

2357-6

Innovations in Strongly Correlated Electronic Systems: School and Workshop

6 - 17 August 2012

Interplay between superconductivity, magnetism and nematic order in the iron pnictides - Part II

Rafael M. FERNANDES Columbia University, Physics Department, 704 Pupin Hall New York City USA

Supported by:

US-DOE NSF (PIRE)

ICAM

Interplay between superconductivity, magnetism, and nematic order in the iron pnictides

Rafael M. Fernandes

Columbia University &

Los Alamos National Laboratory

ICTP Workshop

Aug 10th, 2012

Iron pnictides: typical phase diagram

magnetic, structural, and superconducting order

- How these different ordered states interact with each other?
- Is there a primary degree of freedom?

Outline

- **1.** The superconducting state (Lecture I)
 - *unconventional superconductivity*
- 2. The magnetic state (Lectures I & II)
 - itinerant or localized?
- **B. The nematic state (Lecture II)**
 - a new electronic phase that emerges from magnetism and triggers structural and orbital order
- 4. Competing orders (Lecture II)
 - competition between SC, magnetism, and nematics

Iron pnictides: magnetic order

• How to describe the magnetically ordered state?

> itinerant or localized picture?

- Localized limit: strong Coulomb repulsion
 - > Hubbard model at half-filling

$$H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{+} c_{j\sigma}^{+} + c_{j\sigma}^{+} c_{i\sigma}^{-} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow} \qquad t \ll U$$

> perturbation theory: energy gain due to virtual hopping

• *Localized limit*: strong Coulomb repulsion

> effective Heisenberg Hamiltonian

$$H = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J = \frac{t^2}{U}$$

energy gain comes from the kinect term

• *Itinerant limit*: to simplify, first consider the case of a ferromagnet (Stoner model)

the ground state of non-interacting electrons is non-polarized

• *Itinerant limit*: to simplify, first consider the case of a ferromagnet (Stoner model)

• *Itinerant limit*: to simplify, first consider the case of a ferromagnet (Stoner model)

however, when the electrons are polarized, they pay less local Coulomb energy due to Pauli principle

• *Itinerant limit*: to simplify, first consider the case of a ferromagnet (Stoner model)

Stoner criterion $\Delta E_{\rm kin} + \Delta E_{\rm Coul} = 0 \implies U \rho_F = 1$ for ferromagnetism: $\varepsilon(\mathbf{k})$ $\varepsilon(\mathbf{k})$ $n_{\uparrow} > n_{\downarrow}$ $n_{\uparrow} = n_{\downarrow}$

energy gain comes from the Coulomb repulsion term

• *Itinerant limit*: to simplify, first consider the case of a ferromagnet (Stoner model)

 \succ Hubbard model in the limit of small U << t

$$H = -t \sum_{\langle ij \rangle, \sigma} \left(c_{i\sigma}^{+} c_{j\sigma} + c_{j\sigma}^{+} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

> Coulomb repulsion enhances uniform susceptibility (RPA)

$$\chi = \frac{\chi_{\text{Pauli}}}{1 - U\rho_F}$$
favored near
van-Hove singularity

 Itinerant limit: Stoner condition can be generalized for the case of a magnetically ordered state with ordering vector Q

$$\chi(\mathbf{Q}) = \frac{\chi_0(\mathbf{Q})}{1 - U_{\mathbf{Q}}\chi_0(\mathbf{Q})}$$

• Instability usually assisted by nesting: $\varepsilon(\mathbf{k} + \mathbf{Q}) = -\varepsilon(\mathbf{k})$

$$\chi_0(\mathbf{Q}) = -T \sum_{\mathbf{k},\omega_n} G(\mathbf{k},\omega_n) G(\mathbf{k}+\mathbf{Q},\omega_n)$$

$$\chi_0(\mathbf{Q}) = \sum_{\mathbf{k}} \frac{\tanh(\varepsilon_{\mathbf{k}} / 2T) - \tanh(\varepsilon_{\mathbf{k}+\mathbf{Q}} / 2T)}{2(\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{Q}})}$$

 Itinerant limit: Stoner condition can be generalized for the case of a magnetically ordered state with ordering vector Q

$$\chi(\mathbf{Q}) = \frac{\chi_0(\mathbf{Q})}{1 - U_{\mathbf{Q}}\chi_0(\mathbf{Q})}$$

• Instability usually assisted by nesting: $\varepsilon(\mathbf{k} + \mathbf{Q}) = -\varepsilon(\mathbf{k})$

$$\chi_0(\mathbf{Q}) = \rho_F \int_0^{\Lambda} \frac{d\varepsilon}{\varepsilon} \tanh\left(\frac{\varepsilon}{2T}\right) \quad \text{same equation as BCS!}$$
$$\chi_0(\mathbf{Q}) \propto \rho_F \log\left(\frac{\Lambda}{T}\right) \quad T_{\text{mag}} \propto \Lambda \exp\left(-\frac{1}{U_{\mathbf{Q}}\rho_F}\right)$$

Iron pnictides: magnetic order

- from itinerant to localized magnetism
 - several known systems are in the intermediate coupling regime (such as elemental Ni and Fe)

since the ground state of the iron pnictides is a metal, we choose here the itinerant limit as our starting point

Iron pnictides: magnetic order

- from itinerant to localized magnetism
 - several known systems are in the intermediate coupling regime (such as elemental Ni and Fe)

optical conductivity: transfer of spectral weight from the Drude peak to the mid-infrared region

electronic interaction above threshold leads to a magnetically ordered state (SDW) with ordering vector Q_i

Theory of the itinerant magnetic state

Two simultaneous spin-density wave instabilities:

$$\mathbf{S} = \mathbf{M}_1 \mathbf{e}^{i\mathbf{Q}_1 \cdot \mathbf{r}} + \mathbf{M}_2 \mathbf{e}^{i\mathbf{Q}_2 \cdot \mathbf{r}}$$

microscopic calculation of the magnetic free energy by integrating out the electrons (Hertz-Millis approach)

step 1: start with purely multi-band electronic interactions

equivalent to multi-orbital Hubbard model

step 2: project the interactions in charge channel and spin channel

use the identity between Kronecker deltas and Pauli matrices:

$$\delta_{\alpha\beta}\delta_{\gamma\delta} = 2\delta_{\alpha\delta}\delta_{\gamma\beta} - \vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta}$$

$$H_{\text{int}} = -u_s \sum_{\mathbf{q},i} \left(d^+_{\mathbf{k}+\mathbf{q}\alpha} \vec{\sigma}_{\alpha\beta} c_{i,\mathbf{k}\beta} \right) \cdot \left(c^+_{i,\mathbf{p}-\mathbf{q}\gamma} \vec{\sigma}_{\gamma\delta} d_{i,\mathbf{p}\delta} \right)$$

 $u_s = u_1 + u_3$

step 3: introduce collective variables for the two SDW instabilities

$$Z \propto \int dc_{\mathbf{k}} df_{\mathbf{k}} \exp(-H/T)$$

$$\mathbf{M}_{i} \propto \sum_{\mathbf{k}} \left\langle d^{+}_{\mathbf{k}lpha} \vec{\sigma}_{lphaeta} c_{i,\mathbf{k}eta}
ight
angle$$

use the Hubbard-Stratonovich transformation:

$$\exp\left[u_{s}\left(d_{\mathbf{k}+\mathbf{q}\alpha}^{+}\vec{\sigma}_{\alpha\beta}c_{i,\mathbf{k}\beta}\right)\cdot\left(c_{i,\mathbf{p}-\mathbf{q}\gamma}^{+}\vec{\sigma}_{\gamma\delta}d_{\mathbf{p}\delta}\right)\right]=\int d\mathbf{M}_{i}\exp\left[-\frac{u_{s}}{2}\mathbf{M}_{i,\mathbf{q}}\cdot\mathbf{M}_{i,-\mathbf{q}}+\mathbf{M}_{i,\mathbf{q}}\cdot\left(c_{i,\mathbf{k}-\mathbf{q}\alpha}^{+}\vec{\sigma}_{\alpha\beta}d_{\mathbf{k}\beta}\right)+\mathbf{M}_{i,-\mathbf{q}}\cdot\left(d_{\mathbf{k}+\mathbf{q}\alpha}^{+}\vec{\sigma}_{\alpha\beta}c_{i,\mathbf{k}\beta}\right)\right]$$

step 4: introduce "Nambu operators" (simplify the notation)

$$\hat{\Psi}_{\mathbf{k}}^{+} = \begin{pmatrix} d_{\mathbf{k}\uparrow}^{+} & d_{\mathbf{k}\downarrow}^{+} & c_{1,\mathbf{k}\uparrow}^{+} & c_{1,\mathbf{k}\downarrow}^{+} & c_{2,\mathbf{k}\uparrow}^{+} & c_{2,\mathbf{k}\downarrow}^{+} \end{pmatrix}$$
$$Z \propto \int d\hat{\Psi}_{\mathbf{k}} d\mathbf{M}_{i} \exp\left(-F\left[\hat{\Psi}_{\mathbf{k}},\mathbf{M}_{i}\right]\right)$$

$$F = -\int_{k} \hat{\Psi}_{\mathbf{k}}^{\dagger} \hat{G}_{k}^{-1} \hat{\Psi}_{\mathbf{k}} + \frac{2}{u_{s}} \int_{x,i} M_{i}^{2}$$

$$\hat{G}_{k}^{-1} = \begin{pmatrix} G_{0,k}^{-1} & \mathbf{M}_{1} \cdot \boldsymbol{\sigma} & \mathbf{M}_{2} \cdot \boldsymbol{\sigma} \\ \mathbf{M}_{1} \cdot \boldsymbol{\sigma} & G_{1,k}^{-1} & \mathbf{0} \\ \mathbf{M}_{2} \cdot \boldsymbol{\sigma} & \mathbf{0} & G_{2,k}^{-1} \end{pmatrix}$$

with:
$$G_{j,k}^{-1} = i\omega_n - \varepsilon_{j,\mathbf{k}}$$
 $k = (\omega_n, \mathbf{k})$

step 5: "integrate out" the electrons (Gaussian integration)

$$\hat{G}_k^{-1} = \left(\hat{G}_k^0\right)^{-1} - \hat{V}$$

$$(\hat{G}_k^0)^{-1} = \begin{pmatrix} G_{0,k}^{-1} & 0 & 0 \\ 0 & G_{1,k}^{-1} & 0 \\ 0 & 0 & G_{2,k}^{-1} \end{pmatrix} \qquad \hat{V} = -\begin{pmatrix} 0 & \mathbf{M}_1 \cdot \boldsymbol{\sigma} & \mathbf{M}_2 \cdot \boldsymbol{\sigma} \\ \mathbf{M}_1 \cdot \boldsymbol{\sigma} & 0 & 0 \\ \mathbf{M}_2 \cdot \boldsymbol{\sigma} & 0 & 0 \end{pmatrix}$$
$$Z \propto \int d\mathbf{M}_i \exp\left(-F_{\text{mag}}[\mathbf{M}_i]\right)$$

with the effective action:

$$F_{\text{mag}} = -\text{Tr}\log(1 - \hat{G}_{k}^{0} \hat{V}) + \frac{2}{u_{s}} \int_{x,i} M_{i}^{2}$$

step 6: do perturbation theory

$$(\hat{G}_{k}^{0})^{-1} = \begin{pmatrix} G_{0,k}^{-1} & 0 & 0 \\ 0 & G_{1,k}^{-1} & 0 \\ 0 & 0 & G_{2,k}^{-1} \end{pmatrix} \qquad \hat{V} = -\begin{pmatrix} 0 & \mathbf{M}_{1} \cdot \boldsymbol{\sigma} & \mathbf{M}_{2} \cdot \boldsymbol{\sigma} \\ \mathbf{M}_{1} \cdot \boldsymbol{\sigma} & 0 & 0 \\ \mathbf{M}_{2} \cdot \boldsymbol{\sigma} & 0 & 0 \end{pmatrix}$$

$$F_{\text{mag}} \approx \frac{1}{2} \operatorname{Tr} \left(\hat{G}_{k}^{0} \hat{V} \right)^{2} + \frac{1}{4} \operatorname{Tr} \left(\hat{G}_{k}^{0} \hat{V} \right)^{4} + \frac{2}{u_{s}} \int_{x,i} M_{i}^{2} + O\left(M_{i}^{6} \right)^{4}$$

we obtain the Ginzburg-Landau derived from the microscopic model!

$$F_{\text{mag}} = \frac{a}{2} \left(M_1^2 + M_2^2 \right) + \frac{u_{11}}{4} M_1^4 + \frac{u_{22}}{4} M_2^4 + \frac{u_{12}}{4} M_1^2 M_2^2 + (\cdots)$$

For perfect nesting:
$$F_{\text{mag}} = \frac{a}{2} \left(M_1^2 + M_2^2 \right) + \frac{u}{4} \left(M_1^2 + M_2^2 \right)^2$$

mean-field solution:
$$\frac{\partial F_{\text{mag}}}{\partial M_i} = 0$$

$$M_1^2 + M_2^2 = \text{constant}$$

Theory of the itinerant magnetic state

Away from Away from perfect nesting: $F_{\text{mag}} = \frac{a}{2} \left(M_1^2 + M_2^2 \right) + \frac{u}{4} \left(M_1^2 + M_2^2 \right)^2 - \frac{g}{4} \left(M_1^2 - M_2^2 \right)^2$ \overline{V} $g = -\frac{1}{2} \int_{L} G_{\Gamma,k}^2 \left(G_{X,k} - G_{Y,k} \right)^2 > 0$ X

Theory of the itinerant magnetic state

Iron pnictides: itinerant magnetism

• Solving the mean-field microscopic gap equations, we can also obtain the doping-dependence of the magnetization and transition temperature

good agreement with experimental measurements

RMF et al, PRB (2010)

Outline

- **1.** The superconducting state (Lecture I)
 - unconventional superconductivity
- 2. The magnetic state (Lectures I & II)
 - itinerant or localized?

3. The nematic state (Lecture II)

- a new electronic phase that emerges from magnetism and triggers structural and orbital order
- 4. Competing orders (Lecture II)
 - competition between SC, magnetism, and nematics

Why nematics???

Iron pnictides: normal state properties

resistivity anisotropy cannot be attributed only to the orthorhombic distortion

Iron pnictides: normal state properties

breaks tetragonal symmetry: nematic phase

Nematic order: qualitative argument

• Symmetry breaking in a regular antiferromagnet:

Nematic order: qualitative argument

• Symmetry breaking in the striped magnetic state of the iron pnictides:

Nematic order: qualitative argument

• A state that breaks Z₂ symmetry but remains paramagnetic

> tetragonal symmetry-breaking

To consider the possibility of a nematic state, we need to include fluctuations

$$F_{\text{mag}} = \chi_{\text{mag}}^{-1} (\mathbf{q}) \left(M_1^2 + M_2^2 \right) + \frac{u}{2} \left(M_1^2 + M_2^2 \right)^2 - \frac{g}{2} \left(M_1^2 - M_2^2 \right)^2$$
$$Z = \int dM_i \exp \left(-F_{\text{mag}} \left[M_i \right] \right)$$

Hubbard-Stratonovich transformation: auxiliary fields

$$\exp\left[-\frac{u}{2}\left(M_{1}^{2}+M_{2}^{2}\right)^{2}\right] = \int d\psi \exp\left[-\psi\left(M_{1}^{2}+M_{2}^{2}\right)+\frac{\psi^{2}}{2u}\right]$$

$$u \propto M_1^2 + M_2^2$$
 Gaussian fluctuations

To consider the possibility of a nematic state, we need to include fluctuations

$$F_{\text{mag}} = \chi_{\text{mag}}^{-1} (\mathbf{q}) \left(M_1^2 + M_2^2 \right) + \frac{u}{2} \left(M_1^2 + M_2^2 \right)^2 - \frac{g}{2} \left(M_1^2 - M_2^2 \right)^2$$
$$Z = \int dM_i \exp \left(-F_{\text{mag}} \left[M_i \right] \right)$$

Hubbard-Stratonovich transformation: auxiliary fields

$$\exp\left[\frac{g}{2}\left(M_{1}^{2}-M_{2}^{2}\right)^{2}\right] = \int d\varphi \exp\left[\varphi\left(M_{1}^{2}-M_{2}^{2}\right)-\frac{\varphi^{2}}{2g}\right]$$

$$\rho \propto M_1^2 - M_2^2$$

nematic order parameter

To consider the possibility of a nematic state, we need to include fluctuations

$$Z = \int dM_i \, d\psi \, d\varphi \exp\left(-F_{\text{mag}}\left[M_i, \psi, \varphi\right]\right)$$

Now the partition function is quadratic in the magnetic degrees of freedom, which can be integrated out analytically

$$F_{\text{mag}} = \chi_{\text{mag}}^{-1} (\mathbf{q}) \left(M_1^2 + M_2^2 \right) + \psi \left(M_1^2 + M_2^2 \right) - \phi \left(M_1^2 - M_2^2 \right) - \frac{\psi^2}{2u} + \frac{\varphi^2}{2g}$$

To consider the possibility of a nematic state, we need to include fluctuations

$$Z = \int d\psi \, d\varphi \exp\left(-F_{\rm eff}\left[\psi,\varphi\right]\right)$$

Now the partition function is quadratic in the magnetic degrees of freedom, which can be integrated out analytically

$$F_{\rm eff}[\psi,\varphi] = \int_{q} \left(\frac{\varphi^{2}}{2g} - \frac{\psi^{2}}{2u}\right) + \frac{3}{2} \operatorname{tr} \log\left[\left(\chi_{\rm mag}^{-1} + \psi\right)^{2} - \varphi^{2}\right]$$

To consider the possibility of a nematic state, we need to include fluctuations

$$F_{\rm eff}[\psi,\varphi] = \int_{q} \left(\frac{\varphi^{2}}{2g} - \frac{\psi^{2}}{2u}\right) + \frac{3}{2} \operatorname{tr} \log\left[\left(\chi_{\rm mag}^{-1} + \psi\right)^{2} - \varphi^{2}\right]$$

Saddle-point approximation gives two non-linear coupled equations:

$$\begin{cases} \frac{\partial F_{\text{eff}}}{\partial \psi} = 0 \\ \frac{\partial F_{\text{eff}}}{\partial \varphi} = 0 \end{cases} \Rightarrow \begin{cases} \psi = \frac{u}{2} \int_{q} \left[\frac{1}{\chi_{\text{mag}}^{-1}(q) + \psi - \varphi} + \frac{1}{\chi_{\text{mag}}^{-1}(q) + \psi + \varphi} \right] \\ \varphi = \frac{g}{2} \int_{q} \left[\frac{1}{\chi_{\text{mag}}^{-1}(q) + \psi - \varphi} - \frac{1}{\chi_{\text{mag}}^{-1}(q) + \psi + \varphi} \right] \end{cases}$$

Equation of state for the nematic order parameter:

$$\varphi^3 = \varphi \left[g \int \chi^2_{\text{mag}}(q) - 1 \right]$$

 $\varphi \neq 0$ solution already in the paramagnetic phase, when the magnetic susceptibility is large enough

$$\left\langle M_{1}^{2}\right\rangle \neq \left\langle M_{2}^{2}\right\rangle$$

 Magnetic fluctuations become stronger around one of the ordering vectors in the paramagnetic phase

x and *y* directions become inequivalent:

tetragonal symmetry breaking

(structural transition driven by magnetic fluctuations)

Enhanced magnetic fluctuations due to nematic order

• Strong increase of the magnetic correlation length at the nematic transition

Enhanced magnetic fluctuations due to nematic order

 NMR reveals the enhancement of magnetic fluctuations at the nematic transition

RMF, Chubukov, Eremin, Knolle, Schmalian, PRB (2012) RMF & Schmalian, SUST (2012)

Ma et al, PRB (2011)

Phase diagrams for the magnetic and structural transitions

transitions naturally follow each other

magneto-structural phase diagram: itinerant approach

Nematic transition triggers orbital order

• Nematic order leads to different onsite energies for the d_{xz} and d_{yz} orbitals: *ferro-orbital order*

Nematic transition triggers orbital order

polarized ARPES observes orbital splitting in BaFe₂As₂

 so far, this is the only mechanism that, starting from an itinerant microscopic model, gives orbital order in the absence of long-range magnetic order

Outline

- **1. The superconducting state (Lecture I)**
 - *unconventional superconductivity*
- 2. The magnetic state (Lectures I & II)
 - itinerant or localized?
- **B.** The nematic state (Lecture II)
 - a new electronic phase that emerges from magnetism and triggers structural and orbital order
- 4. Competing orders (Lecture II)
 - *competition between SC, magnetism, and nematics*

Pratt et al, PRL (2009) Christianson et al, PRL (2009)

Competition between SDW and SC: coexistence or phase separation?

Competition between SDW and SC: coexistence or phase separation?

• In some conventional superconductors, magnetism can only coexist with superconductivity when the two phenomena involve *different* electrons

Competition between SDW and SC: coexistence or phase separation?

- In some conventional superconductors, magnetism can only coexist with superconductivity when the two phenomena involve *different* electrons
 - here, the electrons that cause magnetism are the same that cause superconductivity

J Schmalian, Physik Journal

Competition between SDW and SC: phenomenological model

$$F[M,\Delta] = \frac{a_m}{2}M^2 + \frac{u_m}{4}M^4 + \frac{a_s}{2}|\Delta|^2 + \frac{u_s}{4}|\Delta|^4 + \frac{\gamma}{2}|\Delta|^2M^2$$

Minimization with respect to M leads to

$$a_m + u_m M^2 = -\gamma \left|\Delta\right|^2$$

and we obtain the effective free energy

 $F[\Delta] = -\frac{a_m^2}{4u_m} + \frac{a_s}{2} \left(1 - \frac{a_m\gamma}{a_su_m}\right) |\Delta|^2 + \frac{u_s}{4} \left(1 - \frac{\gamma^2}{u_su_m}\right) |\Delta|^4$

>0 : second-order

Competition between SDW and SC: phenomenological model

Competition between SDW and SC: phenomenological model

$$F[M,\Delta] = \frac{a_m}{2}M^2 + \frac{u_m}{4}M^4 + \frac{a_s}{2}|\Delta|^2 + \frac{u_s}{4}|\Delta|^4 + \frac{\gamma}{2}|\Delta|^2M^2$$

Competition between SDW and SC: microscopic model

• Hertz-Millis approach to the two-band model

$$H = H_0 + H_{\rm SDW} + H_{\rm SC}$$

$$\begin{pmatrix} H_0 = \sum_{\mathbf{k},\sigma} \left(\varepsilon_{1,\mathbf{k}+\mathbf{Q}} - \mu \right) c^+_{\mathbf{k}+\mathbf{Q}\sigma} c_{\mathbf{k}+\mathbf{Q}\sigma} + \sum_{\mathbf{k},\sigma} \left(\varepsilon_{2,\mathbf{k}} - \mu \right) d^+_{\mathbf{k}\sigma} d_{\mathbf{k}\sigma} \\ H_{\mathrm{SDW}} = -\sum_{\mathbf{k},\sigma} \sigma \operatorname{M} \left(c^+_{\mathbf{k}+\mathbf{q}\sigma} d_{\mathbf{k}\sigma} + d^+_{\mathbf{k}\sigma} c_{\mathbf{k}+\mathbf{q}\sigma} \right) \\ H_{\mathrm{SC}} = -\sum_{\mathbf{k}+\mathbf{Q}} \Delta_1 \left(c^+_{\mathbf{k}\uparrow} c^+_{\mathbf{\cdot}\mathbf{k}\downarrow} + c_{\mathbf{\cdot}\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \right) - \sum_{\mathbf{k}} \Delta_2 \left(d^+_{\mathbf{k}\uparrow} d^+_{\mathbf{\cdot}\mathbf{k}\downarrow} + d_{\mathbf{\cdot}\mathbf{k}\downarrow} d_{\mathbf{k}\uparrow} \right)$$

Competition between SDW and SC: microscopic model

• We can then **derive** the Ginzburg-Landau coefficients

$$F[M,\Delta] = \frac{a_m}{2}M^2 + \frac{u_m}{4}M^4 + \frac{a_s}{2}|\Delta|^2 + \frac{u_s}{4}|\Delta|^4 + \frac{\gamma}{2}|\Delta|^2 M^2$$
$$g = \frac{\gamma}{\sqrt{u_m u_s}} - 1$$

• Strength of the competition term depends on the symmetry of the superconducting state

RMF and Schmalian, PRB (2010) Vorontsov, Vavilov, and Chubukov, PRB (2010)

Coexistence between AFM and SC: perfect nesting

• For perfect nesting:

$$F = \frac{a}{2} \left(|\Delta|^2 + M^2 \right) + \frac{u}{4} \left(|\Delta|^2 + M^2 \right)^2 + g \, u |\Delta|^2 M^2$$

$$g = \frac{1 + \cos \theta}{2}$$

$$s^{+-}$$
 state: $g = 0$
borderline

 s^{++} state : g = 1phase separation

Coexistence between AFM and SC: perfect nesting

• For perfect nesting:

$$F = \frac{a}{2} \left(|\Delta|^2 + M^2 \right) + \frac{u}{4} \left(|\Delta|^2 + M^2 \right)^2 + g \, u |\Delta|^2 M^2$$

 s^{+-} state: g = 0borderline s^{++} state : g = 1phase separation

Note that $g = 0 \Rightarrow$ emergent SO(5) symmetry

$$\vec{\mathbf{N}} = (\operatorname{Re}\Delta, \operatorname{Im}\Delta, \mathbf{M})$$

Podolsky et al, EPL (2009) Chubukov, Physica C (2008)
Competition between SDW and SC: coexistence

Competition between SDW and SC: coexistence

- *s*⁺⁺ cannot coexist with magnetism
- *s*⁺⁻ may or may not coexist

Observation of microscopic coexistence in some iron arsenides rules out the possibility of an S^{++} state

Phase sensitive STM measurements confirm that the SC state is s^{+-}

Hanaguri et al, Science (2010)

• Due to its magnetic origin, nematicity also competes (indirectly) with superconductivity

$$\varphi^3 = \varphi \left[g \int \chi^2_{\text{mag}} (\mathbf{q}) - 1 \right]$$

> magnetic fluctuations suppressed by superconductivity

$$F[M,\Delta] = \frac{a_m}{2}M^2 + \frac{u_m}{4}M^4 + \frac{a_s}{2}|\Delta|^2 + \frac{u_s}{4}|\Delta|^4 + \frac{\gamma}{2}|\Delta|^2 M^2$$

$$\widetilde{\chi}_{\mathrm{mag}}^{-1} = \chi_{\mathrm{mag}}^{-1} + \gamma \, \Delta^2$$

• Due to its magnetic origin, nematicity also competes (indirectly) with superconductivity

$$\varphi^3 = \varphi \left[g \int \chi^2_{\text{mag}}(\mathbf{q}) - 1 \right]$$

• even in the absence of long-range magnetic order

Competition between superconductivity and nematicity

 X-ray diffraction: experimental observation of the suppression of the orthorhombic distortion below T_c

Nandi,..., RMF et al, PRL (2010)

