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THEORIES OF ENSO

1. ELEMENTS THAT A THEORY OF ENSO SHOULD
EXPLAIN

2. THE CANE-ZEBIAK MODEL

3. SOME ENSO THEORIES ABSTRACTED FROM HOW
INTERMEDIATE MODELS OR CGCMS BEHAVE (BUT THE
COMPLEX MODELS ARE NOT NECESSARILY REALISTIC!)
A. THE DELAYED OSCILLATOR
B. THE MERIDIONAL MASS EXCHANGE OSCILLATOR
C NON-NORMAL EVOLUTION: THE ROLE OF
ATMOSPHERIC AND OCEANIC NOISE



ELEMENTS THAT A THEORY OF ENSO
SHOULD EXPLAIN

A. WHY DOES AN EVENT GROW?
B. WHY DOES AN EVENT DECAY?
C. WHAT SETS THE TIME SCALE?

D. WHAT DETERMINES THE RANGE OF
STRUCTURES?

E WHY DO WARM AND COLD EVENTS
ALTERNATE IRREGULARLY?

F. AUDIENCE CONTRIBUTIONS WELCOME



A. WHY DOES AN EVENT GROW?

A warm anomaly induces westerly (eastward) winds to the west
of the warm anomaly.

The westerly winds cause the warm anomaly to grow warmer by
reducing the upwelling of cold water. This process works best
where the thermocline is shallow.
— Homework Problem: Why not warming by heat flux anomaly (WES)?
After all, the surface winds are reduced since the mean winds are

easterly. Maybe the effect of surface temperature on the saturation
specific humidity dominates?

The warm anomaly induces heating in the atmosphere that
intensifies the westerly wind anomalies.

This is known as the Bjerknes instability.
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Heat flux forcing of ENSO? Doesn’t look
important in the NCEP reanalysis — the heat flux
primarily damps. Very unusual.
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B. WHY DOES AN EVENT DECAY?

1. THE DELAYED OSCILLATOR (SCHOPF AND
SUAREZ; BATTISTI)
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1. The thermocline adjusts to deep in the eastern
part of the wind patch (downwelling) and
shallow in the western part (upwelling).

2. The downwelling signal is carried eastward by
the Kelvin mode and is then dissipated in the
mode fronts at the eastern boundary.

3. The upwelling signal travels westward as a
Rossby mode, reflects as an upwelling Kelvin
mode, and travels back to the scene of the
growing instability.

4. The returning Kelvin wave eventually
overcomes the effect of the growth if it is large
enough.
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* The time scale is determined by the
competition between the returning Kelvin
mode and the growing instability.

* The process is reasonably represented by the
delayed oscillator equation:

9T aT(6)=bT(t-7) - T (1)
dt

* The non-linear term is needed in the delayed
oscillator to equilibrate the amplitude.
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SST Anomaly(C) MAR1997
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B. WHY DOES AN EVENT DECAY?

2. THE MERIDIONAL MASS EXHANGE OSCILLATOR
(also has been called the “recharge oscillator”)




Basic fact: the wave propagation time scales
are “much” faster than the ENSO time scale.

Therefore, the thermocline slope at the
equator is always “in equilibrium” with the
wind stress.

However, the mean depth of the thermocline
along the equator can and does vary due to
mass exchange with neighboring latitudes.

The mass exchange is governed by Sverdrup
transport in the interior and boundary
currents (a la midlatitude ocean gyres).



Equilibrium Response to an Equatorial
Zonal Wind Stress Anomaly

Wind stress

Mass moves around so that the
zonal currents are in geostrophic
balance.

Latitude

Meridional currents in the
region of the wind stress
anomaly (shaded) are in
Sverdrup balance, otherwise 0.

Latitude

Western boundary currents
develop to satisfy mass balance.

Latitude

Longitude —=



OGCM Simulations

* Force an Tropical Pacific OGCM with observed
wind stress 1980-1994 (CONTROL)

e Speed up and slow down the evolution of the
wind stress anomalies by a factor of 3 (FAST
and SLOW).

e ENSO time scale is related to the time scale of
adjustment to equilibrium.



Equilibrium SST and Heat Content
Anomalies
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Heat Content of Time Evolving Runs:
Deviation from Equilibrium
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SST of Time Evolving Runs:
Deviation from Equilibrium
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The time evolving heat content (thermocline depth)
anomalies do not have time to fully adjust to the
wind stress anomalies and lag the equilibrium
anomalies.

The time evolving heat content anomalies are
opposite in sign to the equilibrium anomalies in
regions where the SST is sensitive to thermocline
depth.

The time evolving SST anomalies are opposite in sign
to the equilibrium SST anomalies. The adjustment
process is responsible both for the decay of the
events and the setup for an event of opposite sign.

The time scale for adjustment to equilibrium appears
to be related to the time scale for the setup of the
western boundary currents.



The Cane-Zebiak Model

»The CZ model is a simple tropical coupled model that contains the
elements of the stable or unstable ENSO mechanism

> It has:

— A shallow water model in a square basin to calculate the response of
the thermocline in response to wind anomalies

— A fixed 50 m mixed layer to calculate SST anomaly evolution

— A parameterization of subsurface temperature in terms of the
thermocline depth:

T, = [tanh {b(h, ., +h)} - tanh bh,,.] ; b=b, if h>0, b=b, if h<0

mean mean

— A slightly modified Gill model slave atmosphere parameterization of
the surface wind response to SST anomalies

» The annual cycle is specified and only the anomalies are calculated.
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FIG. 1. Area-averaged SST anomalies for the 90-year model simulation, The solid
line is NINO3 (5°N-5°S, 90°~150°W), and the dotted line is NINO4 (5°N-5°S,
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FIG. 4. (a) SST anomalies and (b) wind anomalies in
December of year 30 of the model simulation.

FIG. 5. As in Fig. 4, except for March of year 31.
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FIG. 6. As in Fig, 4, except for June of year 31.
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The CZ model is simple enough to be run for very long times and simple
and flexible enough to be analyzed for the ENSO mechanisms



C. What Sets the Time Scale?

* The role of reflected Rossby waves in the
delayed oscillator view suggests:

— The farther west the position of the atmospheric
heating anomaly, the shorter the time scale

e Other possible sensitivities not covered directly
by the DO

— Meridional structure of the wind stress anomaly?
— Width of basin (e.g. Pacific vs. Atlantic)?
— Background state

— Audience suggestions accepted



Illustration (Kirtman 1997)

* CZ-type ocean model

 Empirical statistical atmosphere: wind stress
a function of NINO3 SSTA

— Vary the zonal position and meridional width of
the wind stress

— OK as long as atmospheric noise is not an
important forcing
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E. Why Do Warm and Cold Events
Alternate Irregularly?

 Two possibilities (mathematically speaking) in the
context of the CZ model

1. Nonlinearity of the ENSO system of equations a la the
famous Lorenz butterfly equations leading to chaos

2. Forcing of the ENSO system of equations by external
noise. E.g.
*  Weather disturbances (atmosphere)
. Tropical Instability Waves (ocean)
. The noise is ultimately due to nonlinearity not represented/
resolved by the ENSO system of equations

 Both types can be simulated using the CZ model



2. NON-NORMAL EVOLUTION: THE ROLE OF
ATMOSPHERIC AND OCEANIC NOISE

e The CZ model can be linearized and noise added. The linear matrix
formulation is:
dx

— = Ax + Noise
dt

where all the eigenvalues of A are negative so there are no unstable normal
modes

* How can there be ENSO in a stable system? Answer: there is an external
energy source provided by the noise

— Homework problem: what are the energetics?

The solution of the linear equation is

x(t) = R(t) x(t=0)
where R(t) = exp [At] is the propagator (which takes the initial solution to
the solution at time t).



The propagator R is non-normal [RR* # R*R] and the eigenvectors are not
orthogonal. This allows growing modes for a limited amount of time
which then decay.

A non-normal system can maintain a very much larger variance for a
given input of noise than a normal system.

The growing non-normal disturbances depend on the background flow.

Thompson and Battisti showed that the linearization of the CZ model
driven by random noise has many of the same properties as ENSO
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The growing modes have features of the delayed oscillator but
irregularity is inherent and doesn’t have to be explained.
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