

2356-13

Targeted Training Activity: ENSO-Monsoon in the Current and Future Climate

30 July - 10 August, 2012

The Potential for Skill across the range of the Seamless-Weather Climate Prediction Problem

HOSKINS Brian John

University of Reading, Department of Meteorology 2 Earley Gate. Whiteknights, P.O. Box 243 RG6 6BB Reading UNITED KINGDOM

The Potential for Skill across the range of the Seamless-Weather Climate Prediction Problem

Brian Hoskins

Grantham Institute for Climate Change, Imperial College London Department of Meteorology, University of Reading, UK

Outline of talk

- 1. Introduction
- 2. The seamless weather climate prediction problem & the basis for prediction
- 3. Increasing time-scales
 - a) 1-day
 - b) 1-day 1 week
 - c) 1 week 1month
 - d) 1 month seasons
 - e) 1 year- 1 decade
 - f) 1 decade 1 century
- 4. Concluding comments

Introduction

Lorenz model: chaos sensitivity to initial conditions

Up-scale cascade and error doubling time ∼ 1-2 days

Grantham Institute for Climate Change

Dynamics can lead to predictable behaviour

The Quasi-Biennial Oscillation in the equatorial stratosphere

The Seamless Weather-Climate Prediction Problem

The Prediction Problem

- •Observations → initial conditions
- •Ensembles (many runs of the forecast model) → probability information
- •Phenomena → potential predictability
- •Noise or music?

Day 1: Hindcasts for an extreme precipitation event

UK MetO 12km ensemble members & embedded 1.5km model

Week 1: Increasing forecast skill

ECMWF

NH winter 500Z anomaly correlation

Day of forecast

Forecasts for an extreme flood event 5-days ahead

ECMWF

Forecast 24 h precip from 5 days before

Observed 24h precip 5/6 June 1994

Probability of more than 20mm

Probability of more than 40mm

Grantham Institute for Climate Change

Possibility of enhanced synoptic predictive power in the tropics

Convectively couple equatorial waves in analyses

Potential predictability in the tropics on 1-7 days

Russian heat wave & Pakistan floods summer 2010

250hPa winds 24-30 July

Forecasts for Pakistan floods of 2010

ECMWF

One mechanism leading to predictable behaviour: Forcing and propagation of Rossby waves

Observations

Theoretical model 3-D basic state Heating on at t=0

After 9 days

After 9 days

Ambrizzi & Hoskins 1997

Grantham Institute for Climate Change

Blocking

Z on 250 hPa

Tyrlis & Hoskins 2008

Masato et al 2011

Grantham Institute for Climate Change

1week- 1month: Cold Event in Western Japan 2010/11 JMA

850 T (Western Japan) Forecasts from 16 Dec

AnalysisEnsemble meanEsbl members (1 day)Esbl members (2 day)

DJF global circulation anomalies associated with an MJO cycle

Matthews et al 2004

45-day cycle from 2 EOFs of 20-200 day filtered OLR: heavy contours

Grantham Institute for Climate Change

1 month – seasons: North Atlantic Oscillation Northern Annular Mode

3-month running mean of NAO index 1950-date

The stratospheric connection

Baldwin & Dunkerton 2001

El Niňo- Southern Oscillation (ENSO)

Summer 2002

Rainfall (mm/day)

Flooding in Central Europe

Blackburn & Hoskins 2006

I Actual Normal

May 11 21 31 Jun 10 20 30 Jul 10 20 30 Aug 9 19 29 Sep 8 18

Northern Hemisphere Winter 2009/10

Observed T anomalies

Natural decadal variability in models & observations

Skill on 1-10 year time-scale

UK JWCRP

Heat in top 100m ocean: Improvement in Skill from initialisation

Hindcast predictions of 500m heat content in Atlantic subpolar gyre

Skill in Surface temperature and Atlantic tropical cyclone numbers

Smith et al. 2010

Solar variability & European winter climate

Climate "noise" will tend to obscure the climate change signal

40 runs of climate model: year at which climate change signal emerges

Concluding Comments

The Potential for Skill across the range of the Seamless-Weather Climate Prediction Problem – a Stimulus for our Science

- •On all time-scales natural phenomena and external conditions give promise of some possible predictability
- •The extent to which the possible skill on various time-scales may be useful is not yet clear
- •We need to observe, model and understand to realise the potential skill
- •We need to learn to recognise how much music there is in what may seem like noise!

