	The Abdus Salam International Centre for Theoretical Physics
--	---

2350-3

Workshop on Quantum Simulations with Ultracold Atoms

16 - 20 July 2012

Repulsive polarons in a strongly interacting Fermi gas

G. Bruun *Univ. of Aarhus, Denmark*

Repulsive polarons in a strongly interacting Fermi gas

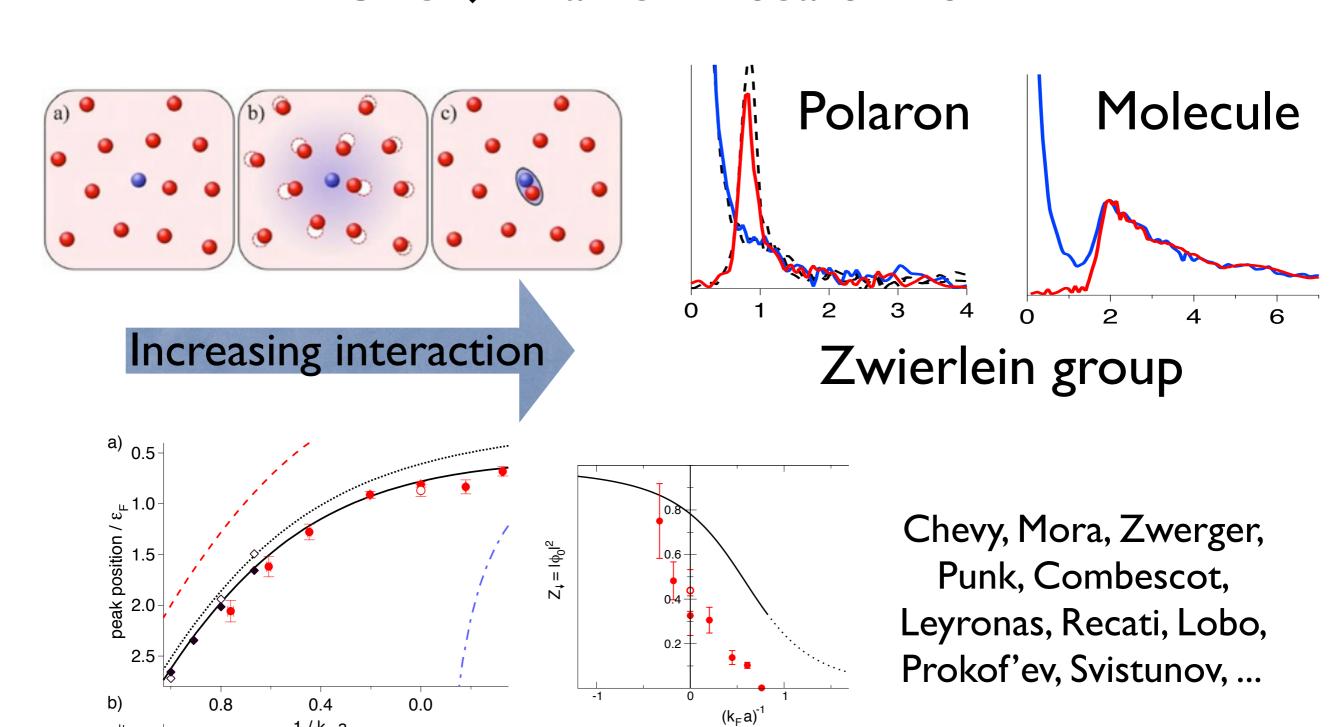
Georg M. Bruun Aarhus University

Outline

- Polarons & molecules: Main concepts & results
- 2-body physics: broad vs. narrow resonances
- Many-body theory & comparison with experiments
- Itinerant Ferromagnetism

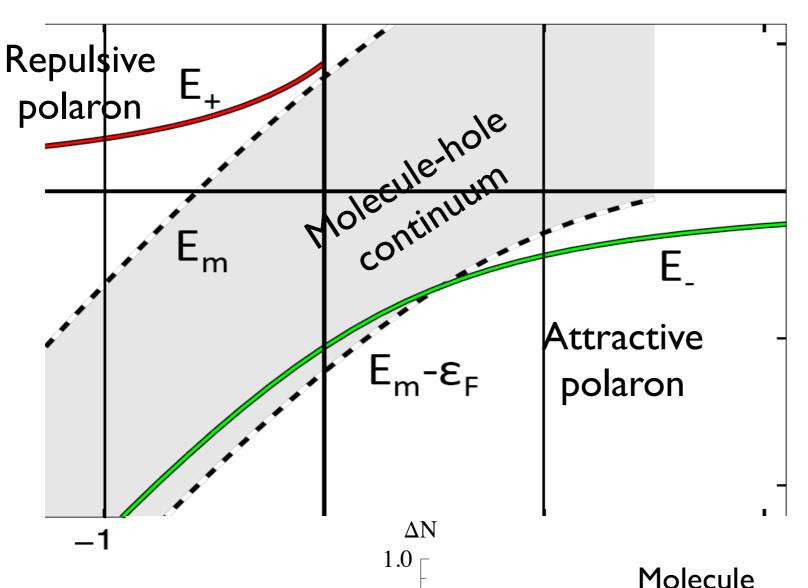
Polarons and molecules

One \downarrow in a Fermi sea of 1's



 $\omega^{\!\!\perp}$ \cap 7

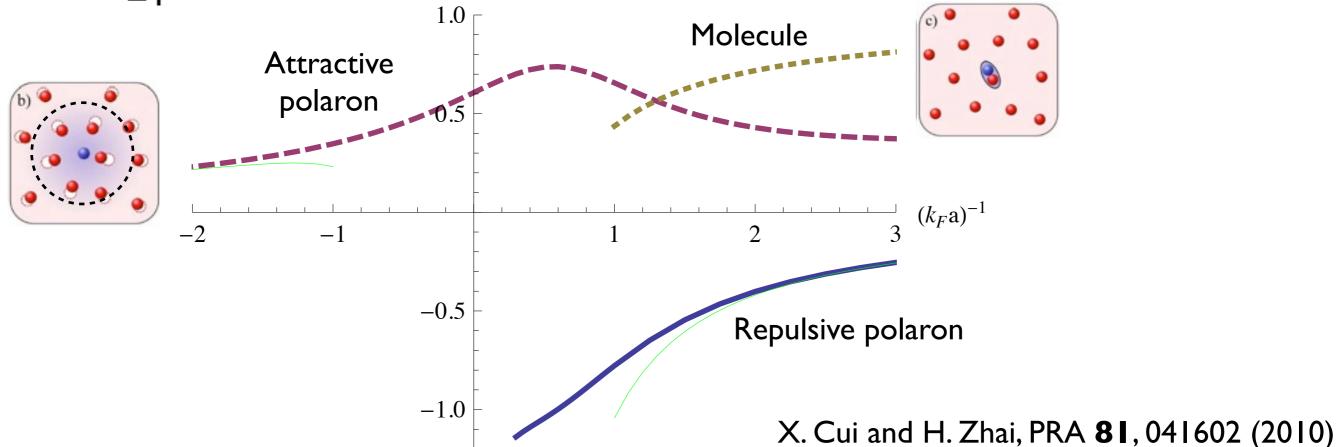
 $1/k_F a$



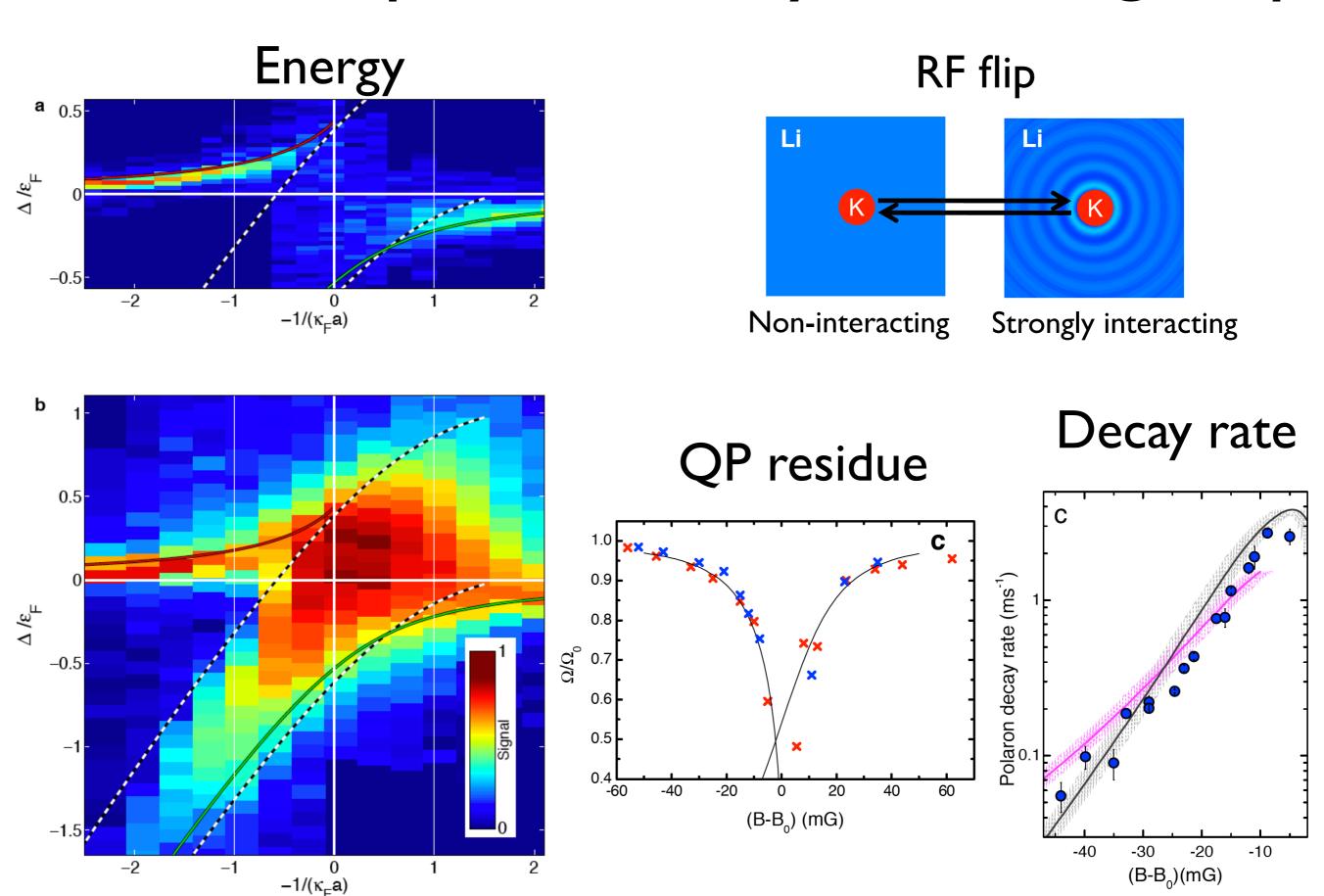
Number of atoms ∆N₁ in dressing cloud:

$$\delta\mu_{\uparrow} = \frac{\partial^{2}\epsilon}{\partial n_{\uparrow}\partial n_{\downarrow}} + \frac{\partial^{2}\epsilon}{\partial n_{\uparrow}\partial n_{\uparrow}}\Delta N_{\uparrow} = 0$$

$$\Delta N_{\uparrow} = -\left(\frac{\partial \mu_{\downarrow}}{\partial \epsilon_F}\right)_{n_{\downarrow}}$$



⁴⁰K-⁶Li experiments by Grimm group



2-body physics

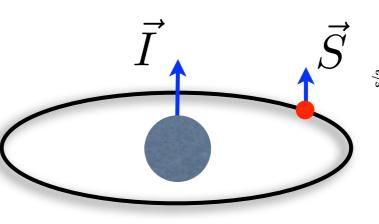
Hyperfine Hamiltonian:

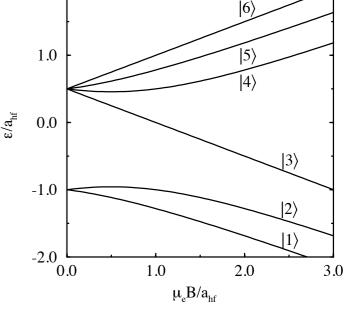
$$\hat{H}_{\rm spin} = A \, \vec{I} \cdot \vec{S} + C \, S_z + D \, I_z$$

$$\hat{H}_{\rm spin}|\alpha\rangle = \epsilon_{\alpha}|\alpha\rangle$$

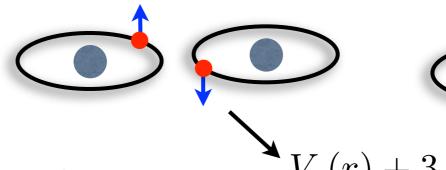
$$|\alpha\rangle \equiv |F, m_F\rangle$$

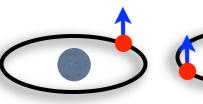
$$\vec{F} = \vec{S} + \vec{I}$$

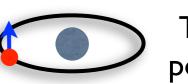




Singlet potential







Potential

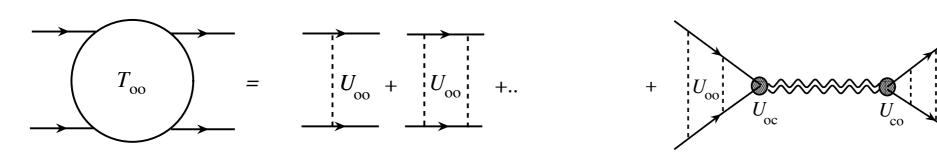
Atom-atom interaction: $V(r) = \frac{V_s(r) + 3V_t(r)}{4} + [V_t(r) - V_s(r)]\vec{S}_1 \cdot \vec{S}_2$

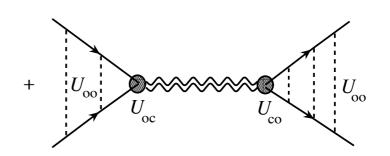
$$[\hat{H}_{\rm spin}, \hat{V}] \neq 0$$
 Mixes hyperfine states \Rightarrow Scattering channels

Effective low-energy interaction:

$$U = \frac{2\pi}{m_r} \left[\frac{a_s + 3a_t}{4} + (a_t - a_s)\vec{S}_1 \cdot \vec{S}_2 \right]$$

Scattering matrix:
$$T=\frac{T_{\rm bg}}{1-T_{\rm bg}\Pi}+\frac{g^2}{\omega-K^2/2M-\Delta\mu(B-B_0)+g^2\Pi}$$



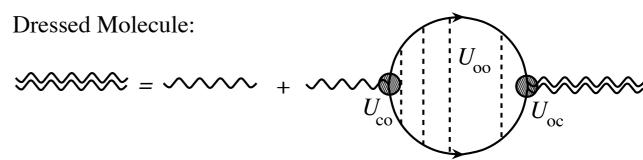


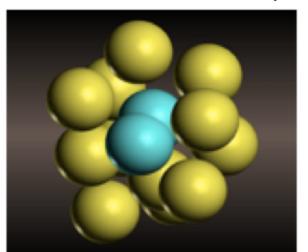
"Landau Theory" Interaction expressed in terms of observable 2-

body parameters

$$g^2 = T_{\rm bg} \Delta \mu \Delta B$$

"Dressed" molecule

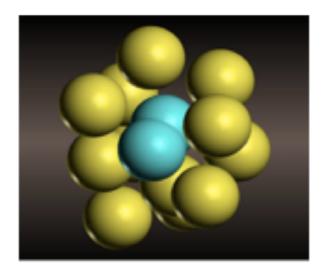




"Broad" resonance

$$k_F r_{\rm eff} \ll 1$$
 $\frac{g^2}{\epsilon_F} \gg \frac{1}{m_r k_F}$

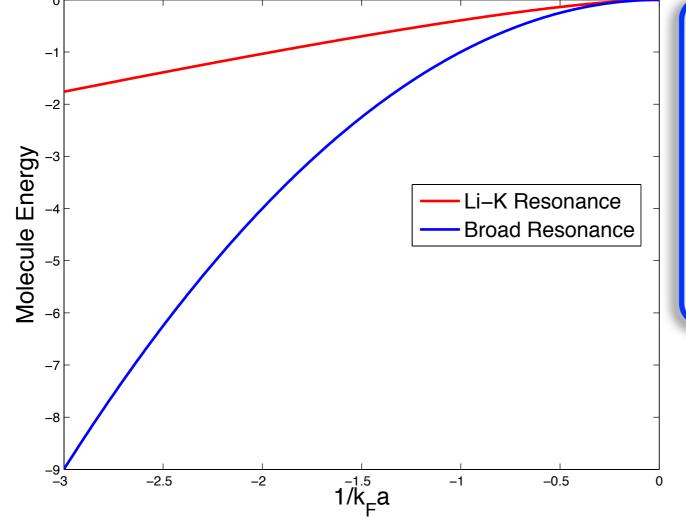
Single channel



"Narrow" resonance

$$k_F r_{
m eff} \gtrsim 1 \quad rac{g^2}{\epsilon_F} \ll rac{1}{m_r k_F}$$
 Multi-channel

Molecule energy



⁴⁰K - ⁶Li resonance:

$$B_0 = 154,72G \ \Delta B = 880mG$$

 $a_{bg} = 63,0a_0 \ \Delta \mu = 1,64\mu_B$
 $|k_F r_{\text{eff}}| \simeq 1,9$

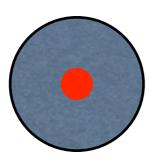
$$E_B = rac{\hbar^2}{2m_r a^{*2}} \qquad a^* = rac{r_{
m eff}}{1-\sqrt{1-2r_{
m eff}/a}} \
ightarrow rac{\hbar^2}{2m_r a^2} \qquad {
m for \ broad \ resonance}$$

Many-body theory

Polaron:

$$|\psi_P\rangle = \sqrt{Z} a_{0\downarrow}^{\dagger} |\text{FS}\rangle + \sum_{q < k_F < k} \phi_{\mathbf{k},\mathbf{q}} a_{\mathbf{q}-\mathbf{k}\downarrow}^{\dagger} a_{\mathbf{k}\uparrow}^{\dagger} a_{\mathbf{q}\uparrow} |\text{FS}\rangle + \dots$$

Zero holes:



One hole:



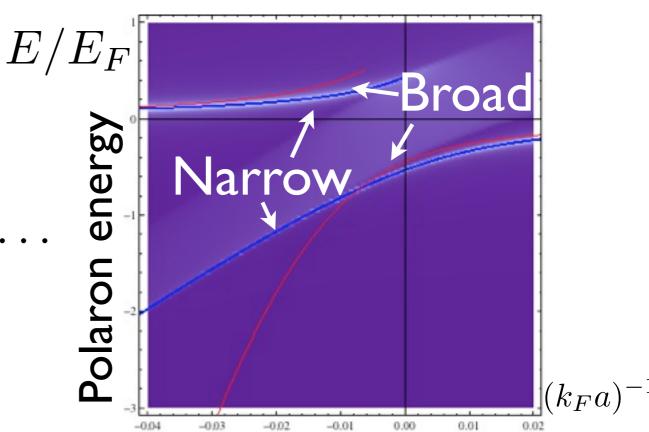
$$\sum = T_{oo}$$

F. Chevy PRA **74** 063628 (2006)

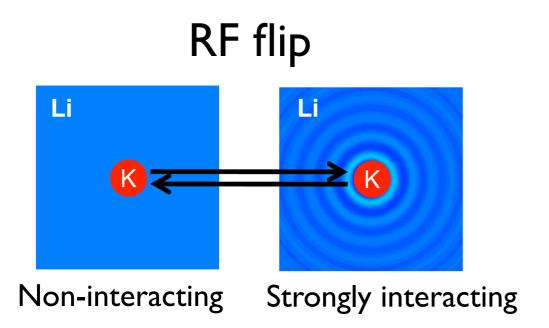
Molecule:

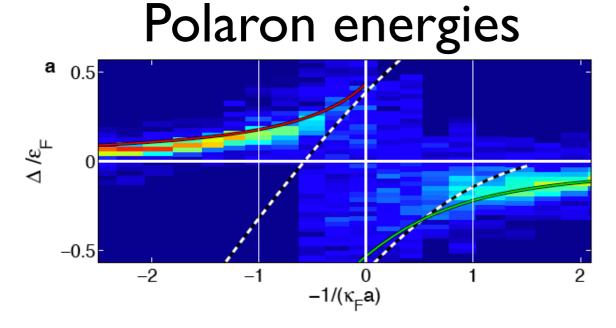
$$|\psi_M\rangle = \sum \psi_k a_{-\mathbf{k}\downarrow}^{\dagger} a_{\mathbf{k}\uparrow}^{\dagger} |FS\rangle + \dots$$

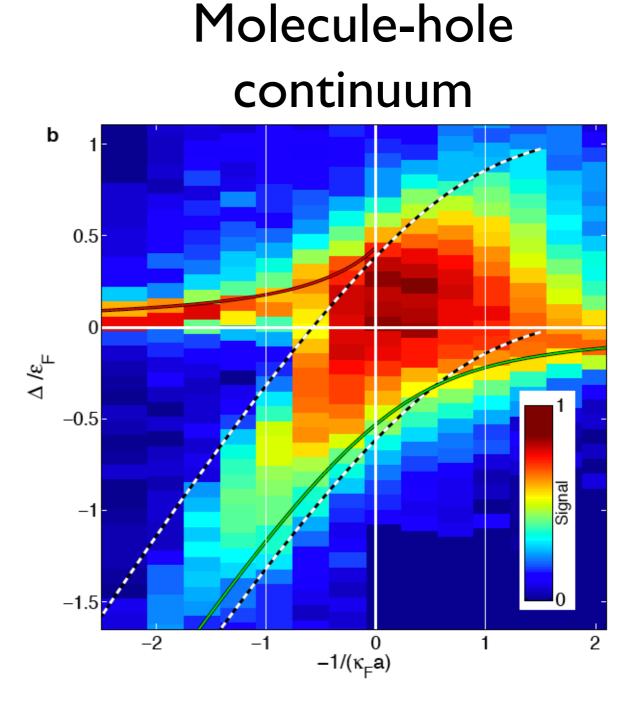
$$\psi_{\mathbf{k}} \propto \frac{1}{1 + k^2 a^2} \Leftrightarrow \psi_M(r) \propto \frac{e^{-r/a}}{r}$$



Results & experiments







Polaron quasiparticle residue

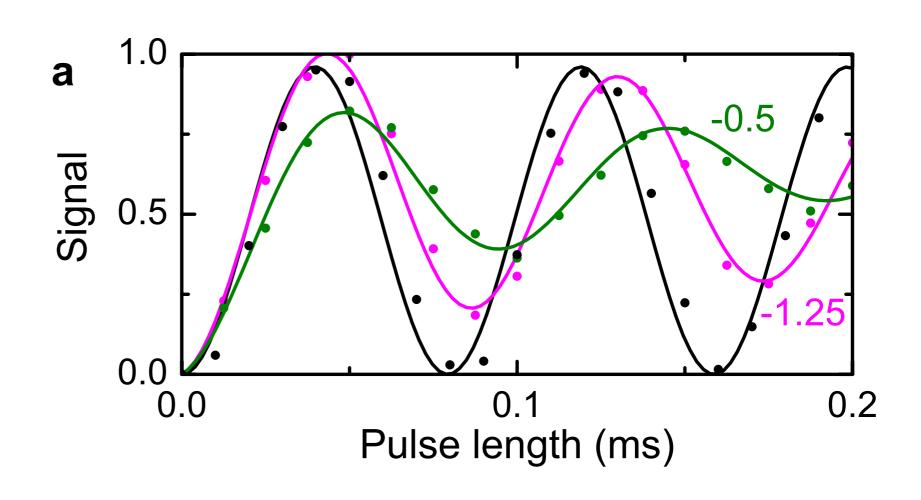
$$|\psi_P\rangle = \sqrt{Z} a_{0\downarrow}^{\dagger} |\text{FS}\rangle + \sum_{q < k_F < k} \phi_{\mathbf{k},\mathbf{q}} a_{\mathbf{q}-\mathbf{k}\downarrow}^{\dagger} a_{\mathbf{k}\uparrow}^{\dagger} a_{\mathbf{q}\uparrow} |\text{FS}\rangle + \dots$$

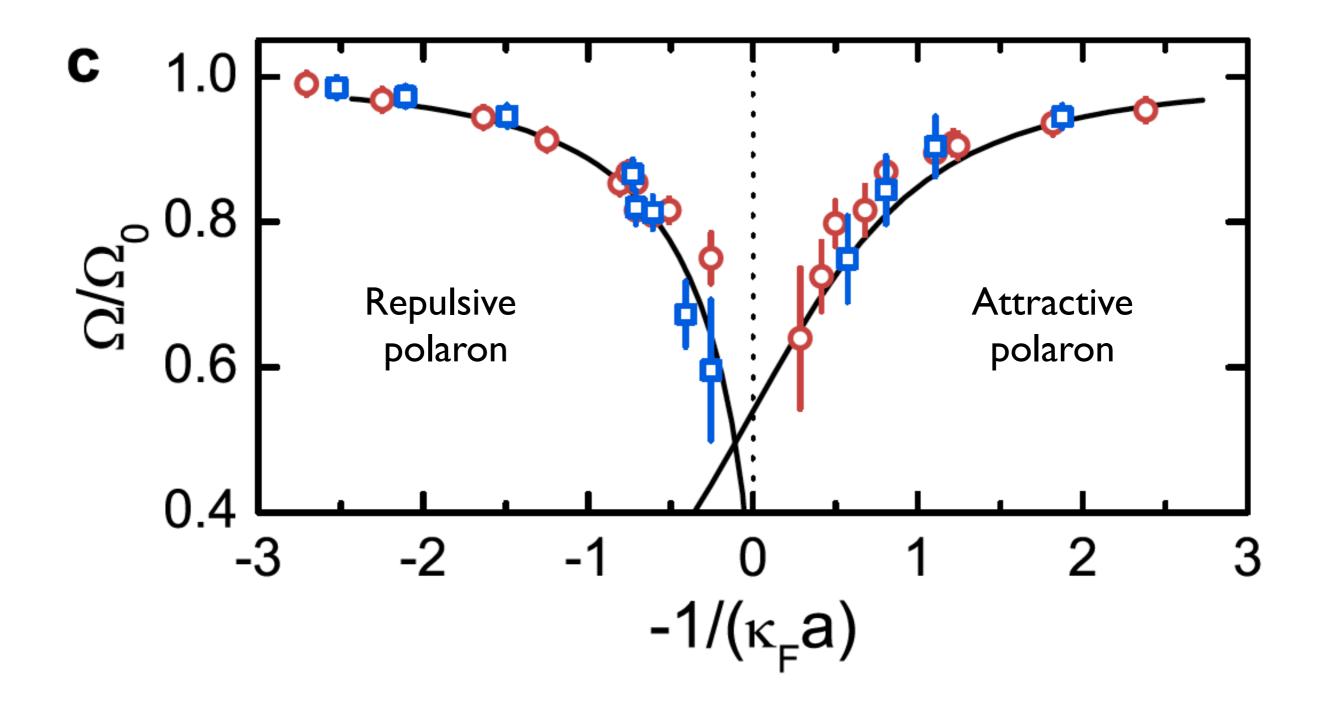
RF-probe momentum conserving $R \propto \Omega_0 \sum_{\mathbf{k}} (b_{\downarrow \mathbf{k}}^{\dagger} a_{\downarrow \mathbf{k}} + h.c.)$

Initial state:
$$|I\rangle = b_{\downarrow 0}^{\dagger} |\mathrm{FS}\rangle$$

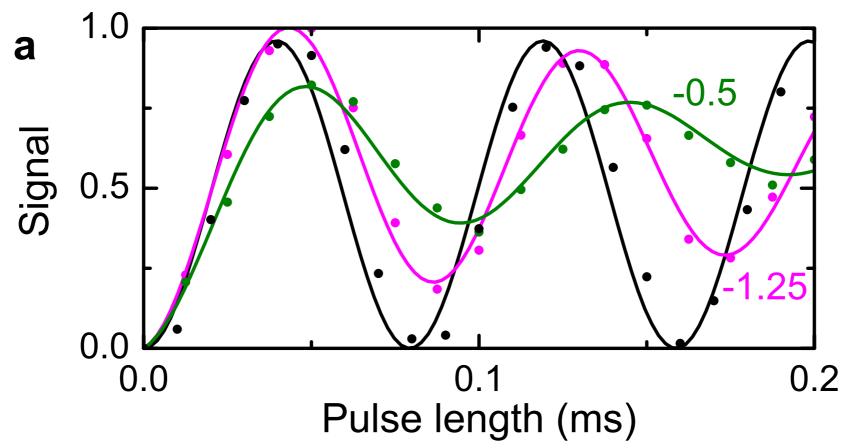
Rabi flipping frequency:

$$\Omega = \langle \psi_P | R | I \rangle$$
$$= \sqrt{Z} \Omega_0$$

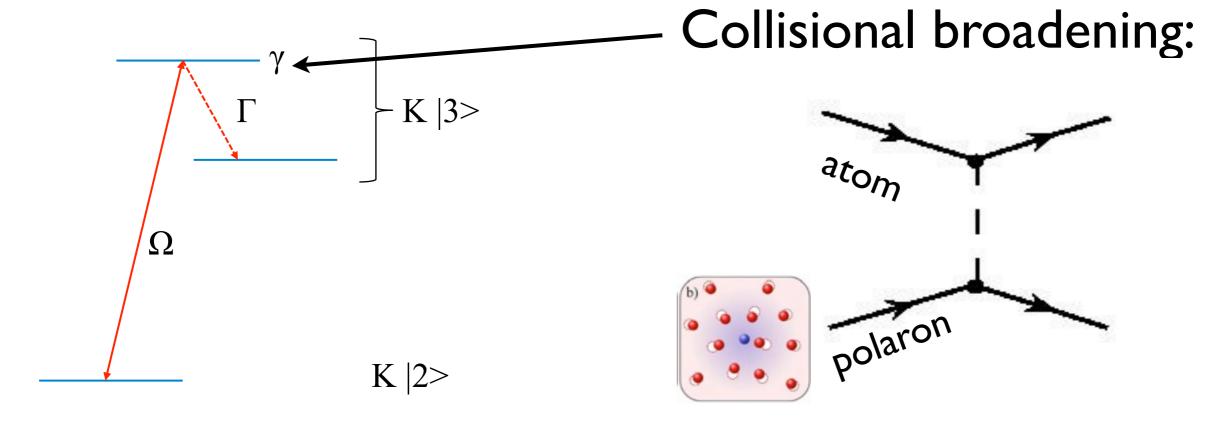




Damping of oscillations:

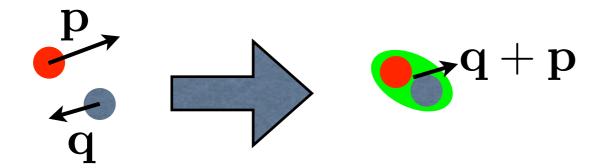


3-state model



Molecule wave function

RF-signal to molecule-hole continuum (BEC limit):



$$\Gamma_{\rm 2B}(\omega_{\rm rf}) \propto \iint \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f(\xi_{p\downarrow}) f(\xi_{q\uparrow})$$

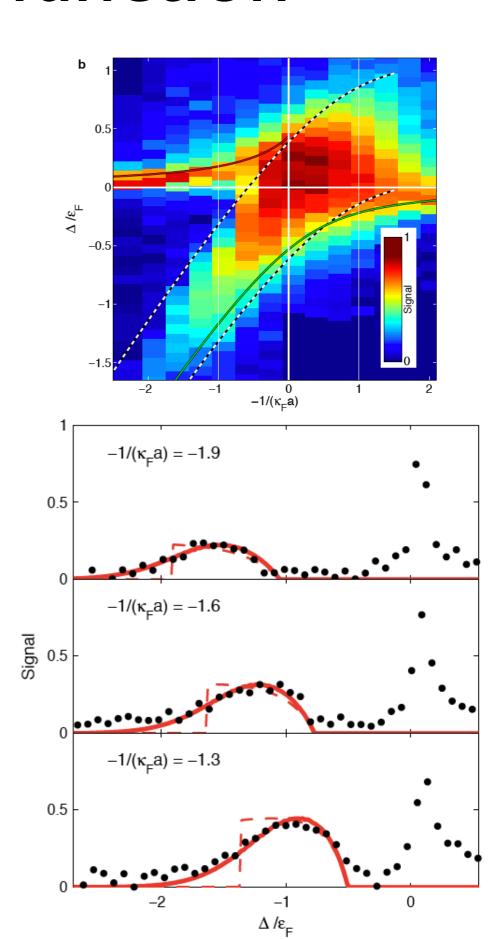
Overlap between molecule and plane wave

$$\frac{1}{\sqrt{1+4R^*/a}} \frac{\delta k^a}{(1+k'^2a^{*2})^2}$$

$$\delta(\omega_{\rm rf} + |\omega_M| + \frac{k'^2}{2m_r})$$

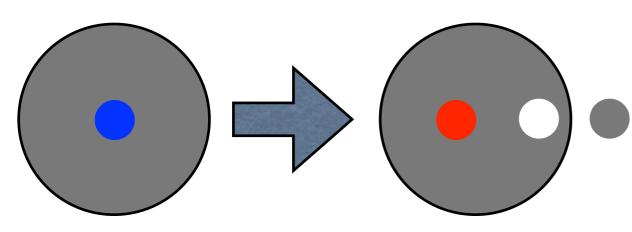
$$\rightarrow \frac{8\pi a^3}{(1+k'^2a^2)^2}$$

for $|a/r_{eff}| \gg 1$



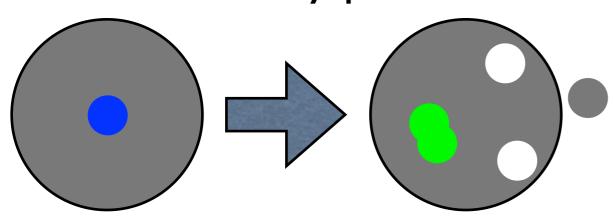
Repulsive Polaron Decay

Decay to attractive polaron:2-body process

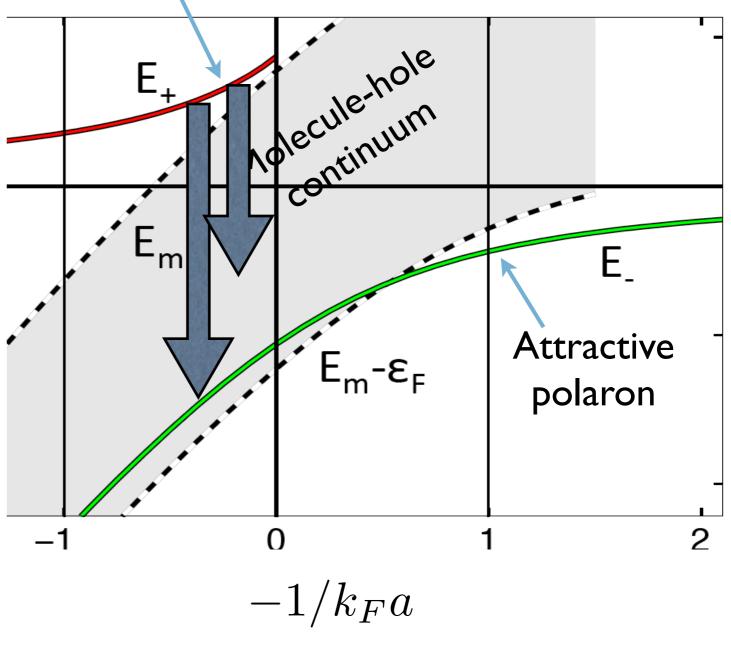


2 Decay to molecule:

3-body process



Repulsive polaron



R. Schmidt and T. Enns, PRA **83** 063620 (2011)

2-body decay to attractive polaron:

$$\Sigma = T_{oo} = \Sigma + \dots$$

$$G_{\downarrow} = \frac{Z_{+}}{\hbar\omega - E_{+}} + \frac{Z_{-}}{\hbar\omega - E_{-}}$$

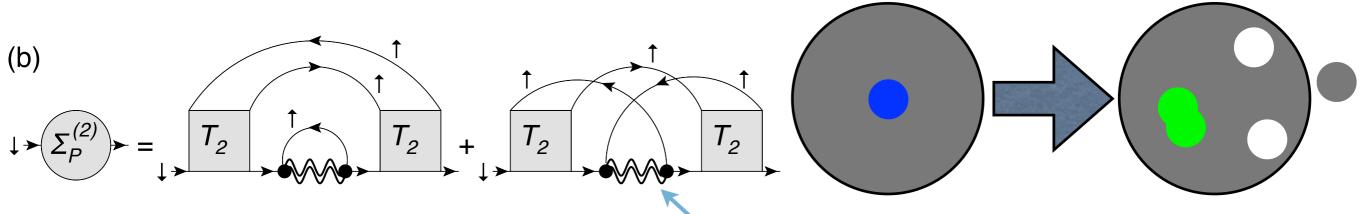
BEC-limit

$$\Gamma_{PP} = \pi T_0^2 Z_- \int_{q < k_F < k} d^3 \check{q} d^3 \check{k} \delta(\Delta E + \epsilon_{\uparrow q} - \epsilon_{\uparrow k} - \epsilon_{\downarrow \mathbf{q} - \mathbf{k}}^*)$$

$$= Z_- \frac{2}{3\pi} \sqrt{\frac{m_{\uparrow} (m_r^*)^3}{m_r^4}} \sqrt{\frac{\Delta E_{PP}}{\epsilon_F}} (k_F a)^2 \epsilon_F \propto k_F a$$

P. Massignan and GMB, EPJD **65**, 83 (2011)

3-body decay to molecule + hole:



$$F(\mathbf{q}, \mathbf{k}, \omega) = T_2(\mathbf{q}, \omega + \xi_{q\uparrow}) G^0_{\downarrow}(\mathbf{q} - \mathbf{k}, \omega + \xi_{q\uparrow} - \xi_{k\uparrow})$$

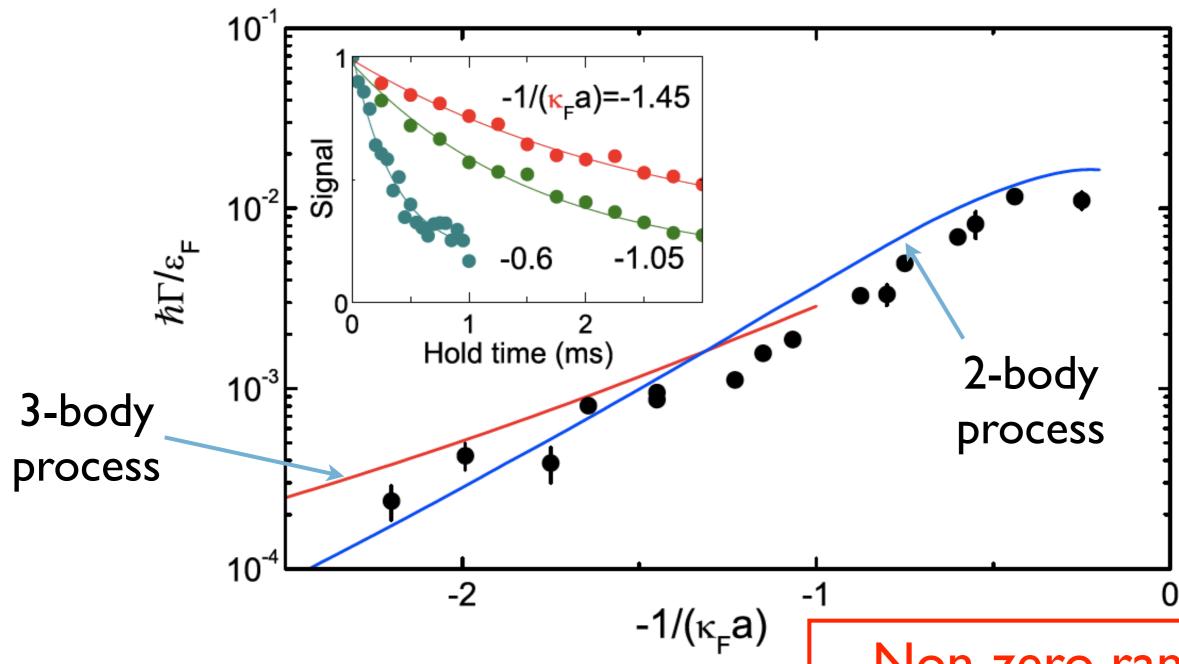
$$D(\mathbf{p},\omega) \simeq \frac{Z_M}{\omega - \omega_M - p^2/2m_M^*}.$$

$$\Gamma_P = \frac{g^2 Z_M}{2} \int d^3 \check{q} d^3 \check{k} d^3 \check{q}' \left[F(\mathbf{q}, \mathbf{k}, \omega_P) - F(\mathbf{q}', \mathbf{k}, \omega_P) \right]^2$$
$$\times \delta \left(\Delta \omega + \xi_{q\uparrow} + \xi_{q'\uparrow} - \xi_{k\uparrow} - (\mathbf{q} + \mathbf{q}' - \mathbf{k})^2 / 2m_M^* \right)$$

Broad resonance $\Gamma_P \propto (k_F a)^6 \epsilon_F \propto n_\uparrow^2 \epsilon_F$

Due to Fermi exclusion principle

Experiment



$$(k_Fa)^{-1}=-0.25$$
:

$$\hbar\Gamma/\epsilon_F = 0.01$$

$$\hbar\Gamma/E_{+}=0.03$$

Non-zero range gives \approx 10 times longer life time. I/e life time \approx 400µs

ltinerant ferromagnetism

Fermi gas with short range repulsive interactions

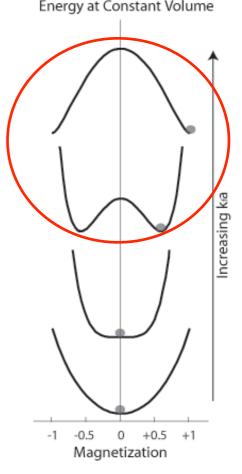
$$\hat{H} = -\int d^3r \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \frac{\nabla^2}{2m} \hat{\psi}_{\sigma}(\mathbf{r}) + g \int d^3r \hat{\psi}_{\uparrow}^{\dagger}(\mathbf{r}) \hat{\psi}_{\downarrow}^{\dagger}(\mathbf{r}) \hat{\psi}_{\downarrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r})$$

Stoner theory:
$$E = \frac{3}{5}n\epsilon_F[(1+\eta)^{5/3} + (1-\eta)^{5/3} + A(1+\eta)(1-\eta)]$$

$$\eta = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} \qquad A \propto g \propto k_F a$$

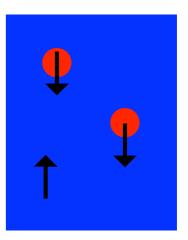
Not observable due to pairing instability

- C. Sanner et al., PRL 108, 240404 (2012)
- D. Pekker et al., PRL 106, 050402 (2011)



We have accurate theory in the limit N_{\downarrow} « N_{\uparrow}

Mixed phase energy:

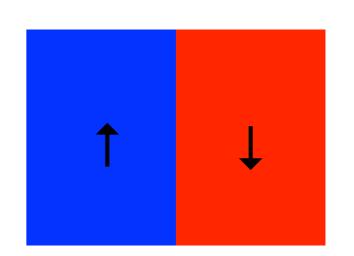


$$E(N_{\uparrow},N_{\downarrow},T) = N_{\uparrow}\varepsilon_1^0(N_{\uparrow}/V,T) + N_{\downarrow}\varepsilon_2^0(N_{\downarrow}/V,T) + N_{\downarrow}\varepsilon_1^0(N_{\uparrow}/V,T)A(T)$$

S. Pilati et al., PRL **105**, 030405 (2010)

Phase separated energy:

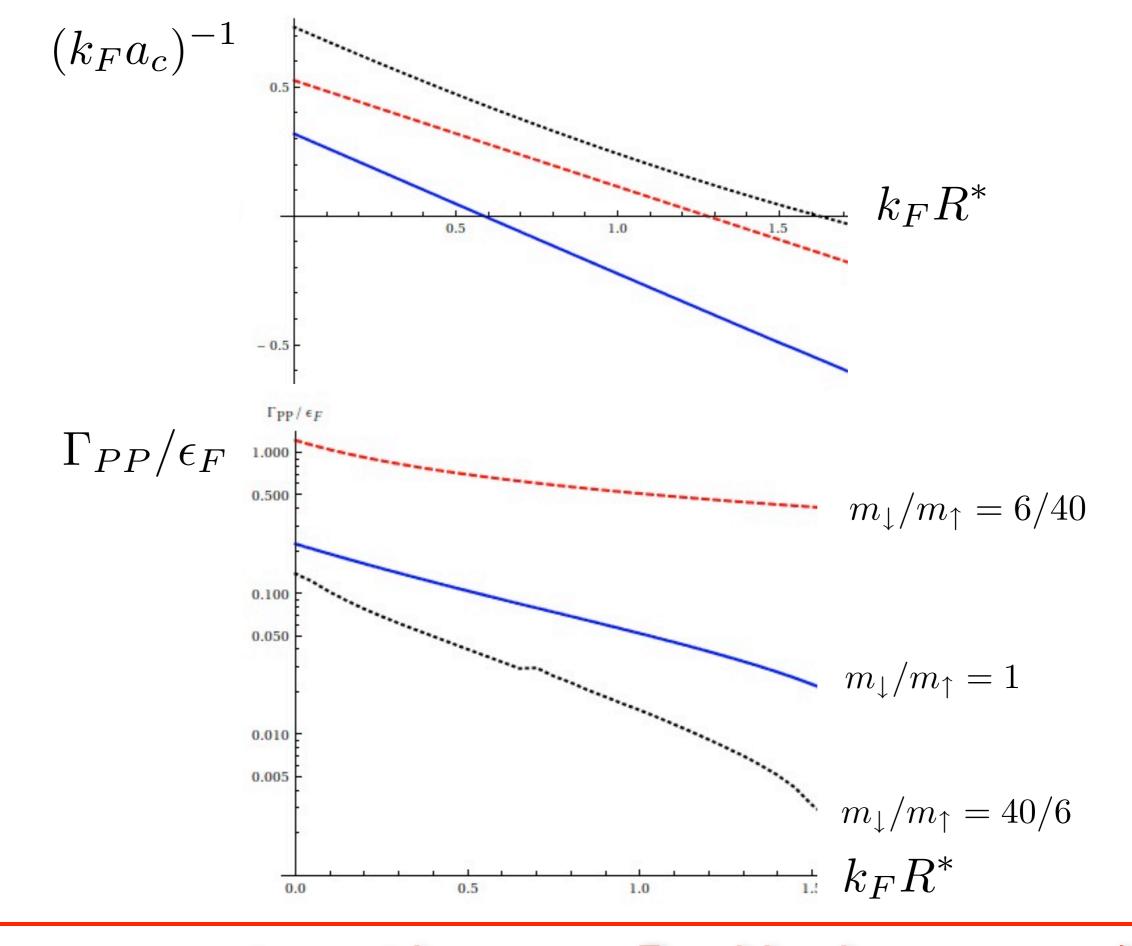
$$E(N_{\uparrow}, N_{\downarrow}, T) = N_{\uparrow} \varepsilon_1^0(N_{\uparrow}/V_{\uparrow}, T) + N_{\downarrow} \varepsilon_2^0(N_{\downarrow}/V_{\downarrow}, T)$$



Condition for phase separation at T=0

$$A \ge \frac{5}{3} \left(\frac{m_1}{m_2}\right)^{3/5} \iff E_+ \ge \epsilon_F$$

$$\Leftrightarrow E_+ \ge \epsilon_F$$



Ferromagnetism with narrow Feschbach resonance?

Minimize free energy for T>0 F=E-TS

Entropy of mixing (ideal mixture):

$$\Delta S_{\text{mix}} = -Nk_B[y \log y + (1 - y) \log(1 - y)] \qquad y = \frac{N_{\downarrow}}{N}$$

$$E_{+}/\epsilon_{F} = 0.8$$

$$E_{+}/\epsilon_{F} = 1$$

$$T = 0$$

$$0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad \alpha = \frac{N_{2}}{N_{1}}$$

$$-0.05$$

$$T = 0.1$$

$$-0.10$$

$$-0.15$$

$$-0.20$$

$$T = 0.3$$

Phase diagram

Homogeneous

Phase separated

Conclusions

- Long lived repulsive polaron
- Excellent agreement between theory & experiment
- Narrow resonance increases stability of repulsive polaron
- Ferromagnetism for narrow resonance?