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Basic definitions

Definition of the current

@ Coupling to the gauge field A: in a continuum system we use the
minimal substitution

h

p+-A=-V+5A
C 2 C

@ As a consequence the kinetic term becomes:
Ho= - [a +()['hV+6Ar()
0= xc™(x i - c(x

@ The current operator is then given by

jo= —ox =t (@) (<ih Y +eA) () =
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Basic definitions

@ In practice, the Hamiltonian up to quadratic order is
2
HA) = HO)+ [ dx [eAix)if (0 + 5 A2In(

@ In the lattice one would like an equivalent expansion. This is
provided by the Peierls ansatz

ie i A- ] -
ie [Ti A-dr = Cjo-ci—ﬁ—éa N CIU cH_éaeleA(n) )

C; — C;€e
@ Notice that this modifies only the kinetic term: the interaction
term is supposed to be Gauge invariant (i.e. density-density
interactions)

Ho(A) = —t Z (C;‘fgci+6a€i8A(ri)'6 + h.c.)
i




Basic definitions

Ho(A) = —tz (cwciJrgoeleA(" + h.c. )

19

@ By expanding in powers of A we get

HA) ~ HO)+ Y [eAse)if () + 5 A2as)ren)]

J
so that
oOH p

Ji(r) = e = —ejf(r) — 27 (r) A (r)

where (ex = —2t(cosk; + cosky))

]aI:D = ’tz CigCitzo — 1+IO'CZO') = ]aI:D(q = 0) =N

Tew = E cq/gcl+r0- +CH_IUC“7) = Tij = N E
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Basic definitions

The electromagnetic kernel

ji(r) = —€jiP(I') — 627'“'(1')141'(1') = H = H(O) —|—j A
@ In linear response theory we then have (u ~ space and time)

3u(q) = K (9)Au(q)

where the electromagnetic kernel K, is defined as:

Ku(9,1) = = (Tuu)0u (1 — u0) + Muw(a, iQ0).
The diamagnetic tensor

0?2 ak 0%ex
(ria) = % Z k2 (Cler ) N Z oKz

generalizes to a lattice system the term n/m while
N,.(q,iQ,) ~ (jF57) is the current-current correlation function,

with jp ~ >, chLck, vk = Oei/0k




Basic definitions

Optical conductivity

Jn(9) = K (@)Au(q)
@ By using the relation between A and the electric field E

E(w)

) J=4E
i(w + i0) 7

Aw) =

one arrives at the famous Kubo formula

_Z-ezKii(q =0,w) . ,<7i>—Ti(q=0,w)

Viw+i0) ° V(w +i0) ’

o(w) =

@ The real part of the optical conductivity is

2 2 ImnM(0
Reo(w) = %5(w)[< 7 > —Rel(0,w)] + %w

Do we really have a delta-like contribution??
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Basic definitions

Charge conservation and Gauge Invariance

@ Charge conservation

p+V-j=0 =quu(q) =0 ¢=(qw)

@ Gauge invariance
Ay = Ap+0ux Aula) = Aula) +igux(9)

@ Since j, = K, A, one must have

Q,uK,uu(Q) = K[Ll/(q)ql/ =0= nu(q —0,w= O) = <7'u>

Rel1(0,0) =< 7 >
me? me? ImM(0, w)

Reo(w) = (w)[< T > —Rel(0,w)] + v . =
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Basic definitions

Gauge invariance and Optical sum rule

6_2 ImMN(q = 0,w)
v w

@ By using the Kramers-Kronig (KK) relations for MN(q = 0,w) one
can derive the well-know sum rule:

© Tmh
/Rea & [®ImMg=0w),
w

Rel(0,0) =< 7 > Reo(w) =

W(T)

me? me? 0%
= —Reﬂ(q Ow 0):W<T>:V—N2872k k.o
k,o

The optical sum rule is a consequence of charge conservation.
The approximations used to compute K, must satisfy the
above relations, i.e. one must choose a conserving
approximation. This is not at all an easy task..
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Vertex corrections

@ Let us imagine to have a given interacting model
H = Ho+ Hint

The bare Green’s function is Gal = twy, — &k. We treat the
interaction term in some approximation in order to obtain the
new Greens’ function from the Dyson equation:

G p) =Gy (p) — Z(p)

@ The current-current correlation function will be

;w(cb iQp, / dTelQm‘r<T j[l. (q, ).]z/ ( q, 0)>

with j(q,t) = & Zka v(k )ck /20 Ck+a/20> and v(k) = %.

N~ (efl7clce HTcle)
This is a very complicated function!
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Vertex corrections

@ The zero-th order is the so-called bare bubble e >

N9, (Q, i) = =23 [G(k—q/2, iwn+iQum) v, (K)G(k+a/2, iwn v, (K)]

@ To guarantee a conserving approximation
one has to replace one velocity with a J
"dressed’ current, J

M (6, iQm) = =2 Y _[G(k-)o(K)G (k) Iy (ks k)]
k

The dressed current is found as the solution of an integral equa-
tion, that depends on the approximation used for the self-energy

Lara Benfatto
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Two paradigmatic examples
[ leJele]e]

Impurity scattering

The bare bubble

@ Let us start from the bare bubble and let us compute it by
introducing the spectral representation of the Green’s function

= /dzM Az, k) = —lImGR(w,k)
w—2 s

@ We can then perform easily the sum over Matsubara frequencies

al9) = 23 [ sttt HU LG

21 — 22 — 1f2
so that ImMN(Q) — —md(z1 — 22 — Q) and

e? ImMM(q = 0,w)
V—

= _27rsz / fetw) = I )A(z—l—w,k)A(z,k)

Reo(w) =
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Two paradigmatic examples
(o] Telele]

Impurity scattering

Scattering by impurities
@ Scattering by impurities leads to a finite lifetime of quasiparticles

1 r

Az, k) = M (2 — &) = TGP ir

@ By using v, (k) ~ vZ the conductivity is

w) Nv%/dzdﬁw [M(z4+w—&§M(z— &)

f(z +w) — f(2) = particle-hole excitations between occupied
and unoccupied states

@ At low temperature this reduces to

/dz—/ dé M(z + w,§)M(2,€) = 2+(2r)




Impurity scattering

@ We then obtain the
well-known Drude

formula
I
() ne? T
o = —
b m 1+ (wr)? ® n
W
with ! !

]_/Tf/,‘ = l_tr =2

f However, Boltzmann theory tells us that the transport \
scattering rate does not coincide with the quasiparticle one

1 dk’ 1 dk’
Fr=2n | 2 Tl To=—~ [ 2 T P(1—cosd’
- /(27r)3| k%, T - /(27r)3| k' |*(1—cos §')

What is missing? Vertex corrections!




Two paradigmatic examples
[e]e]e] o]

Impurity scattering

@ The ’correct’ dc conductivity contains both
the bare velocity v and the dressed current

J: J
1 6 kFJF

— 2 ~
~° Z( agk) e a

@ The current is the solution of the equation

Ja(p4:0-) = va+ > (0, P ) Wops (iwn, iwn +iQ2) G (0} )G (r-)




Two paradigmatic examples
0000e

Impurity scattering

@ At zero frequency and in the Fermi-liquid approximation this can
be solved. One finds that

Ttr I
Jo=val, A=T0—
v T rtr

so that

e kpJp  €kpvp  ne*r,

Tde = 47 Tp T, m

In practice, vertex correction can be recast
in a redefinition of the transport scattering rate,
that gives back the Boltzmann result.
This is somehow general for single-band systems,
but not so general for multiband ones




Two paradigmatic examples
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Superconductivity

Superfluid density

@ What is a superconductor? It is a perfect diamagnet. The
London equation tells us that in the London gauge V- A =0 (A
purely travserse) for g, — 0 one has

. 1 nge
Jja(qy) = _mAm(Qy) = -

A,
me (Qy) qy — 0

@ Since j, = K, A, for @ — 0 the superfluid density Dy = ny/m is
given by the static limit of the transverse correlation function

D,

me? = Toz — nrr(iQm =0, =0,qy — 0)

@ How do we compute Dy within the BCS approximation?

Lara Benfatto




Two paradigmatic examples

O®@00000

Superconductivity

The bare bubble

@ The bare-bubble current-current correlation function within the
approximation is given by

0 ) 2 5 , , , uv u'v
MNyp(a, i) = —> vp(l—f— f)vu —uv’) + +
N % iQm — E— E'  iQm+ E+ E’
2 vo’ uu'
+ — Z f — ) vvl + uu/) -
N iQm + E — E/ iQm — E + B/

Here E' = Eyq/2, E = Ex_q/2, u,v are the usual BCS
coherence factors.

@ The superfluid density is then
(Ta:a: - nww(ZQm = 07 Qe = 07 qQy — 0))

D, sy O = 0% dex \* Of
_Tzz—zk:vr(k)a—‘Ejk— - 8—]{;1,27’“{70-_21(: 8—]{;1 a—_Ek

me2

and it seems to work well....




Two paradigmatic examples

0O0e0000

Superconductivity

D, 2 O = 0% 9 \* Of
mz—%—z%(k)a—a{— 2 ”‘Z(a—k> 9Fn

k

@ AsT — 0 0f/0Ex = §(Ex) ~ e~/ accounts for quasiparticle
excitations

@ At T =T, Ex = &, nk = f(&) and the second term, integrated
per part, cancels out the first term

@ However, we have seen that GI would require also for the
longitudinal limit:

Tez — Nz (iQy = 0,9, — 0,¢, =0) =0

and this is clearly violated (the two limits are identical)

What is missing? Vertex corrections! How to include them?
Very elegant and efficient way: integrate out phase fluctuations

Lara Benfatto




Two paradigmatic examples

[e]e]e] le]ele)

Superconductivity

o Effective action for phase fluctuations:

S = 821(305 a)qaq|0(q)|? N—/er (V0)?

@ Minimal-coupling substitution:

VO — VO —2eA = q,0(q) — 2eAq(q)

@ After integrating out the phase fluctuations one obtains an
RPA-like resummation

KBCS chdKBCSKBCS
QCQdKBCS

KBCS _ qm(wacsy
@CEECS + KPS

Kab(qv 0) =

This correction is purely longitudinal: this is way the superfluid
density obtained in the bare-bubble approximation is correct!

Lara Benfatto




Two paradigmatic examples

0O000e00

Superconductivity

Disordered systems

@ Vertex corrections contain the physics of phase fluctuations,
missing in BCS. For a clean system these couple only to the
longitudinal component of A since

1
S, = S—W/ers(VG—QeA)z = /DSW-A: —/DSH(V-A)

@ However, for a dirty system

Sy ~ % / drDy(r)(VO — 2eA)?

In this case phase fluctuations couple also to the
transverse component of the gauge field
= the BCS expression for Dy is no more correct

Lara Benfatto




Superconductivity

Two paradigmatic examples
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Disordered systems

THEORY
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Disordered Hubbard model
G.Seibold, L.Benfatto, C. Castellani and

J.Lorenzana, Phys. Rev. Lett. 108, 207004 (2012)
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M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar, J.

Jesudasan, L. Benfatto, V. Tripathi, P. Raychaudhuri, Phys. Rev.
Lett. 106, 047001 (2011)




Two paradigmatic examples
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Superconductivity

The way out to vertex corrections

@ As long as the interaction is momentum-independent vertex
corrections vanish, and the bare-bubble approximation is gauge
invariant

¢ Eliashberg theory for electron-boson interactions

2QB(Q
Y (iwn) = —TVZ D(wp—wm)G(iwm), D(wr) /dQ e

@ Dynamical Mean Field Theory (DMFT), self-consistent solution
for ¥ (w)

Lara Benfatto
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Sum rule

o0 re? 0%ey
W = /0 Reaii(w,T)dw: W—Nkzc;a—kl?nk’a

@ If we could really account for all frequencies we would recover
the free-electron dispersion ey = k?/2m (the so-called f-sum rule)

7T7’l€2

2m

W =

@ However, in real systems we integrate up to a finite cut-off w,

a(w)
Intraband

W(we, T) :/ CReaii(w,T)dw
0

where ¢y refers only to the band(s) orace s 4TI
rude . “Mid-infrared:

near the Fermi level




E I Sum rule

Restricted optical sum rule

W(w.,T) = / ‘Re oii(w, T)dw = o(w)
0

me? D%ex

2VN kz; oKz e

where ek refers only to the band(s)

Intraband

Drude ,‘Mid-infrarech

near the Fermi level with effective e ®
mass my,
@ Roughly speaking we can say that the sum rule scales then with
2
men
W(we) ~
(we) 2myp

where the band mass m; can be compared to its DFT estimate

The absolute value of the sum rule gives information on the
correlations on the energy scales of the full bandwidth

Lara Benfatto
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E I Sum rule

Restricted optical sum rule

W(wc, T) = / ‘ Re Uii(w, T)dw — o(w) \
0

me? 0?ex
2VN sz; oKz "

where ek refers only to the band(s)
near the Fermi level

Intraband

Drude ,‘Mid-infrarech

e ®

@ Systems near half-filling (as e.g. cuprates):
ex = —2t(cosk, + cosky) = 9% /Ok? = 2t cosk,

W(we,T) ~ (K)

The temperature dependence of the sum rule gives information
on the role of interactions on the occupation number, i.e. on
the transfer of spectral weight from the Drude-like part to
something else

Lara Benfatto




E I Sum rule

Sommerfeld expansion

@ The case of a ’standard’ metal: we can use the Sommerfeld
expansion to get

W(T) = (m;;% = ——Zskf fi) =

/daN Jef(e — 1 /daN Ye — (p)T?,

where c(¢) = (72/6)[eN'(¢) + N(¢)]
@ For a flat DOS N = 1/2D where D is the semi-bandwidth

2

W(T)=W(0) — ﬁT2 W(0) — BT?

So spectral weight is expected
to decrease at temperature increases
How much? Let’s try to make an estimate..

Lara Benfat




I I Sum rule

Conventional...

@ Let us put numbers:
W(0) ~ N [;7 dee ~&%./D ~ 1€V for D ~ 1
eV. The relative variation up to room
temperature 7" ~ 300 K~ 30 meV are

AW (300K) T2

< ~ ——— ~ (30x1073)? ~ 1073
W(0) DW (0)

L Zlos

i.e. relative spectral-weight variarions are 10 ]
expected to be of order of few per-mille. T# (10°K?)

M.Ortolani et al. PRL 2005

Lara Benfatto




E I Sum rule

0 1

...and beyond

@ Cuprates: the spectral-weight variations are
one order of magnitude larger than

expected b=
o ) 026 | ©
o Pnictides: almost empty bands ey ~ k*/2m; . djos
SO = 1.0
N me’n
- 2mb
and one would expect almost no
temperature dependence. One finds instead w L 91 08
strong increase of the sum rule with T# (10°K?)

increasing temperature.
M.Ortolani et al. PRL 2005




E I Sum rule

The issue of the cut-off

@ Let us consider a Drude model

@2 T
47n
ap - 4
Ww) = 2 / o e (@) e’
0

o If one integrates up to a finite cut-off

W) = L s). s = (1- 12)

The presence of the cut-off itself can introduce a temperature
dependence of the spectral weight




E I Sum rule

Take-home messages

@ Gauge invariance, conserving approximation and optical sum
rule: different ways to state charge conservation

@ The optical sum rule in conventional systems does not look so
interesting: as we shall see, in correlated ones it is instead a great
source of information

@ Few useful references

@ G. D. Mahan, Many-Particle Physics, Kluwer Acad. Pub., New
York, 2000.

© D.J. Scalapino, S.R. White, and S. Zhang, Phys. Rev. B. 47,
7995 (1993) (on the difference between a metal, an insulator and
a superconductor)

© L. Benfatto, A. Toschi, and S. Caprara, Phys. Rev. B. 69, 184510
(2004) (gauge-invariant response function for a superconductor)

© L. Benfatto and S. Sharapov, Low Temp. Phys. 32, 533-545
(2006) (review on sum rule in cuprates)
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