	The Abdus Salam International Centre for Theoretical Physics
--	---

2350-2

Workshop on Quantum Simulations with Ultracold Atoms 16 - 20 July 2012

The unitary Fermi gas: a benchmark case for many-body physics

W. Zwerger
Technische Univ. Munchen, Germany

THE UNITARY FERMI GAS: A BENCHMARK CASE FOR MANY-BODY PHYSICS

Haussmann/Rantner/Cerrito/Zw. PR A75, 023610 '07

Enss/Haussmann/Zw. Ann. Phys. 326, 777 '11

Enss/Haussmann arXiv:1207.3103

Schmidt/Rath/Zw. arXiv:1201.4310 Efimov physics

textbook model for fermionic superfluids

BCS '57 Fermions $\uparrow\downarrow$ with density $n=k_F^3/3\pi^2$ and

attractive two-particle interaction $V_{\uparrow\downarrow}(x) = \bar{g} \cdot \delta(x)$

pairs form and condense at $T_c \sim \exp{-\frac{1}{|\bar{g}|N(0)}} \ll T_F$

what happens at infinite coupling $q = \infty$?

scattering length in 6 Li $gN(0) o 2k_Fa/\pi$

Outline

- I) Unitary gas thermodynamics
- II) Viscosity and spin-diffusion

III) Universality of the 3-body parameter in Efimov physics

The unitary Fermi gas at $a = \infty$ $x \to \lambda x$ gives

$$H \to H/\lambda^2$$
 scale invariance \to Tr T= 0 \to

pressure $p = 2\epsilon/3$ Ho '04 bulk viscosity $\zeta = 0$ Son '07

ground state $p(\infty) = \xi \cdot p_F^{(0)}$ Bertsch-parameter ξ

determines cloud size in a trap $R_{TF} = R_{TF}^{(0)} \cdot \xi^{1/4}$

universal numbers $\xi \simeq 0.36, T_c \simeq 0.16 T_F, \Delta_0 \simeq 0.46 \epsilon_F$

transport: shear viscosity $\eta(T_c) \simeq 0.5 \, \hbar n$ Shuryak '04

Many-body theory pseudopotential $V_{\uparrow\downarrow}(x) = \bar{g}(\Lambda) \, \delta(x)$

Luttinger/Ward '60 $\Omega = -T \ln Z = \Omega[\hat{G}]$

$$\Omega[\hat{G}] = \beta^{-1} \left(-\frac{1}{2} \text{Tr} \{ -\ln \hat{G} + [\hat{G}_0^{-1} \hat{G} - 1] \} - \Phi[\hat{G}] \right)$$

Ladder-approximation

$$\Phi[G] = \sum_{l=1}^{\infty} 3 \left(\frac{1}{2} \right)^{l}$$

 $\delta\Omega[\hat{G}]/\delta\hat{G}=0$ variational principle for $\mathcal{G}(k,\tau)$ and $\mathcal{F}(k,\tau)$

Haussmann/Rantner/Cerrito/Zw. '07, PR A75, 023610

why does Luttinger-Ward work well?

- it is conserving → all th. dyn. relations are obeyed
- it obeys the **Tan relations**

$$\mathcal{L}_E = \mathcal{L}[\psi_\sigma] + \mathcal{L}[\Phi] + \tilde{g}\Big(\bar{\Phi}_B\psi_\uparrow\psi_\downarrow + \text{h.c.}\Big)$$

change of Ω with scattering length $\frac{\partial \Omega}{\partial (-1/a)} =$

$$= \text{Tr}\left[G_B \frac{\partial G_{B,0}^{-1}}{\partial (-1/a)}\right] = \sum_{X,X'} G_B(X,X') \tilde{g}^2 \frac{m}{4\pi\hbar^2} \delta_{X,X'} = \frac{\hbar^2 C}{4\pi m}$$

pressure as a function of T/T_F and $1/k_Fa$ ($\xi=0.36$)

comparison with experiments

$$\left(P_0(\mu, T) = \frac{k_B T}{\lambda_T^3} f_{5/2}(z)\right)$$

theory Haussmann/Rantner/Cerrito/Zw. PR A75 (2007)

exact LW theory: bold diagrammatic MC van Houcke et al 2012

Momentum resolved rf-spectroscopy measures

hole spectral function $A_{-}(k, \varepsilon_{k} - \hbar \omega)$ Stewart, Gaebler, Jin '08

$$A(\mathbf{k}, \varepsilon)$$
 from $\mathcal{G}(\mathbf{k}, \tau)$ via $\mathcal{G}(\mathbf{k}, \omega_n) = \int d\varepsilon \frac{A(\mathbf{k}, \varepsilon)}{-i\hbar\omega_n + \varepsilon - \mu}$ (Maxent)

numerical spectral functions $A(k,\varepsilon)$ at T=0 (PR **A80** '09)

$$(k_F a)^{-1} = -1$$

unitarity

$$(k_F a)^{-1} = +1$$

II) The unitary gas as a 'perfect fluid' (Kovtun Son Star. '05)

AdS/CFT $\mathcal{N}=4$ SSYM-Theory in the t'Hooft limit

 $\lambda = g^2 N \to \infty$ is equivalent to a **classical** theory of gravity

$$\text{AdS-metric} \qquad ds^2 = \frac{L^2}{z^2} \left(-dt^2 + dx^2 + dz^2 \right) \qquad \qquad \boxed{\frac{L}{\ell_P} = \lambda^{1/4} \to \infty}$$

'radial' coord. z is effectively an RG-scale (McGreevy '09)

Conjecture: All (relativistic, scale invariant) fluids have $\left| \frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B} \right|$

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B}$$

Why does string theory apply to water?

assume a Lennard-Jones fluid
$$V(r)=4\varepsilon\left[(\sigma/r)^{12}-(\sigma/r)^6\right]$$
 reduced density $n^\star=n\sigma^3$ and temp. $T^\star=k_BT/\varepsilon$ critical point at $n_c^\star=0.36$ and $T_c^\star=1.36$ time scale for classical dynamics $\tau=\sqrt{m\sigma^2/\varepsilon}\to$ dim. analysis $\eta_{\rm LJ}=\frac{\varepsilon\tau}{\sigma^3}\eta^\star(n^\star,T^\star)\to \eta_{\rm LJ}^{\rm min}={\rm const}\,\frac{\sqrt{m\varepsilon}}{\sigma^2}$ quantum viscosity $\eta^{\rm min}=\alpha_\eta\,\hbar n$ with $\alpha_\eta={\rm const}/\Lambda_{\rm DB}\gtrsim\mathcal{O}(1)$ because the de Boer par. $\Lambda_{\rm DB}=\hbar/\sigma\sqrt{m\varepsilon}$ cannot be $\gg 1$!

measurements of viscosity and spin diffusion of the unitary gas

Cao ... Science **331** (2011) and Sommer ... Nature **472** (2011)

shear viscosity of the unitary gas

Boltzmann-limit
$$\eta(T \gg T_F) = 2.8 \, \hbar n (T/T_F)^{3/2} = 4.2 \, \frac{\hbar}{\lambda_T^3}$$

(density drops out!), well defined quasipart. $\hbar/ au_{\eta} \ll k_B T$

superfluid below $T_c \simeq 0.16 \, T_F$ has **finite** viscosity due to

- a) phonon interactions: $\eta(T) \sim T^{-5}$ as $T \ll T_c$ Rupak/Schäfer '07
- b) fermionic qp's: $\eta(T) \rightarrow \text{const} \text{ as } T \rightarrow 0$ Pethick/Smith '75

 $T \ll T_c$ inaccessible since mean free path \simeq trap size

transport coefficients of the unitary gas from Luttinger-Ward

Kubo formula
$$Re \eta(\omega) = \frac{Im \chi_{xy}^{ret}(\omega)}{\omega}$$

perturbation
$$\hat{H}' = h_{\ell}(t) \cdot \hat{\Pi}_{\ell}$$
 ($\ell = 0, 2 \rightarrow \text{bulk, shear}$)

euclidean time
$$\tau \to \chi_{\ell}(\tau) = \int d^3x \langle \tilde{T} \, \hat{\Pi}_{\ell}(x,\tau) \hat{\Pi}_{\ell}(0,0) \rangle$$

from
$$\chi_{\ell}(\tau) = -\frac{\delta^2 \Omega}{\delta h_{\ell}(\tau) \delta h_{\ell}(0)}|_{h=0} \rightarrow \chi_{xy}(i\omega_m)$$

requires contin. to real frequencies ω (Pade, Ansatz)

spin diffusion ($\ell=1$) minimum value $D_s\simeq 1.3\,\hbar/m$ near $T=0.5\,T_F$

Ward-identities due to scale and translation inv.

• guarantee that $\zeta(\omega) \equiv 0$

• sum rule
$$\frac{2}{\pi} \int_0^\infty d\omega \left[Re \, \eta(\omega) - \frac{\hbar^{3/2} C}{15\pi \sqrt{m\omega}} \right] \equiv p$$

• Boltzmann-limit $\eta o 4.2 \, rac{\hbar}{\lambda_T^3} \sim T^{3/2} \; ; \quad D_s o 1.1 \, \hbar/m \, (T/T_F)^{3/2}$

III) Efimov physics beyond universality Schmidt, Rath, Zw. '12

Bosons form trimers at $a_{-}^{(n)} < 0$ universality $a_{-}^{(n+1)}/a_{-}^{(n)} \rightarrow 22.69...$

scale in (a, E) – plane set by

three-body parameter

exp. observation $a_{-} \approx -9.45 \, l_{VdW}$

for the **first** Efimov trimer

Feshbach coupling
$$\hat{H}' = \frac{g}{2} \int \chi(r_2 - r_1) \phi(\frac{r_1 + r_2}{2}) \psi^*(r_1) \psi^*(r_2)$$

with finite range $\chi(r) \sim \exp{-r/\bar{a}}$ $\bar{a} = \text{mean scatt. length}$

exact solution of RG-flow for atom-dimer vertex $\lambda_3^{(k)}(q_1,q_2;E)$ poles of $\lambda_3^{(k=0)}$ give **Efimov spectrum** which is fixed by \bar{a} and the dimensionless resonance strength $s_{\rm res}=0.956\,l_{\rm vdw}/r^{\star}$

crossover from open-channel

dominated limit $s_{\mathsf{res}} \gg 1$ to

 $s_{\text{res}} \ll 1$ where $a_{-} = -10.3 \, r^{\star}$

(Petrov '04, Gogolin '08)

non-universal ratios $a_{-}^{(1)}/a_{-}=17.1$ exp. 19.7 O'Hara Jochim '09

The unitary gas is a benchmark for many-body physics. It

- realizes a high-temperature fermionic superfluid $T_c/T_F\simeq 0.16 \mbox{ and a scale-invariant many-body problem}$ with universal ratios $p/p_F=\xi\simeq 0.37$ and $S/Nk_B|_c\simeq 0.7$
- ullet is the most perfect non-relativistic fluid with η/s close to the KSS bound and quantum-limited spin-diffusion $D_s\simeq 1.3\,\hbar/m$

The Efimov spectrum for cold atoms is fixed by $l_{\rm VdW}$ and r^{\star} in the absence of 3-body forces

