

2357-8

Innovations in Strongly Correlated Electronic Systems: School and Workshop

6 - 17 August 2012

Nematic transition and antiferromagnetic quantum critical point in BaFe2(As1xPx)2

> Takasada SHIBAUCHI Kyoto University, Department of Physics Kyoto JAPAN

Nematic transition and antiferromagnetic quantum critical point in $BaFe_2(As_{1-x}P_x)_2$

Taka Shibauchi Department of Physics, Kyoto University

1. Quantum phase transition lurking inside the superconducting dome

K. Hashimoto et al., Science 336, 1554 (2012).

2. Nematic transition above the dome

S. Kasahara *et al.*, Nature **486**, 382 (2012).

3. Summary – A renewed phase diagram

Collaborators

Transport properties Penetration depth Thermal conductivity dHvA Magnetic torque Crystal growth

S. Kasahara K. Hashimoto Y. Mizumami H. Shishido T. Terashima Y. Matsuda

Band calc.

H. Ikeda

NMR

T. lye K. Ishida

Kyoto Univ. Japan

Penetration depth, dHvA

- A.Serafin P. Walmsley
- A. Carrington *Univ. of Bristol, UK*

dHvA

- A.I. Coldea Univ. of Oxford, UK
- Penetration depth
 - K. Cho

M.Tanatar

R.Prozorov

Ames, USA

- N. Salovich
- R. W. Giannetta

Univ. of Illinois at Urbana-Champaign, USA

Synchrotron X-ray

K. Sugimoto SPring-8,

T. Fukuda

JAEA,

SPring-8, Japan

Theory (Nematic)

A. Nevidomskyy

Rice Univ., USA

Ce₂PdIn₈ crystals

- D. Gnida
- D. Kaczorowski

Polish Academy of Sciences, Poland

THE Ames Laboratory Creating Materials & Energy Solutions

Superconductivity in BaFe₂As₂ systems

$BaFe_2(As_{1-x}P_x)_2$ is a clean system to study intrinsic properties

S. Kasahara, TS et al., PRB 81, 184519 (2010).

T-linear resistivity at *x*=0.33 just
beyond the SDW end point
Hallmark of non-Fermi liquid
*T*²-dependence at *x*=0.71

Fermi-liquid behavior

S. Kasahara, TS et al., PRB 81, 184519 (2010).

See also J. Dai *et al.*, PNAS (2009); S. Sachdev and B. Keimer, Physics Today (2011).

Doping evolution of the magnetic fluctuations (NMR)

θ: Weiss temperature Y. Nakai *et al.* PRL (2010); T. Iye *et al.* PRB (2012)

 θ goes to zero at *x*~0.3 <*m*> goes to zero at *x*~0.3

Doping evolution of electronic properties above T_c

Doping evolution of electronic properties above $T_{\rm c}$

Does a QCP lie beneath the SC dome?

Control parameter

Criticality avoided by the transition to the SC state

QCP lying beneath the SC dome

A quantum phase transition inside the dome Two different SC phases.

Superfluid density as a probe of QCP inside the SC dome

London penetration depth λ_L is the quantity that can probe the electronic structure at the zero-temperature limit.

 $\frac{\delta \lambda_L(T)}{\lambda_L(T)} \approx \frac{\ln 2}{\Lambda} k_B T$

1. Tunnel diode oscillator (13MHz, 70 mK)

Al coated method

2. Microwave surface impedance

Rutile cavity resonator (5 GHz, Q~10⁶)

 $\lambda_L^2(0) = \frac{m}{\mu_0 n_s e^2}$

3. Nodal superconducting gap structure

Slope of the *T*-dependence

Doping evolution of the London penetration depth at T=0

Doping evolution of the London penetration depth at T=0

QCP at *x*=0.3

Two distinct SC phases

QCP at *x*=0.3

The mass enhancement, reduction of Fermi temperature and non-Fermi liquid behavior, all are associated with the finitetemperature quantum critical region linked to the QCP.

Bi:2212 : broad maximum in $1/\lambda_L^2(0)$ (enhancement of n_s/m^*) at $p\sim0.19$ BaFe₂(As_{1-x}P_x)₂ : sharp peak in $\lambda_L^2(0)$ (suppression of n_s/m^*) at x=0.3

Doping evolution of the superfluid density (Uemura plot)

High- T_c SC may be driven by the QCP

Comparison with P-doped and Co-doped systems

Doping evolution of $\lambda(T)$ in BaFe₂(As,P)₂

Deviations from the *T*-linear dependence near x=0.3

Anomalous $\lambda(T)$ in CeColn₅ and Ce₂Pdln₈

Deviations from the *T*-linear dependence

Consistent with previous studies.

S. Ozcan et al., Europhys. Lett 62 412 (2003).

Anomalous $\lambda(T)$ in CeColn₅ and Ce₂Pdln₈

Anomalous non-integer 3/2 power-law dependence in a wide *T*-range

Anomalous superfluid density in `quantum critical' SCs

`Nodal quantum criticality' in unconventional SCs

Nodal quantum criticality' in unconventional SCs

`Nodal quantum criticality' in unconventional SCs

Innovations in Strongly Correlated Electronic Systems

Nematic transition and antiferromagnetic quantum critical point in $BaFe_2(As_{1-x}P_x)_2$

Taka Shibauchi Department of Physics, Kyoto University

- Quantum phase transition lurking inside the superconducting dome
 K. Hashimoto *et al.*, Science 336, 1554 (2012).
- 2. Nematic transition above the dome

S. Kasahara et al., Nature 486, 382 (2012).

3. Summary – A renewed phase diagram

Experiments suggesting in-plane anisotropy at $T > T_s$ Detwinned by uniaxial pressure **★Resistivity** J. Chu *et al.* Science (2010). M. Yi et al., PNAS (2011). $\rho_{\rm c}$ Configuration 1.0 BaFe₂As₂ $Ba(Fe_{0.975}Co_{0.025})As_2$ 0.8 0.4 04 0.4 0.6 0.4 0.2 0.2 0.2 ρ_a , _ρ, (mΩ cm) 0.0 0.0 x = 2.5% x = 0% x = 1.6% x = 3.5% 0.0 0.0 100 200 300 100 200 300 100 200 300 100 200 300 $\rho_{\rm h}$ Configuration 0.6-0.6 0.6 0.6 04 0.4 04 04 0.2 0.2 0.2-0.2 0.0 $\frac{x = 7\%}{100 \ 200 \ 300 \ 0}$ x = 8.5% 0.0 100 200 300 Temperature (K) $\rho_b > \rho_a$ above T_c

- ★ Optical ConductivityA. Dusza et al., EPL (2011). M. Nakajima et al., PNAS (2011).
- ★ Neutron Scattering
- J. Zhao *et al*., Nature Phys. (2009). L. W. Harriger *et al*., PRB (2011).

0.0

b

Resistivity (mΩ cm)

0.2

0.0

n

twinne

50

100

Temperature (K)

150

k (π/a)

0.0

1.0

2.0 0.0

k (π/a)

200

1.0

0.20

0.10 (e) (e)

0.05

250

- ★ X-Ray Diffraction
- L. W. Harriger *et al.*, PRB (2011). E.C. Blomberg *et al.*, PRB (2012).

In-plane anisotropy seems to extend above T_s in crystals under uniaxial strain.

Experiments suggesting in-plane anisotropy at $T > T_s$

Uniaxial pressure itself breaks the rotational symmetry and may induce the in-plane anisotropy.

To address whether unidirectional self-organization of electrons (nematicity) occurs above T_s or not, we need experiments *without* uniaxial pressure.

What the magnetic torque tells us

Vector magnet & Mechanical rotator

In-plane torque magnetometry

2¢ component at low temperatures

In-plane torque magnetometry

Synchrotron XRD: Detection of a tiny lattice distortion

Evolution with doping

Evolution with doping

Phase diagram

S. Kasahara *et al.*, Nature **486**, 382 (2012).

Electronic nematic phase persists over a wide range of doping

Pseudogap phase ? Orbital ordering?

Optical conductivity, S. J. Moon *et al.*, PRL (2012). Point contact spectroscopy, H. Z. Arham *et al.*, PRB (2012). ARPES, T. Shimojima *et al.*, (unpublished).

Nematic and meta-nematic transitions

Summary: Renewed phase diagram in $BaFe_2(As_{1-x}P_x)_2$

S. Kasahara *et al.*, Nature **486**, 382 (21 June 2012). K. Hashimoto *et al.*, Science **336**, 1554 (22 June 2012).

The nematicity appears to be a requisite for SC, and the high- T_c SC may be associated with the AF-QCP.