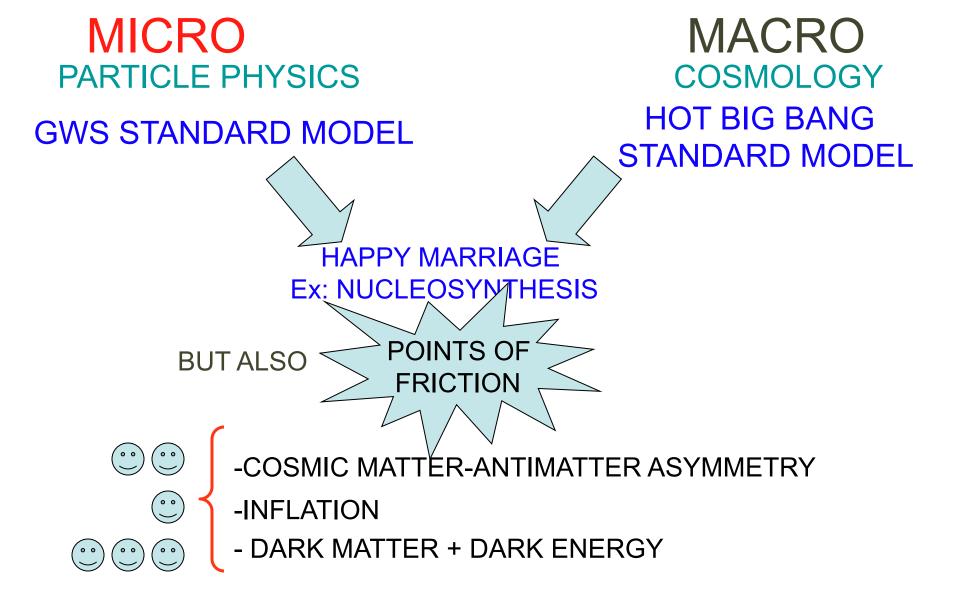
HUNTING the TeV NEW PHYSICS through the LHC – ASTROPARTICLE ALLIANCE

Antonio Masiero
Univ. of Padova and INFN

2014: the conquest of a new energy scale in physics

- ~1900 ATOMIC SCALE 10^{-8} cm. $1/(\alpha m_e)$
- ~1970 STRONG SCALE 10 $^{-13}$ cm. Me $^{-2\Pi/\alpha}s^b$
- ~2010 WEAK SCALE 10 -17 cm. *TeV-1* FUNDAMENTAL OR DERIVED SCALE?

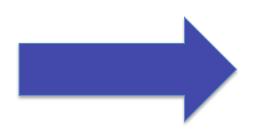
EX. EXTRA-DIMENSIONS


or

EX.: **TECHNICOLOR** or **SUSY** with ELW RAD. BREAKING

TeV STRING THEORY

NEW PARTICLES AT THE TEV SCALE?



"OBSERVATIONAL" EVIDENCE FOR NEW PHYSICS BEYOND THE (PARTICLE PHYSICS) STANDARD MODEL

The Energy Scale from the "Observational" New Physics

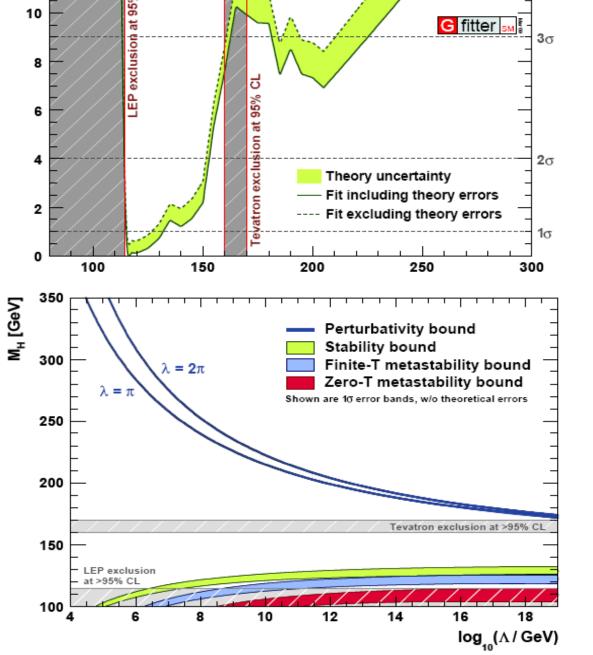
neutrino masses dark matter baryogenesis inflation

NO NEED FOR THE NP SCALE TO BE CLOSE TO THE ELW. SCALE

The Energy Scale from the "Theoretical" New Physics

 \star \star Stabilization of the electroweak symmetry breaking at M_W calls for an ULTRAVIOLET COMPLETION of the SM

already at the TeV scale



CORRECT GRAND UNIFICATION "CALLS" FOR NEW PARTICLES

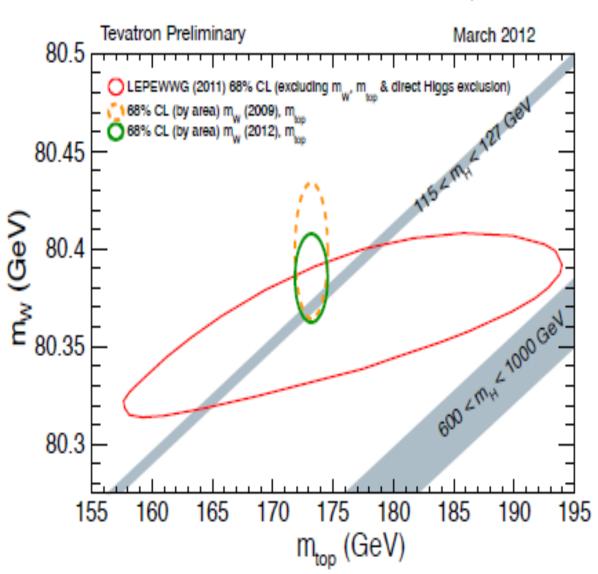
3 WAYS TO IMPLEMENT THE HIGGS MECHANISM

- NO HIGGS PARTICLE: HIGGSLESS MODEL (almost) killed by LHC (unlikely the observed scalar is an "impostor", however not impossible ex. dilaton, radion. Possibility of mixing of an "authentic" Higgs with the "impostor"...)
- COMPOSITE HIGGS: PSEUDO-GOLDSTONE BOSON
- ELEMENTARY HIGGS
- A) FINE-TUNED (unnatural Higgs anthropic road, high-scale fundamental theory taking care of it, ...)
- B) NATURAL (protection mechanism: low-energy SUSY; inexistence of the scale hierarchy problem: extra dimensions, warped space, ...)

LEP, SLC, TEVATRON LEGACY

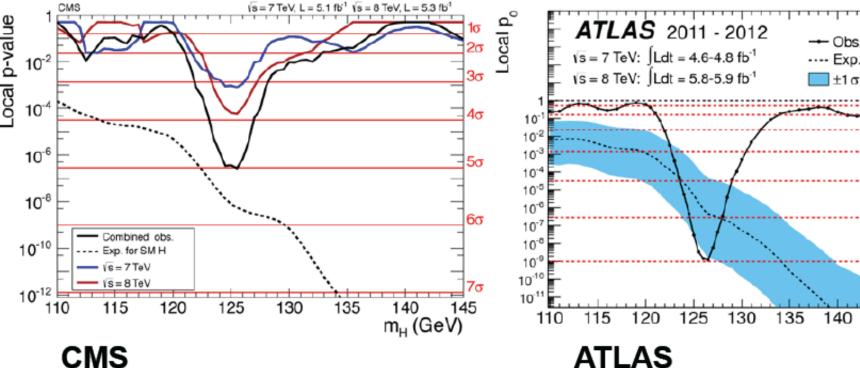
a light higgs (or something mimicking it) is definitely favored

the big desert between the TeV and the GUT scales only if the higgs is a narrow band between 130 and 180


Ellis, Espinosa, Giudice, Hoecker, Riotto

OUR "VIRTUAL" ENCOUNTER WITH THE HIGGS BOSON (OR "SOMETHING" MIMICKING IT)

With M_W = 80385±15 MeV


M_H = 94⁺²⁹₋₂₄ GeV M_H < 152 GeV @95% CL

LEPEWWG/ZFitter

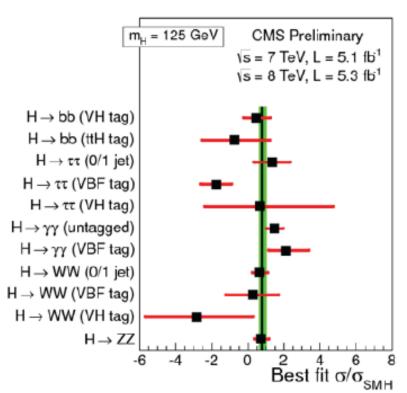
EVIDENCE OF A HIGGS-LIKE SCALAR BOSON AT $\geq 5\sigma$ (for

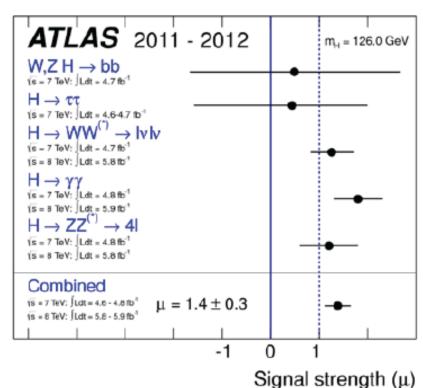
both ATLAS and CMS separately)

CMS expected at 5.8 observed at 5.0

expected at 4.9 observed at 6.0 140

145


m_H [GeV]


CMS: $m = 125.3 \pm 0.4 \text{ (stat)} \pm 0.5 \text{ (syst)} \text{ GeV}$

ATLAS: $m = 126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$

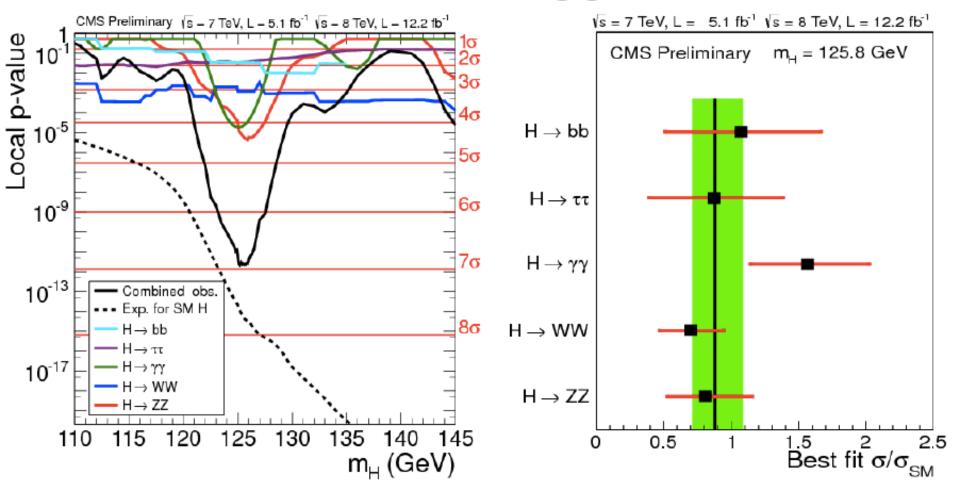
ICHEP, JULY 2012

THE SM Higgs or A scalar close to it?

CMS $\mu = \sigma/\sigma_{SM} = 0.87 \pm 0.23$ at 125.5 GeV

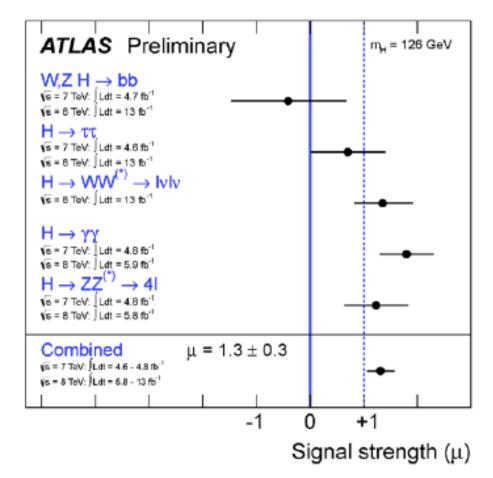
Best fit SM strength

ATLAS $\mu = \sigma/\sigma_{SM} = 1.4 \pm 0.3$ at 126.0 GeV


COMPATIBLE WITH THE SM HIGGS WITHIN 2σ – good agreement of the various modes but

DI-PHOTON ENHANCEMENT

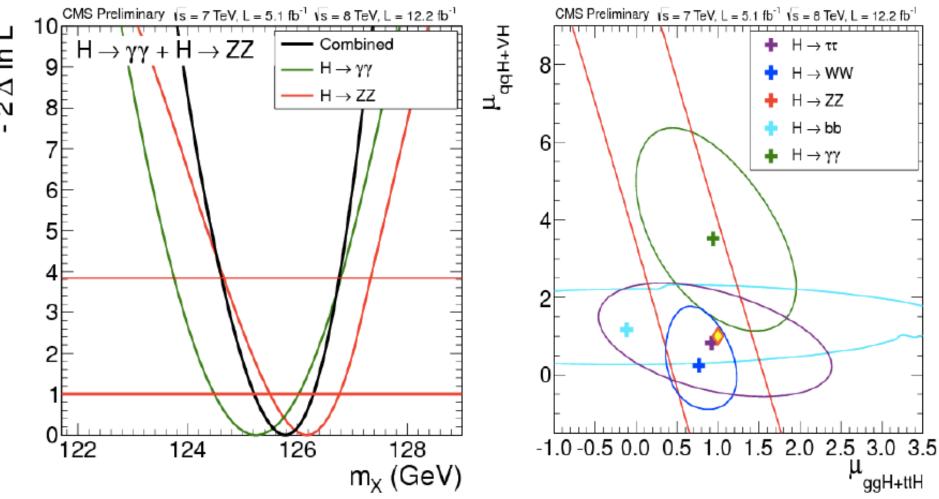
ICHEP JULY 2012


- SUPPRESSION IN THE ττ DECAY CHANNEL (CMS)

Combination of Higgs Results

Overall significance and signal strength

observed: 6.9; expected: 7.8 [signal strength: 0.88 ± 0.21]



- Previous result in July paper, using 2011 analyses of ττ and bb, July analyses for γγ, 4-lepton, and WW, gave μ = 1.4 ± 0.3
- New result is $\mu = 1.3 \pm 0.3$
- Assuming a common μ for all measurements, compatibility is 36%.
- Compatibility with SM μ=1 with observed measurement is 23%.

K. EINSWEILER, HPC, KYOTO, NOV. 2012

- New ττ and bb analyses using full 2012 data sample presented. Approaching SM μ=1 sensitivity, however both channels remain compatible with either background-only hypothesis or SM Higgs hypothesis. Improvements underway for full 2012 data sample.
- Updated combination of μ values for each channel presented. Globally, results are compatible with SM Higgs expectations. At m_H = 126 GeV, μ = 1.3 ± 0.3.
- Shifting from a search-based to a measurement-based program presents many challenges. In particular, final fitting and fit models, undergoing much deeper scrutiny and optimization.

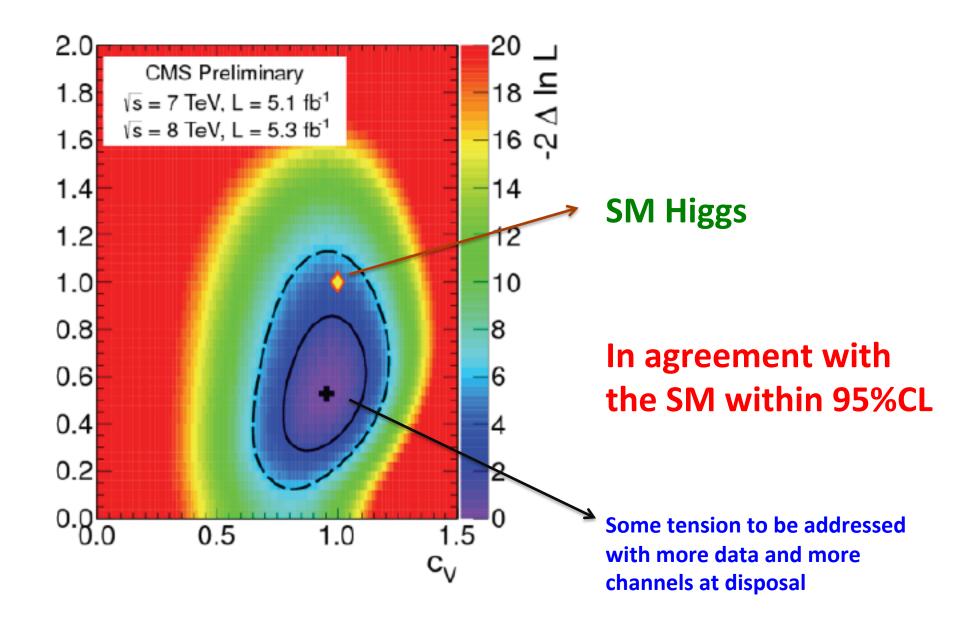
Combination of Higgs Results

Mass measurement and production strength

C. PAUS, HPC, '12

- $m_{\chi} = 125.8 \pm 0.4(\text{stat}) \pm 0.4 \text{ (syst) GeV}$
- Signal strengths consistent with each other and with SM

ITS COUPLINGS: IMPOSTOR, A HIGGS OR THE (SM) HIGGS


ICHEP2012

- Strictly sticking to the data, we cannot exclude the logical possibility that the observed particle is **not** connected to EWSB (however, Subtle is the Lord, but malicious He is not ...)
- The "a" vs. "the" dispute decided by 5 numbers:

$$\mathcal{L}^{eff}_{< m_h} \approx \text{CV}(\frac{2m_W^2}{v}W_\mu^+W_\mu^- + \frac{m_Z^2}{v}Z_\mu^2)h + \text{Cb}\frac{m_b}{v}\bar{b}bh + \text{C}_\tau\frac{m_\tau}{v}\bar{\tau}\tau h \\ + \text{CO}\frac{2\alpha}{9\pi v}F_{\mu\nu}^2h + \text{CO}\frac{\alpha_S}{12\pi v}G_{\mu\nu}^2h \\ + \mathcal{L}(h\to inv) \\ \text{In the SM all 5 } c=1 \text{ and } \mathcal{L}(h\to inv) \approx 0 \\ \text{BARBIERI, ICHER2012}$$

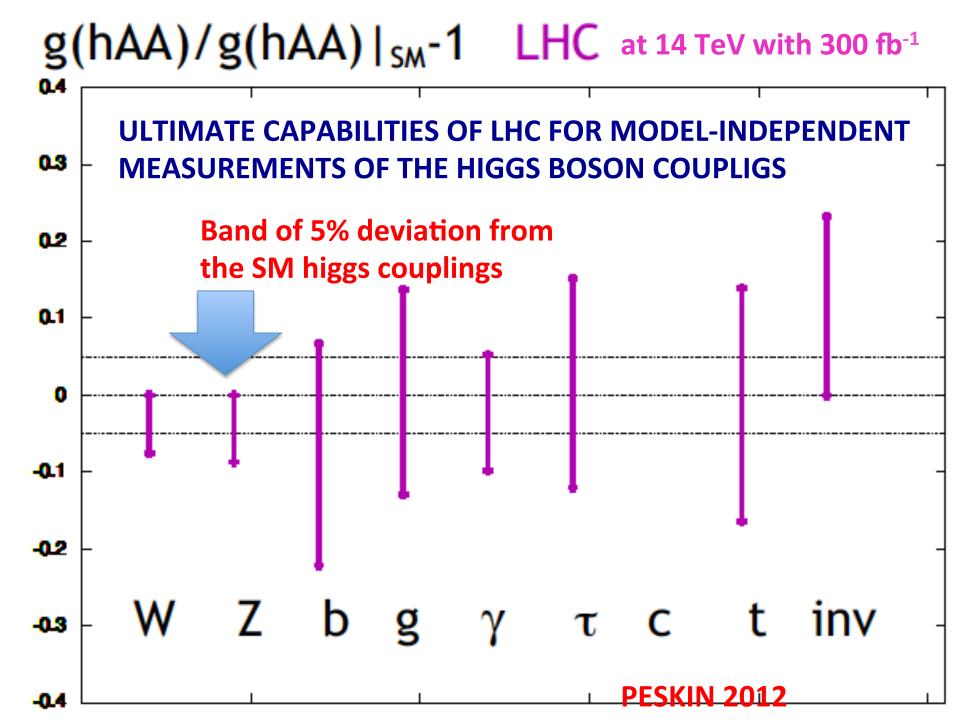
1 step - go from 5 to 2: c_V and c_F

- If EW symmetry breaking via the Higgs mechanism: H couplings to W and Z in a welldefined ratio protected by a custodial symmetry
 → c_V
- The couplings to all the fermions are assumed to scale with a common factor c_F
- Then: all tree-level Higgs couplings can be expressed in terms of only 2 param., c_v and c_f
- If the loop-induced couplings Hgg and H $\gamma\gamma$ receive contributions only from SM particles and there is no H invisible decay, then all partial widths scale either as c_V^2 or c_F^2 at LO, with the only exception of Γ_{vv} scaling as $|\alpha c_W + \beta c_t|^2$

HOW TO GO NON-STANDARD

- H MIXES WITH OTHER SCALARS (e.g. 2HDM, MSSM, NMSSM, ...) → all couplings possibly affected
- H IS NOT AN ELEMENTARY PARTICLE → all couplings possibly affected
- LOOPS IN H PRODUCTION (ex. g fusion) OR IN H DECAYS (ex. $H \rightarrow gg$, $H \rightarrow \gamma\gamma$) ARE MODIFIED BECAUSE OF NEW VIRTUAL PARTICLES RUNNING INSIDE THEM $\rightarrow c^g$ and c^γ affected

IF there is TeV NEW PHYSICS → not difficult to get variations of O(1) w.r.t. the SM expectations on the above 5 Higgs couplings


HOW PRECISE CAN WE BE ON AN SM-LIKE HIGGS PRODUCTION × BR at the LHC?

Decay	Prod	$10{\rm fb^{-1}}$	$60{\rm fb^{-1}}$	$300{\rm fb^{-1}}$
Decay	Flou	7 - 8 TeV	8 TeV	14 TeV
$H \to b\bar{b}$	VH	70%	30%	10 %
$H o b ar{b}$	$t ar{t} H$	-	60%	10 %
$H \to \tau \tau$	ggH	64%	40%	10 %
$H \to \tau \tau$	qqH	0470	40%	10 %
$H \to \gamma \gamma$	ggH	38%	20%	6 %
$H \to \gamma \gamma$	qqH	36%	40%	10 %
$H \to WW^*$	ggH	42%	16%	5 %
$H \to WW^*$	qqH	-	60%	16 %
$H o ZZ^*$	ggH	40%	16%	5 %
c_V	-	10%	-	2%
c_F	-	25%	-	5%

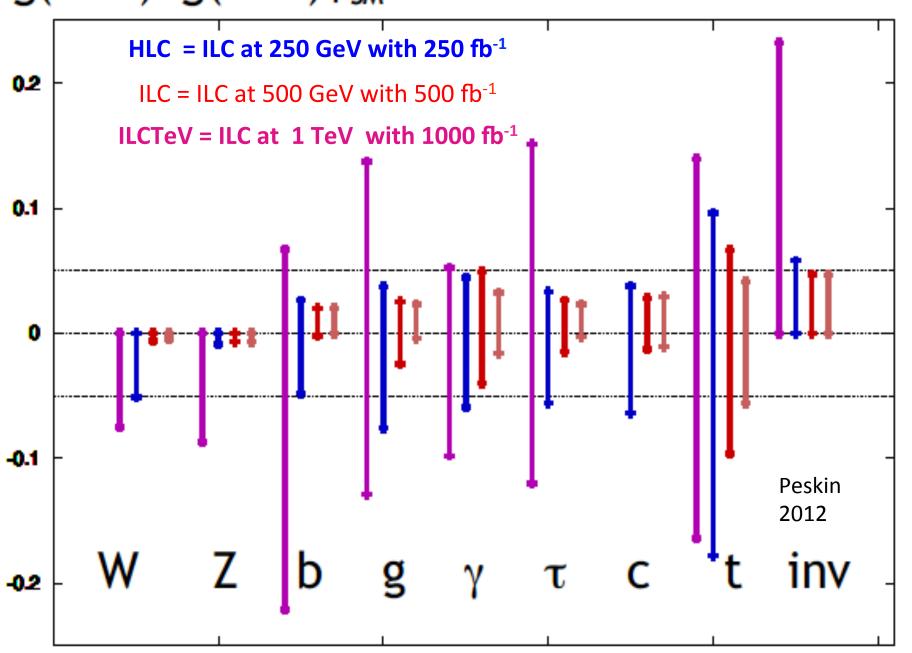
M_H fixed at 125 GeV

Assuming that the stat. errors scale with the luminosity, whilst the syst. and theor. errors remain the same

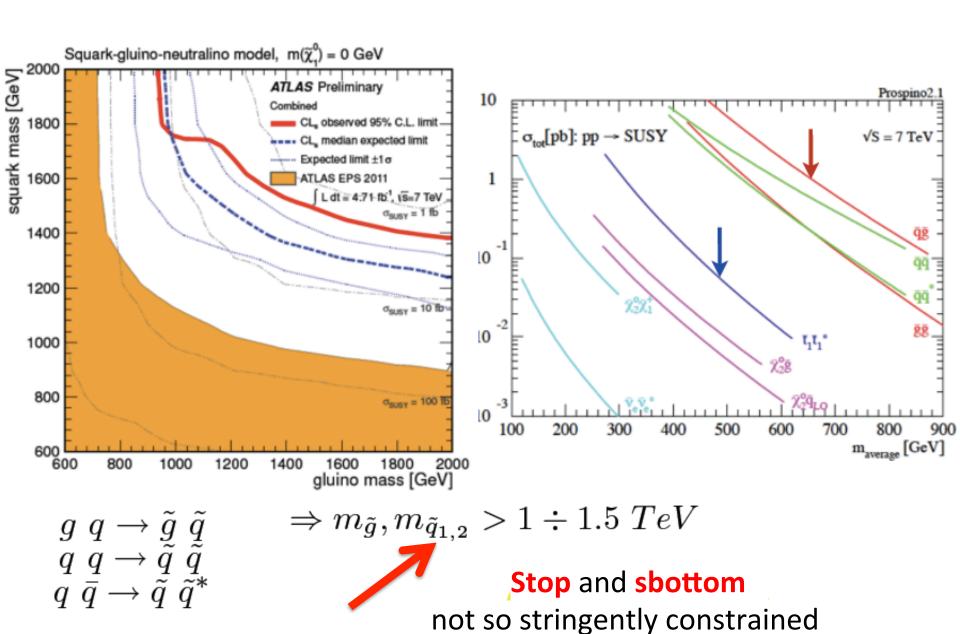
WG Contribution to the Open Symposium of the EU Strategy P. Anger et al.

LC at $\sqrt{s} = 250 \text{ GeV}$: a HIGGS FACTORY

- Expected O(10⁵) Higgs bosons for ~ 250 fb⁻¹
- Accuracies on Higgs couplings for M_H = 125 GeV (on individual couplings and not only on products of production cross section × BR)


g / BR	g_{HWW}	g_{HZZ}	g_{Hbb}	g_{Hcc}	$g_{H au au}$	g_{Htt}	9ннн	$BR(\gamma\gamma)$	BR(gg)	BR(invis.)
Precision	1.4 %	1.4 %	1.4 %	2.0 %	2.5 %	15 %	40 %	15 %	5 %	0.5 %

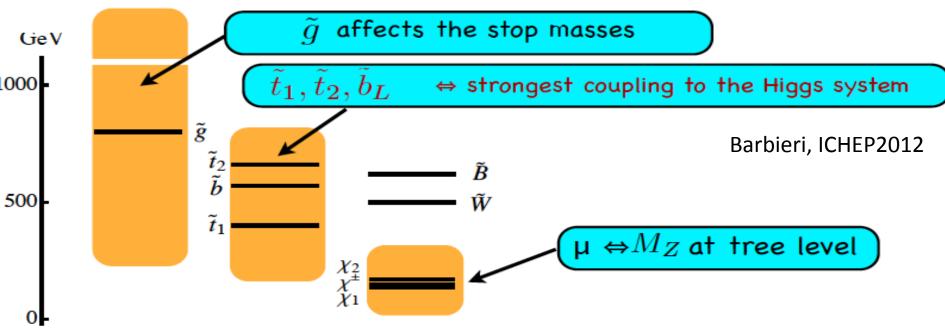
Baer et al., ILC Detailed Baseline Design report 2012


PRECISION ON THE MEASUREMENT OF M_H : 0.03%

Probing additional non-SM-like Higgs bosons: the 125 GeV Higgs could be the second lightest Higgs in the spectrum → lighter Higgs (maybe below the LEP limit for a SM-like Higgs) with reduced couplings to gauge bosons

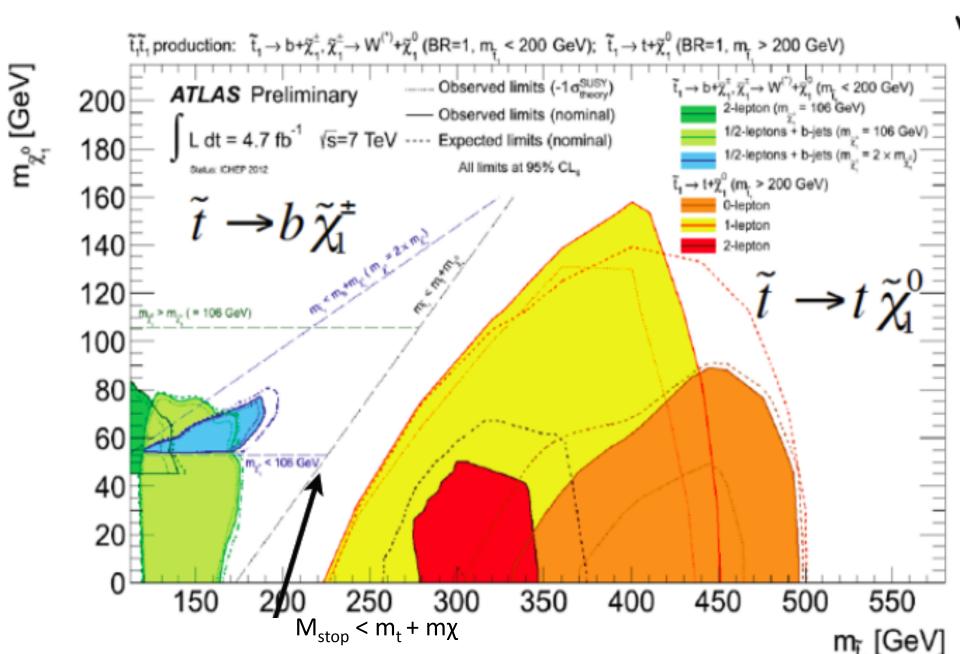
$g(hAA)/g(hAA)|_{SM}-1$ LHC/HLC/ILC/ILCTeV

IS LOW-ENERGY SUSY STILL ALIVE?



NATURAL SUSY

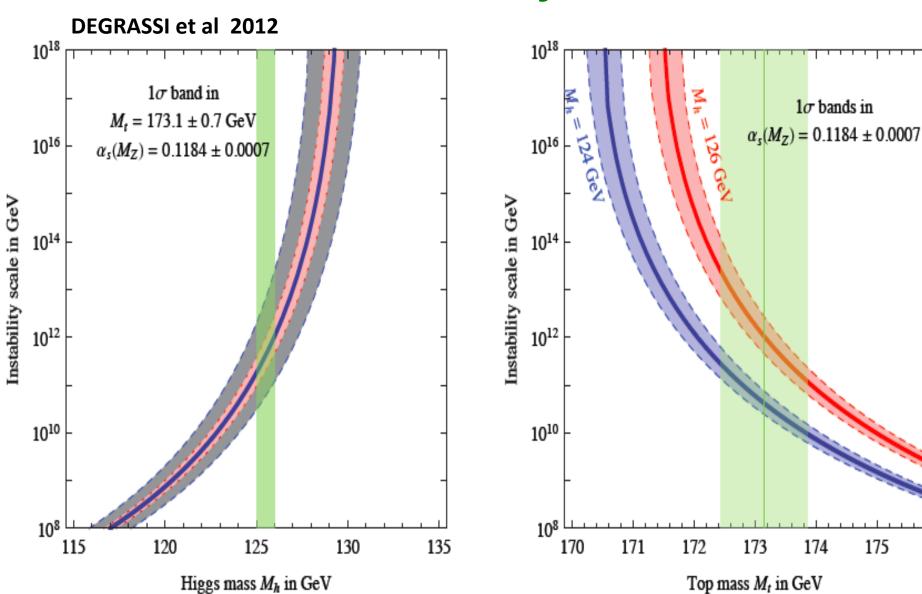
LOW-ENERGY SUSY to cope with the gauge hierarchy


problem: only the SUSY particles involved in the cancellation of the quadratic div. to the Higgs mass have to remain "light"

"s-particles at their naturalness limit"

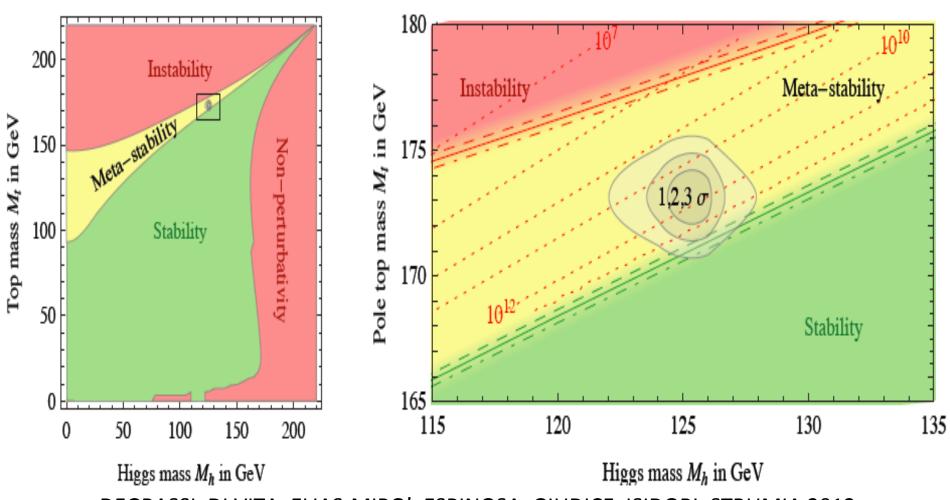
orange areas indicative and dependent on how the Higgs boson gets its mass $ilde{B}, ilde{W}$ not much constrained but expected below $m_{ ilde{q}}$

Hunting for a light s-top



LOW-ENERGY NEW PHYSICS and the DILEMMA:

NATURAL or **FINE-TUNED HIGGS**


- Higgs mass PROTECTION through SYMMETRIES: SUSY,
 Higgs as a Pseudo Goldstone boson
- New STRONG INTERACTION near the TeV scale (+ Higgs as a PGB)
- TeV UV saturation (little-large hierarchies identified): extra-dimensions around the corner
- Randall-Sundrum path: warped space-time
- Fine-tuning (for the Higgs mass, for the cosmological constant) is a fictitious problem: anthropic (environmental) selection, multiverse, 10⁵⁰⁰ vacua of String theories, ...

TOP and HIGGS MASSES decide on the VACUUM STABILITY of our UNIVERSE

176

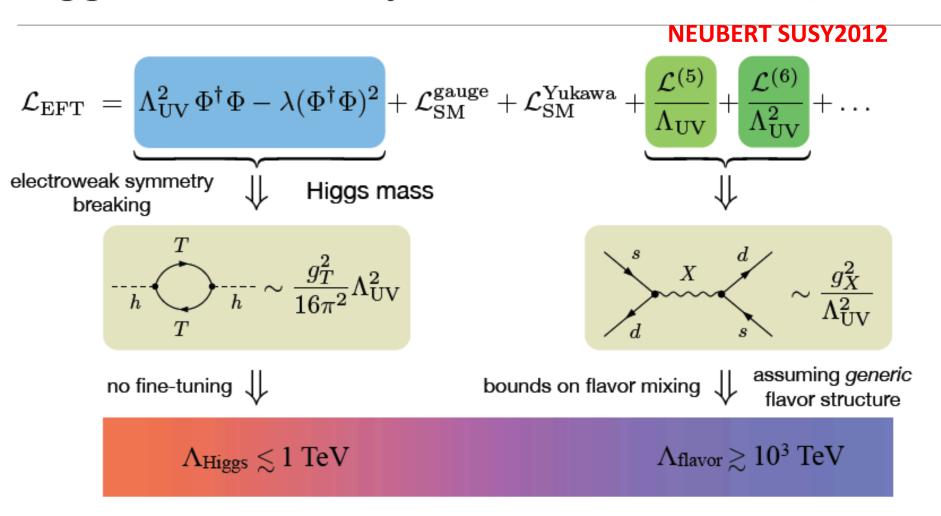
LIVING DANGEREOUSLY IN A "PROBABLE" METASTABLE UNIVERSE

DEGRASSI, DI VITA, ELIAS-MIRO', ESPINOSA, GIUDICE, ISIDORI, STRUMIA 2012 FIRST COMPLETE ANALYSIS NNLO OF THE SM HIGGS POTENTIAL

ON THE IMPORTANCE OF PRECISELY MEASURING HIGGS and TOP MASSES

DEGRASSI ET AL

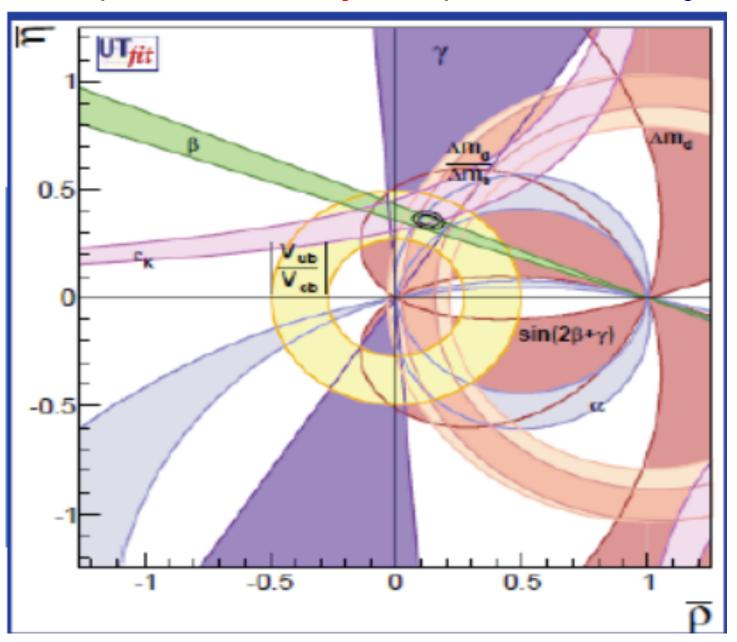
Type of error	Estimate of the error	Impact on M_h
M_t	experimental uncertainty in M_t	±1.4 GeV
$lpha_{ m s}$	experimental uncertainty in $\alpha_{\rm s}$	$\pm 0.5 \text{ GeV}$
Experiment	Total combined in quadrature	$\pm 1.5~\mathrm{GeV}$
λ	scale variation in λ	$\pm 0.7 \text{ GeV}$
y_t	$\mathcal{O}(\Lambda_{\mathrm{QCD}})$ correction to M_{ℓ}	$\pm 0.6~{\rm GeV}$
y_t	QCD threshold at 4 loops	$\pm 0.3~{\rm GeV}$
RGE	EW at 3 loops + QCD at 4 loops	$\pm 0.2~{\rm GeV}$
Theory	Total combined in quadrature	$\pm 1.0~{\rm GeV}$


INTRINSIC DIFFICULTY TO "DEFINE" WHAT THE TOP MASS IS AT A HADRON COLLIDER WITH UNCERTAINTY ≤ 1 GeV

Some thoughts on this part: Higgs and beyond

- Reminder: we got a piece (a very important one, but just a piece) of a large mosaic still unknown let's not hurry to draw conclusions (in particular on the absence of "visible" new physics at the TeV scale ...)
- There seems to be no entirely "natural" theory to account for the naturalness (i.e. gauge hierarchy) problem in the ELW symmetry breaking. . Already known from LEP, now more and more evident
- VIRTUALITY vs. REALITY? (i.e., look for NP through its virtual effects ex. deviations in the Higgs couplings or through the production and detection of its new particles). At this moment the "virtual path" seems attractive; however, one has to recognize also the limits of the virtual path: i) the barrier of the theoretical uncertainties; ii) the difficult interpretation of potential discrepancies with the SM expectations.

At the end we badly need "reality" to say that we "know" something.


Higgs and flavor physics as indirect BSM probes

Possible solutions to flavor problem explaining $\Lambda_{\text{Higgs}} << \Lambda_{\text{flavor}}$:

- (i) $\Lambda_{\rm UV}>>1~{
 m TeV}$: Higgs fine tuned, new particles too heavy for LHC
- (ii) $\Lambda_{\rm UV} pprox 1~{
 m TeV}$: quark flavor-mixing protected by a flavor symmetry

the (almost complete) CKM triumph

THE FLAVOUR PROBLEMS

FERMION MASSES

What is the rationale hiding behind the spectrum of fermion masses and mixing angles (our "Balmer lines" problem)

LACK OF A FLAVOUR "THEORY"

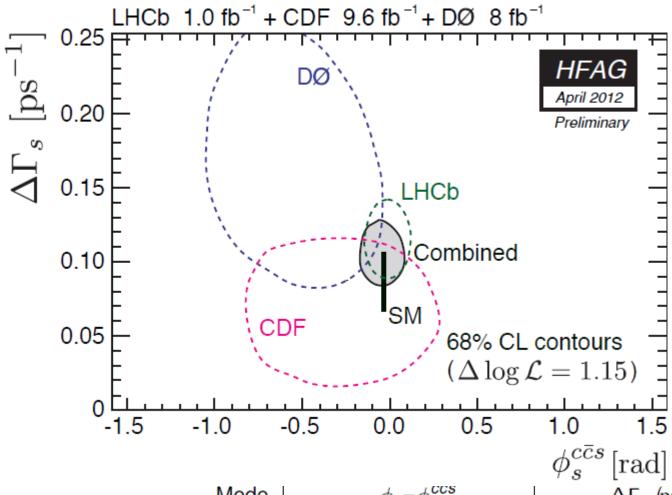
(new flavour – horizontal symmetry, radiatively induced lighter fermion masses, dynamical or geometrical determination of the Yukawa couplings, ...?)

FCNC

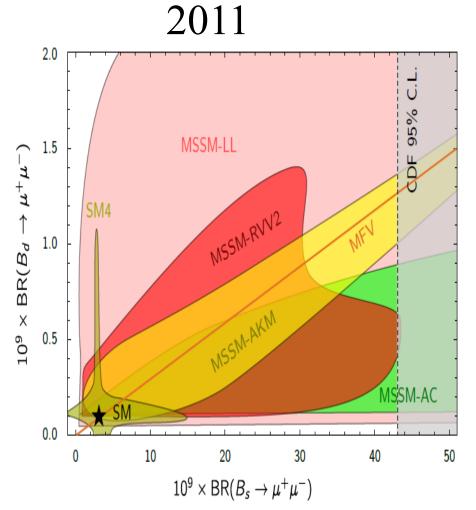
Flavour changing neutral current (FCNC) processes are suppressed.

In the SM two nice mechanisms are at work: the GIM mechanism and the structure of the CKM mixing matrix.

How to cope with such delicate suppression if the there is new physics at the electroweak scale?

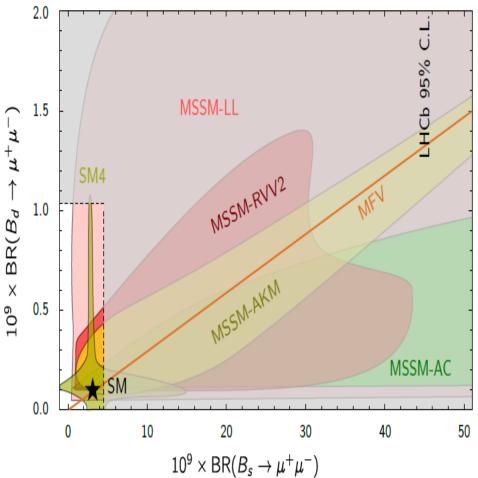

From a closer look

From the UTA (excluding its exp. constraint)


	Prediction	Measurement	Pull
sin2β	0.81±0.05	0.680±0.023	2.4 ←──
γ	68°±3°	76°±11°	<1
α	88°±4°	91°±6°	<1
V _{cb} · 10 ³	42.3±0.9	41.0±1.0	∢1
$ V_{ub} \cdot 10^3$	3.62±0.14	3.82±0.56	<1
$\epsilon_{K} \cdot 10^{3}$	1.96±0.20	2.23±0.01	1.4 ←
BR(B $\rightarrow \tau \nu$)· 10 ⁴	0.82±0.08	1.67±0.30	-2.7 ←──

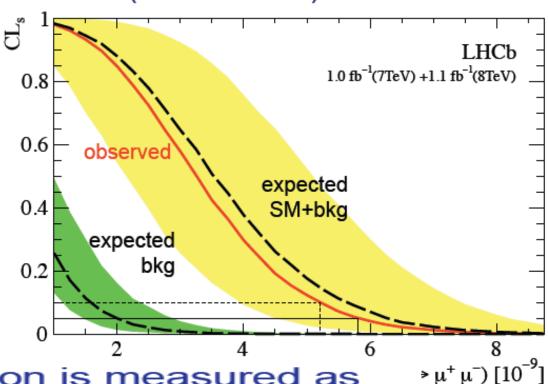
LHCb and CPV in the B_s decays

Ref.	Mode	$\phi_{\mathcal{S}} = \phi_{\mathcal{S}}^{ccs}$	$\Delta\Gamma_s \text{ (ps}^{-1)}$
CDF Note 10778 (2012)	$J/\psi \phi$	L 2	$0.068 \pm 0.026 \pm 0.007$
DØ, PRD D85 032006 (2012) $J/\psi \phi$	$-0.55^{+0.38}_{-0.36}$	$0.163^{+0.065}_{-0.064}$
LHCb-CONF-2012-002	$J\!/\!\psi\phi$	$-0.001 \pm 0.101 \pm 0.027$	$0.116 \pm 0.018 \pm 0.006$
LHCb, arXiv:1204.5675		$-0.019^{+0.173+0.004}_{-0.174-0.003}$	_
Combined [HFAG'2012]		$-0.044^{+0.090}_{-0.085}$	$+0.105 \pm 0.015$


David Straub: arXiv:1205.6094

2012
S and LHCb results

ATLAS, CMS and **LHCb** results combined:


BPH-12-009, ATLAS-CONF-2012-061, LHCb-CONF-2012-017

Results for $B_s \rightarrow \mu^+\mu^-$: Limits and significance

- Evaluate compatibility with background only and background+signal hypotheses (CLs method)
 - 2011+2012:
 bkg only p-value:
 5 x 10⁻⁴
 (corresponds to 3.5σ)
 - 2012 alone
 bkg only p-value:
 9 x 10⁻⁴
 (corresponds to 3.3 σ)

The branching fraction is measured as

$$BR(B_s \rightarrow \mu^+ \mu^-) = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$$

This is the first evidence of the decay B_s→ μ⁺μ⁻!

DIRECT CPV IN $D^0 \rightarrow \pi^+\pi^-, K^+K^-$

2011: LHCb, 620 pb⁻¹ first evidence (3.5 σ) of CPV in charm

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.82 \pm 0.21 \pm 0.11)\%$$

2012: fom CDF, 9.6 fb⁻¹, + LHCb + BELLE

$$\Delta A_{CP} \equiv A_{CP} \left(K^+ K^- \right) - A_{CP} \left(\pi^+ \pi^- \right) = (-0.74 \pm 0.15)\%$$

This result demands an enhancement of the suppressed CKM amplitudes of the SM of a factor approx. 5 – 10 Isidori, Kamenik, Ligeti, Perez 2011

But the charm quark is **TOO HEAVY** to apply the ChPT, while, at the same time, it

is **TOO LIGHT** to trust the Heavy Quark Effective approach : **HENCE IT IS NOT**

IMPOSSIBLE THAT THE **SM** IS ONCE AGAIN FINDING A WAYOUT TO

SURVIVE! Golden, Grinstein 1989; Brod, Kagan, Zupan 2011

ON THE OTHER IT REMAINS POSSIBLE THAT NEW PHYSICS IS SHOWING UP... Giudice,

Isidori, Paradisi 2012; Barbieri, Buttazzo, Sala e Straub 2012

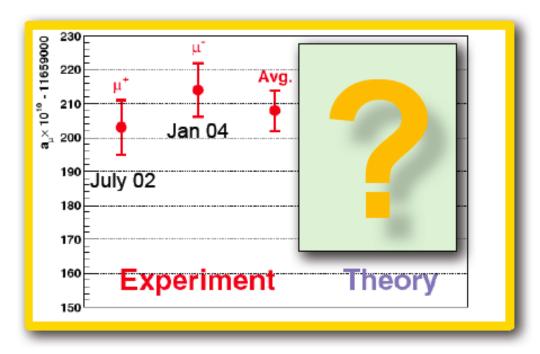
POSSIBLE SURPRISES FROM THE KAON TOO → NA62 ?

Ten Years Ago → Today L.Lellouch ICHEP 2002 UTA Lattice inputs 2012 Hadronic parameter [hep-ph/0211359] [www.utfit.org] $\hat{\mathbf{B}}_{K}$ 0.86(15) [17%] 0.75(2)[3%] f_{Bs} 238(31) MeV [13%] 233(10) MeV [4%] [1.5%]

On the Lattice side:

TARANTINO ICHEP2012

 f_{Bs}/f_{B} [6%] 1.20(2) 1.24(7) Â_{Bs} 1.34(12) [9%] 1.33(6) [5%]


1.00(3) [3%] B_{Bs}/B_{B} 1.05(7)

[7%] (quenched, $\mu_1 > m_s/2,...$) $F_{D*}(1)$ 0.91(3) [3%] [2%] 0.92(2)

[20%] [11%]

 $\mathsf{F}_{\centerdot}^{\mathsf{B} \to \pi}$ The last 10 years teach us that Lattice QCD has made important progresses (quenched->unquenched, higher computational power, better algorithms) More recently further improvements are being realized: simulations at the physical point, discretization effects well under control (in the light and heavy sectors), $N_f=2+1+1$, ...

The muon g-2: the experimental result

- **Today:** $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys})x10^{-11}[0.5ppm].$
- Future: new muon g-2 experiments proposed at:

 - Fermilab (E989), aiming at 0.14ppm

Has now Stage 1 Approval!

J-PARC aiming at 0.1 ppm

[D. Hertzog & N. Saito, U.Paris, Feb 2010; B.Lee Roberts & T. Mibe, Tau2010]

Are theorists ready for this (amazing) precision? No(t yet)

M. PASSERA 2012

The muon g-2: Standard Model vs. Experiment

Adding up all contributions, we get the following SM predictions and comparisons with the measured value:

$$a_{\mu}^{EXP}$$
 = 116592089 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ (CODATA'06)

$a_{\mu}^{\scriptscriptstyle \mathrm{SM}} \times 10^{11}$	$(\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}) \times 10^{11}$	σ
[1] 116 591 782 (59)	307 (86)	3.6
[2] 116 591 802 (49)	287 (80)	3.6
[3] 116 591 828 (50)	261 (80)	3.2
[4] 116 591 894 (54)	195 (83)	2.4

M. PASSFRA 2012

with $a_{II}^{HHO}(IbI) = 105 (26) \times 10^{-11}$

- [1] F. Jegerlehner, A. Nyffeler, Phys. Rept. 477 (2009) 1
- [2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar and KLOE10 2π)
- [3] HLMNT11: Hagiwara et al, JPG38 (2011) 085003 (incl BaBar and KLOE10 2π)
- [4] Davier et al, Eur.PJ C71 (2011) 1515, ⊤ data.

Note that the th. error is now about the same as the exp. one

THE EDM CHALLENGE

FOR ANY NEW PHYSICS AT THE TEV SCALE WITH NEW SOURCES OF CP VIOLATION → NEED FOR FINE-TUNING TO PASS THE EDM TESTS OR SOME DYNAMICS TO SUPPRESS THE CPV IN FLAVOR CONSERVING EDMS

$$|d_{\rm n}| < 2.9 \times 10^{-26} e \text{ cm } (90\%\text{C.L.}),$$

 $|d_{\rm Tl}| < 9.0 \times 10^{-25} e \text{ cm } (90\%\text{C.L.}),$
 $|d_{\rm Hg}| < 3.1 \times 10^{-29} e \text{ cm } (95\%\text{C.L.}).$

LFV and NEW PHYSICS

- Flavor in the HADRONIC SECTOR:
 CKM paradigm
- Flavor in the LEPTONIC SECTOR:
 - Neutrino masses and (large) mixings
 - Extreme smallness of LFV in the charged lepton sector of the SM with massive neutrinos:

$$I_{i}$$
 suppressed by $(m_{v_{i}}^{2} - m_{v_{k}}^{2})/M_{W}^{2}$

SUSY SEESAW: Flavor universal SUSY breaking and yet large lepton flavor violation

Borzumati, A. M. 1986 (after discussions with W. Marciano and A. Sanda)

$$L = f_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

$$\tilde{L} = \int_l \overline{e}_R L h_1 + f_v \overline{v}_R L h_2 + M v_R v_R$$

Non-diagonality of the slepton mass matrix in the basis of diagonal lepton mass matrix depends on the unitary matrix U which diagonalizes $(f_v^+f_v^-)$

L. Calibbi, NuFact 2012

In SUSY, new fields interacting with the MSSM fields enter the radiative corrections of the sfermion masses Hall Kostelecky Raby '86

This applies to the new seesaw interactions: generically induce LFV in the slepton mass matrix!

Type I
$$(\tilde{m}_L^2)_{ij} \propto m_0^2 \sum_k (\mathbf{Y}_N^*)_{ki} (\mathbf{Y}_N)_{kj} \ln \left(\frac{M_X}{M_{R_K}}\right) \quad \text{Borzumati Masiero '86}$$
 Type II
$$(\tilde{m}_L^2)_{ij} \propto m_0^2 (\mathbf{Y}_\Delta^\dagger \mathbf{Y}_\Delta)_{ij} \ln \left(\frac{M_X}{M_\Delta}\right) \propto m_0^2 (\mathbf{m}_\nu^\dagger \mathbf{m}_\nu)_{ij} \ln \left(\frac{M_X}{M_\Delta}\right)$$
 Type III Similar to type I

Biggio LC '10; Esteves et al. '10

Thorough analysis of LFV in these 3 kinds of Seesaw in the SUSY context M. HIRSCH, F. JOAQUIM, A. VICENTE arXiv: 1207.6635 [hep-ph]

How Large LFV in SUSY SEESAW?

- 1) Size of the Dirac neutrino couplings f_v
- 2) Size of the diagonalizing matrix U

In **MSSM seesaw** or in **SUSY SU(5)** (Moroi): not possible to correlate the neutrino Yukawa couplings to know Yukawas;

In **SUSY SO(10)** (A.M., Vempati, Vives) at least one neutrino Dirac Yukawa coupling has to be of the **order of the top Yukawa coupling** one large of O(1) f_v

U two "extreme" cases:

- b) U with "large" entries with the exception of the 13 entry

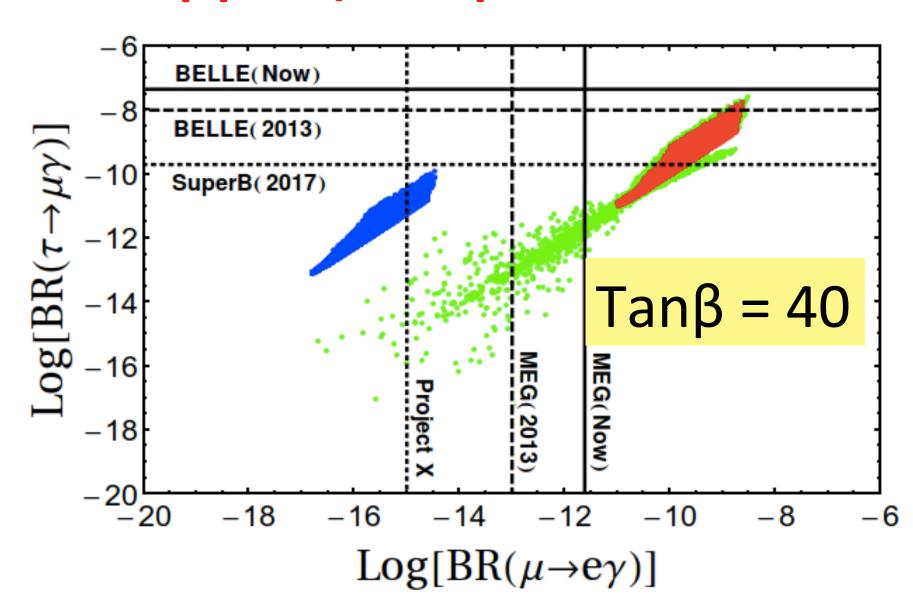
<u>U = PMNS</u> matrix responsible for the diagonalization of the neutrino mass matrix

THE STRONG ENHANCEMENT OF LFV IN SUSY SEESAW MODELS CAN OCCUR

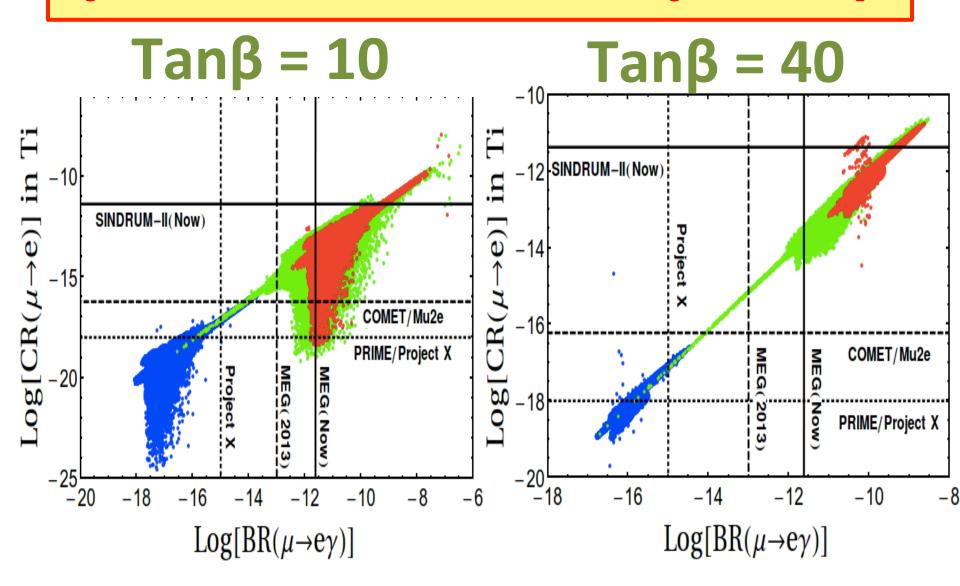
EVEN IF THE MECHANISM
RESPONSIBLE FOR SUSY
BREAKING IS ABSOLUTELY
FLAVOR BLIND

IMPACT OF

HIGGS
$$124.5 \text{ GeV} \lesssim m_h \lesssim 126.5 \text{ GeV}$$


LFV LIMITS BR(
$$\mu \to e + \gamma$$
) < 2.4 × 10⁻¹² (90% CL).

$$\sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat.}) \pm 0.005(\text{syst.})$$
$$\sin^2 2\theta_{13} = 0.113 \pm 0.013(\text{stat.}) \pm 0.019(\text{syst.})$$


on SUSY GUTs where neutrinos get mass through the SEE-SAW MECHANISM

L. Calibbi, D. Chowdhury, A.M., K.M. Patel and S.K. Vempati arXiv:1207.7227v1 [hep-ph]

$\tau \rightarrow \mu \gamma$ vs. $\mu \rightarrow e \gamma$ sensitivities

μ – e conversion vs μ \rightarrow e γ

Some thoughts on the "flavor path" to TeV New Physics

- Out of the 3 traditional theoretical shortcomings of the SM: i) lack of true unification; ii) gauge hierarchy; iii) no explanation for the fermion masses and mixings (flavor question within the SM), this latter issue is the one with the least progress in the last decades (we still completely lack a flavor theory unfortunately the (very) good knowledge of the CKM structure has not helped us much in this direction
- Today question: with all the existing constraints, how can it be that NP shows up only in very specific "corners" that we have not experimentally probed yet? The lack of a flavor theory tells us that what we consider unlikely "coincidences" may be just a fruit of such ignorance (think of finding $\rho = 1$ without knowing the ELW gauge theory)
- In my view, in this moment of relevance of the "virtuality" as a gate to access NP, the flavor path remains imporatnt: SLOW DECOUPLING OF NEW PHYSICS IN VIRTUAL EFFECTS W.R.T. PHYSICAL PRODUCTS

V: WHERE WE STAND AND WHERE WE'RE HEADING TO

$$\delta m_{12}^2$$

SOLARS+KAMLAND

$$\delta m_{12}^2 = (7.9 + /-0.7) \cdot 10^{-5} \text{ eV}^2$$

$$\theta_{12}$$

SOLARS+KAMLAND $\sin^2(2\theta_{12}) = 0.82 + /-0.055$

Addressed by accelerator neutrino experiments

$$\delta m^2_{23} \ \ {\color{red} \swarrow}$$

$$\delta m^2 = (2.4 + /- 0.4) 10^3 \text{ eV}^2$$

 $\sin^2(2\theta_{23}) > 0.95$

$$\theta_{13}$$

$$\sin^2 2\theta_{13} = 0.1$$

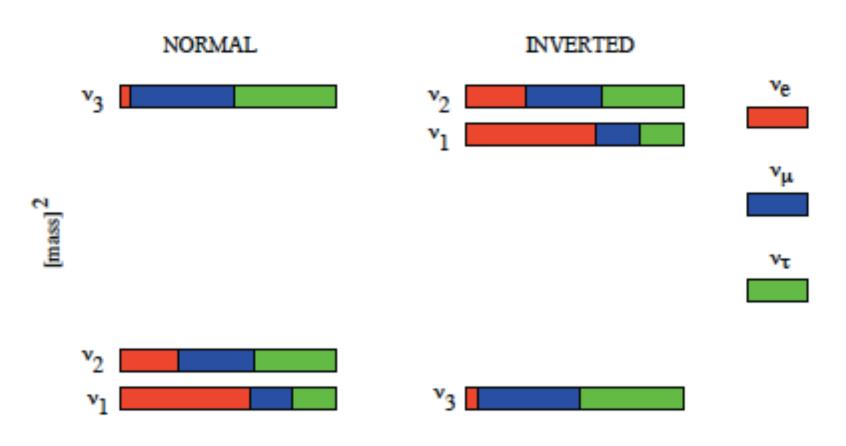
 $\sin^2 2\theta_{13} = 0.1$ LSND/Steriles ?

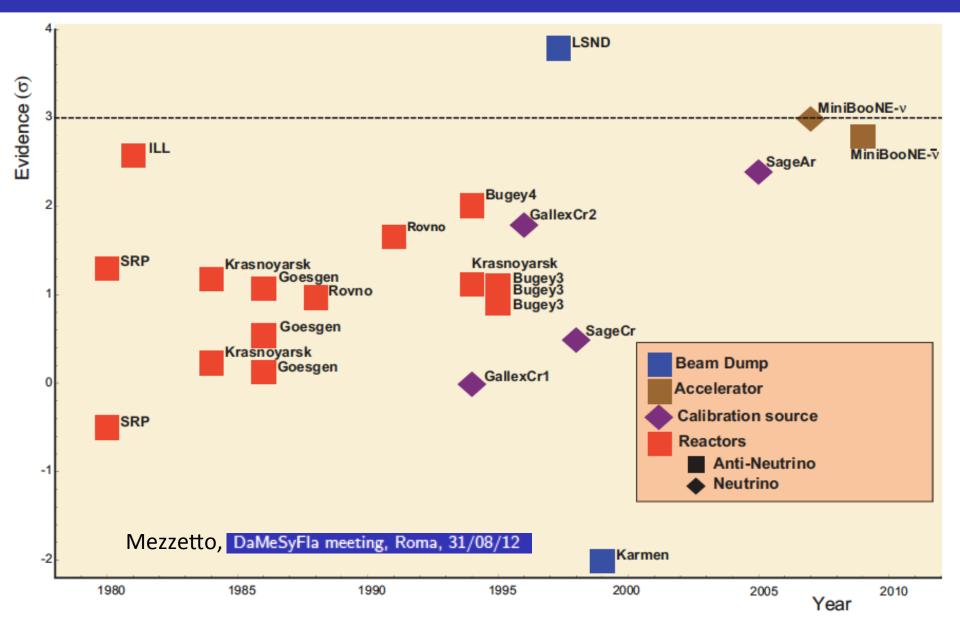
$$\Sigma \, m_{\nu}$$

 $\Sigma m_v < 6.6 \text{ eV}$

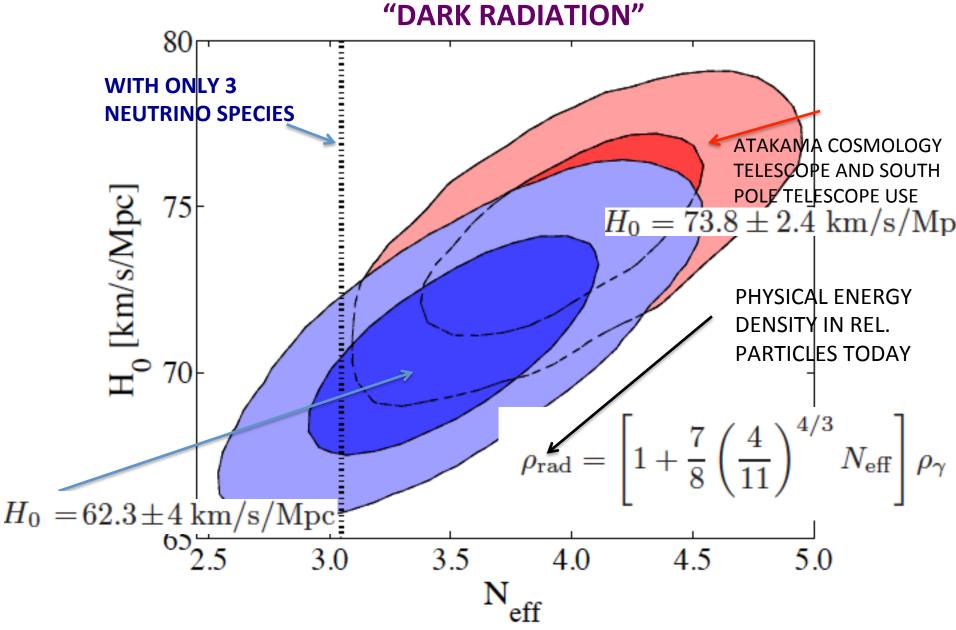
BETA DECAY END POINT

Dirac/Majorana

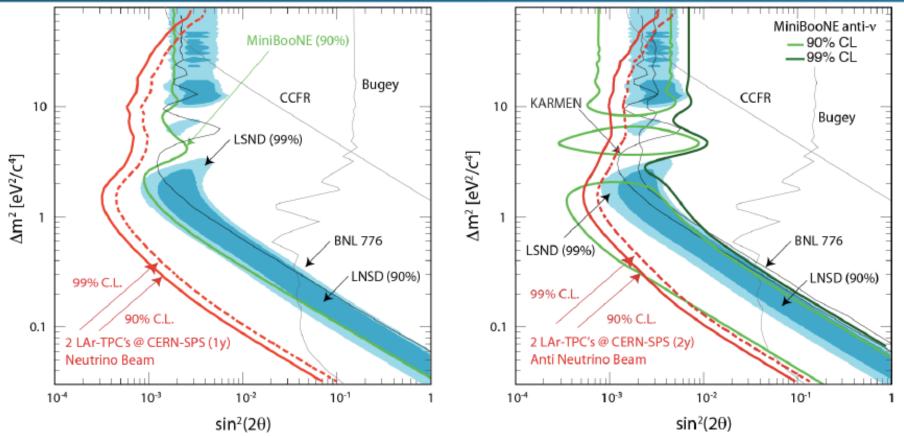




ACCORDING TO MY PERSONAL TASTE


LARGE $\theta_{13} \rightarrow$ NOT ONLY ACCELERATORS, BUT ALSO REACTOR AND ATMOSPHERIC NEUTRINOS CAN PLAY A ROLE IN THE ν MASS HIERARCHY GAME

A long standing set of anomalies



HINTS FROM COSMOLOGY IN FAVOR OF > 3 v SPECIES?

CALABRESE, ARCHIDIACONA, MELCHIORRI, RATRA 2012

Comparing LSND sensitivities

Expected sensitivity for the proposed experiment: v_{μ} beam (left) and anti- v_{μ} (right) for 4.5 10¹⁹ pot (1 year) and 9.0 10¹⁹ pot (2 years) respectively. LSND allowed region is fully explored in both cases.

Limit on the SUM of the v masses from COSMOLOGY

- WMAP 7yr
- SDSS III 8th data release
- Hubble space telescope H

R. De Putter et al, arXiv: 1201.1909 [astro-ph.CO]

 $\Sigma \, \text{m} < 0.26 \, \text{eV} \, (95 \% \, \text{CL})$

Conservative bias

 $\Sigma \, \text{m} < 0.36 \, \text{eV} \, (95 \% \, \text{CL})$

Bounds presented at ICHEP 2012

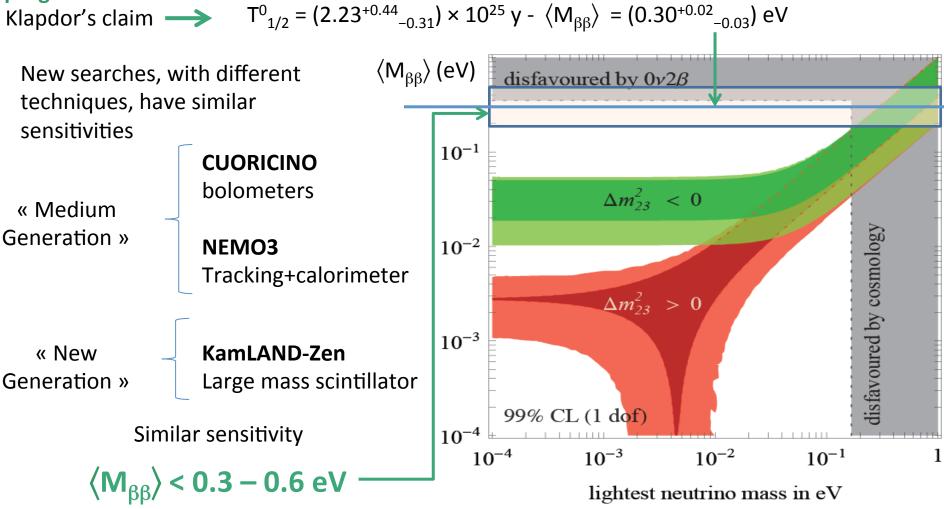
- WMAP 7yr
- Observable Hubble parameter data (OHD)
- H_0 (in correlation with σ_8)

 $\Sigma m < 0.24 \text{ eV } (68 \% CL)$

M. Moresco, et al., arXiv:1201.6658 [astro-ph.CO]

Future: $\sum m <$

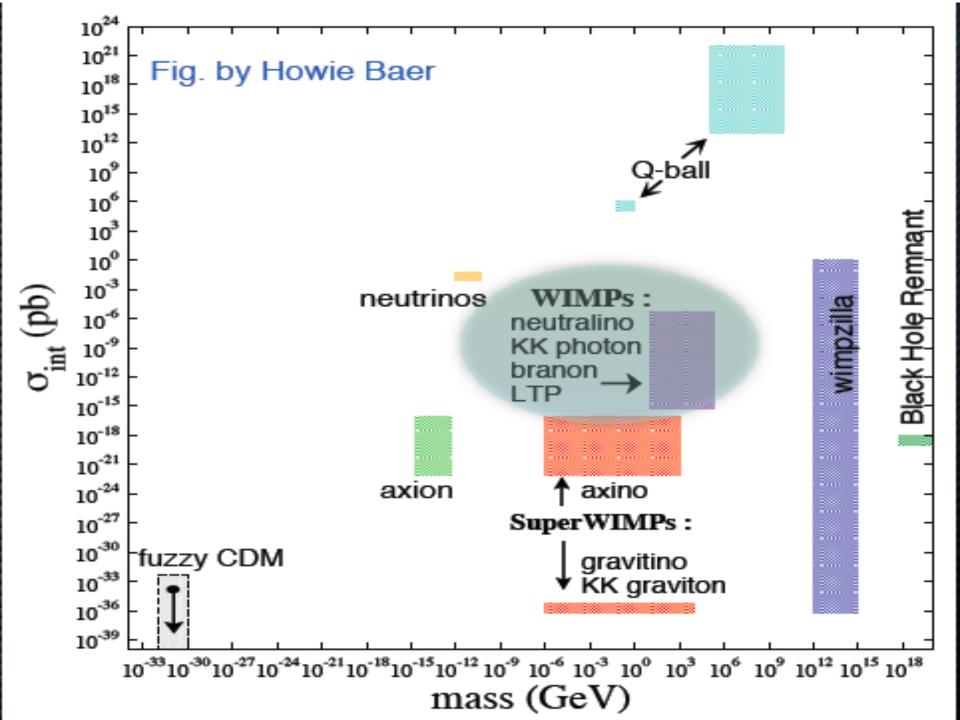
 Σ m < 0.08 eV


Double beta decay: status

GIULIANI IFAE2012

In 1998, when neutrino flavour oscillations were discovered, the « old-generation » **Heidelberg-Moscow** experiment (⁷⁶Ge, Ge diodes) was leading in terms of sensitivity.

Today, it is still the most sensitive experiment in 0v-DBD \longrightarrow Difficult subject, slow


progresses

DM: the most impressive evidence at the "quantitative" and "qualitative" levels of New Physics beyond SM

- QUANTITATIVE: Taking into account the latest WMAP data which in combination with LSS data provide stringent bounds on Ω_{DM} and Ω_{B} EVIDENCE FOR NON-BARYONIC DM AT MORE THAN 10 STANDARD DEVIATIONS!! THE SM DOES NOT PROVIDE ANY CANDIDATE FOR SUCH NON-BARYONIC DM
- QUALITATIVE: it is NOT enough to provide a mass to neutrinos to obtain a valid DM candidate; LSS formation requires DM to be COLD NEW PARTICLES NOT INCLUDED IN THE SPECTRUM OF THE FUNDAMENTAL BUILDING BLOCKS OF THE SM!

THE DM ROAD TO NEW PHYSICS BEYOND THE SM: IS DM A PARTICLE OF THE NEW PHYSICS AT THE ELECTROWEAK ENERGY SCALE?

CONNECTION DM – ELW. SCALE THE WIMP MIRACLE: STABLE ELW. SCALE WIMPs

1) ENLARGEMENT OF THE SM

SUSY

EXTRA DIM.

LITTLE HIGGS.

 $(\mathbf{x}^{\mu}, \theta)$

 $(\mathbf{X}^{\mu}, \mathbf{i}^{i})$

SM part + new part

Anticomm. Coord.

New bosonic Coord.

to cancel Λ^2 at 1-Loop

2) **SELECTION** RULE

R-PARITY LSP

KK-PARITY LKP

T-PARITY LTP

→ DISCRETE SYMM.

→ STABLE NEW

PART.

Neutralino spin 1/2

 m_{ISP}

~100 - 200

GeV *

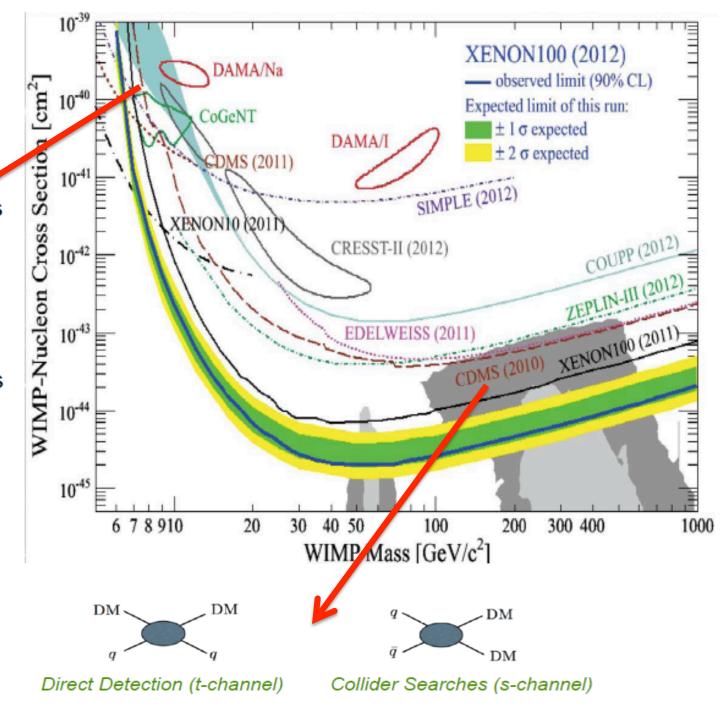
spin1 m_{IKP}

~600 - 800

GeV

~400 - 800

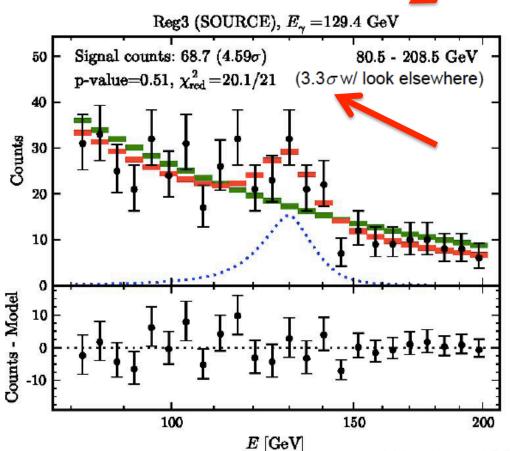
GeV


³⁾ FIND REGION (S) PARAM. SPACE WHERE THE "L" NEW PART. IS NEUTRAL + Ω_1 h² OK

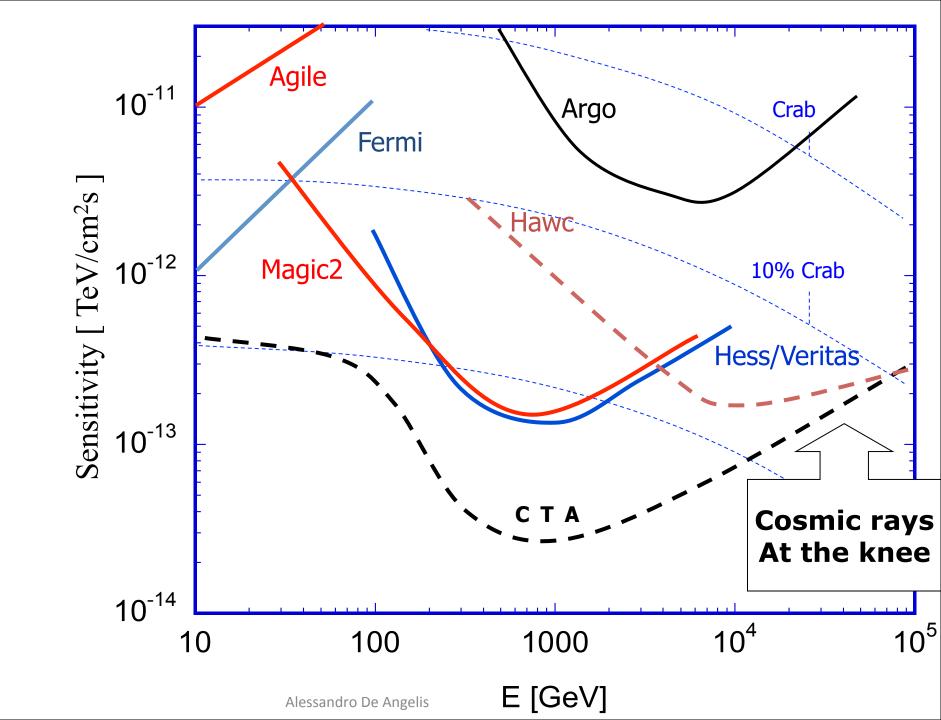
But abandoning gaugino-masss unif. → Possible to have m_{LSP} down to 7 GeV

Low-mass region: either unexplained backgrounds in DAMA, CoGeNT, and CRESST-II, ... or ... other experiments do not understand low recoil energy calibration, ... or ... can't compare different experiments

Kolb SUSY2012


Relevant to intensify the efforts here: ex. asymmetric DM with DM particles of mass~ baryon mass given that ρ_{DM} not much different from ρ_R

DM INDIRECT SEARCHES (seeking the products of DM annihilation)


Fermi/GLAST Line

After the PAMELA positron excess, this is the source of excitement for the DM searchers through detection of gamma-lines emitted from DM annihilation ... but so many signals of this kind have come and gone away...

Weniger 1204.2797

Some final considerations

- This is indeed an exciting moment in all the three frontiers of High Energy, High Intensity and Astroparticle physics
- The celebrated dilemma: is there new physics to stabilize the ELW symmetry breaking scale (i.e. TeV NP) or is there the big desert? Becomes more articulated:
- i) TeV NP physics (testable along the "real" path, i.e. observing its new particles, or at least some of them);
- ii) more and more unnatural NP related to the ELW breaking (more chances in a near future for the "virtual path");
- iii) no need to stabilize the ELW scale, big desert or possibly some remnant at lower energies (tests of the validity of the SM up to very large scales, for instance its vacuum stability)?