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This will be the story about

superconductivity and SDW
In single-layer graphene
doped to van-Hove point



Graphene -- an atomic-scale honeycomb lattice

made of carbon atoms.
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Ca can create additional
subbands and cause a
phonon SC, like in CaC,

Mazin & Balatsky
But let’s assume that the

only effect of doping is the
change of electronic structure



At van Hove doping
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Because of van-Hove points

e superconducting susceptibility
gets an extra boost:
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 more exotic susceptibilities ¢ density-wave susceptibilities
are also log-singular also get extra boosts:
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Self-consistent approach will give a solution for each order
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Graphene at
Van Hove doping
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Suppose we consider weak el-el interaction.
What is the leading instability?

This is a typical parquet RG problem: there are
logarithms in particle-hole and particle-particle
channels.

Bare level:
pairing interaction is generally repulsive in all channels,
Interactions in SDW and current CDW channels are attractive

density-wave order (SDW) is the instability at the RPA level

But, Interactions flow to new values at low energies, and
which one will eventually win remains to be seen

A similar story in bi-layer graphene: Lemonic, Aleiner, Fal’ko
Cvetkovic, Throckmorton, Vafek



How one should do this:

Introduce all possible interactions between low-energy fermions
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RG equations (perfect nesting)
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Particle-hole and
particle- particle channels

Only particle-hole channel



RG equations (non-perfect nesting)

— = 2d191(92 — 01).
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all couplings diverge at a particular scale
similar eqs for square lattice (n=2): Le Hur & Rice, Dzyaloshinskii, Yakovenko, Schulz ....



SDW, CDW, and SC vertices
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: | Need I'" > O for instability
Lspw = (93 T gz)dl |'E
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7
SC vertex takes L
over SDW =

RGscale y : RG scale y

* The two leading instabilities are SDW and spin-singlet SC

* The SDW vertex is the largest one at intermediate energies

* The superconducting vertex eventually takes over and becomes the
leading instability at low energies, both at perfect and imperfect nesting



Superconductivity
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g, IS against any pairing
ds Is not against ANY pairing:
1_‘asc >0 1f U3 >4

Re flow:
Pnictides: 2 “hot spots”
Au
electron FS Js
A %

| ' S RG scale
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- ’ "/ |r > 0for pairing S - wave
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g, IS against any pairing
ds Is not against ANY pairing:

1_‘asc >0 1f U3 >4

Re flow:
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RG scale

[,=-9,-29, F2’3:g3-g4>0

[,;=-0,+0, # doubly degenerate
" > 0 for pairing solution for SC
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doubly degenerate
solution for SC
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The two d-wave solutions are degenerate by symmetry

Gonzales
Landau-Ginzburg expansion

F=ofT - T)(|Aa? = |Asf%) + K1 (|Aal® + |A)* + Kol A2 + A + O(AY)

d+i1d state wins




Functional RG — the same result

Thomale et al
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Spin density wave




Away from van Hove filling, RG stops at some scale

X Need g,>g, for SC
g

d-wave SC may or may not develop, but SDW channel is
attractive anyway and is always dominant at intermediate scales
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The issue Is what kind of SDW
order emerges
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leaves infinite number of
possible SDW states



M; Previous works on this and similar models:

74, non-coplanar, chiral SDW state
- with a nonzero A - As x As
M,
l Al Li, Morais Smith et al, Batista & Martin...
\AB 1/ We found different SDW order:
S~ M

we integrated out electrons and obtained Landau functional
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M; Previous works on this and similar models:

4, non-coplanar, chiral SDW state
- with a nonzero A - As x As
M,
l Al Li, Morais Smith et al, Batista & Martin...
\AB 1/ We found different SDW order:
~_ I

we integrated out electrons and obtained Landau functional

Lo al —TIn)> A7+ Z1(AT+ A3+ A3)? +2(Zy — Z1 — Zs)(ATAS + AJA + AZAT)

+ 4Z3((A - Ag) + (A As) + (Ag- A1)?) —4Z4(Ar - Az x Ag)’ + -

either only one of A, appears, or all 3
appear with equal amplitudes

either the state is chiral or co-planar



Our result: the SDW state is co-planar (non-chiral),
uni-axial, and with equal magnitudes of all A,
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8-site unit cell with moments +3A and —A and zero magnetization

One cannot get this order in localized spin models



Is this state a metal or an insulator?
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If there was a single SDW order parameter
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All states would be gapped (insulator)



Is this state a metal or an insulator? E«=0

ou=—A
spin up
spin along A ou Is the change of
E,=0 =1 the chemical potential
Spin opposite to A
E,-op spin down
ﬁ The SDW state is

- half-metal: for spin-up
excitations (red) all
states are gapped, for
spin-down excitations
(blue), the full FS
survives

Charge currents are necessary spin currents




This story has one extra chapter:

Planar SDW exists only in a finite range of temperatures

of 2 'E'e; 7 Explanation:
0 - e Batista & Chern
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Pre-emptive nematic order:

O@R)xZ,

(A AL A)

(A, —A,—A), (=A, A, —A),
(—A, —A, A)

Z, order breaks translational
symmetry, but leaves rotational
lattice symmetry intact



Can the system break Z, before it breaks O(3)?
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SDW ordersetsatr=0
If <¢p>=0atr>0 = pre-emptive nematic order

/| 1%t order transition into a nematic state

046 /1 which breaks Z4 translational symmetry, but
/I preserves O(3) spin rotational symmetry and

/| also preserves lattice rotational symmetry
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Detalls:

Beyond mean-field: the transition is in the
universality class of 4 state Potts model.

Potts model in 2D: the transition exists, is 2"d order,
with 3 =1/12 for ¢ ~ (T, —T)” , almost 15t order

How to detect the nematic order?

Static spin susceptibility ¥ (Q) jumps at the nematic transition



Conclusions

Doped graphene is a wonderful playground to study
truly unconventional superconductivity and SDW order

d+id superconductivity
semi-metallic SDW with spin-dependent excitations
pre-emptive nematic order

What’s next:  f-wave (I=3) superconductivity ?

co-existence of SDW and SC ?
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