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A quantum quench

iH

Drive the system out of equilibrium by a sudden change in parameters of
the Hamiltonian  Hi Hf

Explore the time-evolution and the long-time behavior.

a).  Is the system thermal at long times? 
b). What does it mean to be thermal for an isolated quantum system in 
a pure state?
c). “Glassy behavior” with intermediate long-lived metastable states?
d). New kinds of nonequilibrium phase transitions?

Start initially in a state               which is the ground state of some Hamiltonian Hi

Some experimental motivation first:



Cold atomic gases

Unique features:

1. Possible to realize almost 
ideal (isolated from the
surroundings) condensed matter 
systems. More often than not the
systems are out of equilibrium.
Easier to study dynamics as they
occur on much lower energy-scales.

2. Highly tunable systems where the interaction between particles and 
the external potentials acting on them can be tuned easily and rapidly, the 
former by using Feshbach resonances.

Alkali 
atoms:

Bosons: 

Fermions:

LiNaRb 72387 ,,

LiK 640 ,

Electric fields in a laser  induce a dipole moment
which interacts with the field: schematic of 
a potential felt by the atoms

KW

KW

solids

atomscold

410

1
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Ultra-fast Optical Pump Probe methods:

Fausti et al, Science 2011 (Hamburg)

Ultra-fast lasers can probe dynamics
on femto-second time scales,
much faster than times needed to
thermalize via coupling to a reservoir
such as lattice vibrations (pico seconds).  

Quench= Unitary time-evolution from a nonequilibrium initial state
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Optically induced phase-transitions

By optically exciting the Mn-O stretching mode, the band-width W is modified via the
buckling angle, and a transition to a metallic phase is observed. 
The phase persists for ~100 ps  

fWElectron kinetic energy:

Buckling angle :
Optical control over:

W
UNature, 2007

Metastable metallic state

Other examples:
Optically induced magnetic-paramagnetic phase transitions, Rasing et al, PRL 2009
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Road-map for the talk

1. Quenches involving free theories:  
Interaction quench in a 1D Bose gas (Luttinger liquid) .

Result: Nonequilibrium steady state.

2. How does the nonequilibrium state of the Luttinger liquid respond to a 
periodic potential? Results in the superfluid phase: role of irrelevant operators.

Mitra and Giamarchi, PRL 2011, PRB 2012
Tavora and Mitra (in preparation).

Lancaster, Giamarchi and Mitra, PRB 2011

Lancaster and Mitra, PRE 2010
Mitra and Giamarchi, PRL 2011

3. Quenches from the superfluid to the Mott-insulator phase: 
A new kind of dynamical phase transition, one that occurs as a function of time.

A. Mitra, arXiv: 1207.3777

4. The situation with fermions: Magnetic field quench in an  XX spin-chain 
(free fermions on a lattice).  Modified GGE. Effect of weak interactions.

Lancaster and Mitra, PRE 2010
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1D interacting Bose gas
characterized by an interaction parameter K: 
K = 1/(Interaction Strength)

r

Boson creation operator

Boson density at  r=(x,t)

Boson propagator
(superfluid order parameter): 

Kr
r 2/1

1)0()(

Equilibrium and low-energy properties of 1D Interacting Bose gas

K

Free bosons 1

Hard-core 
bosons

Increasing 
interactions

Superfluid charge-density-wave
(crystal) 

Long range 
interactions

0

Dual fields

x
x

x K 02 2cos1)0()(Density-density correlator:

Due to quantum-fluctuations, only
quasi-long range order
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Generating an out of equilibrium state via an interaction quench

Hi : Bosons with interaction Ko

Hf : Bosons with interaction K

KoK

K

Free bosons 1

Hard-core 
bosons

Increasing 
interactions

Superfluid charge-density-wave
(crystal) 

Long range 
interactions

0

i

ff

i H
tiHtiH

H Aee
t What connection does

this have with

ff HH A

fi HH , Ground-state of Hi, Hf

time

K

Ko
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Equal time correlations at long times after the quench from Ko K

neqKr 2
1

neqKr 2

1

2
0

2
0

2

1
8 K

KKKneq

2

2
0

0

2

1
8 K

K
K

Kneq

4

2KKeq

K
Keq 4

2

Compare with
equilibrium
(K=Ko) eqneq

eqneq

KK

KK

All correlations always  decay faster after the quench as 
compared to the decay in the ground state of Hf. 
In some sense like an effective-temperature, 
yet decay is still a power-law

t

t),0(),(

),0(),(

titri

titri

eeC

eeC
Dual fields

Density-density 
correlator:

Ko=1, Iucci and Cazalilla, 2009

Boson 
propagator:



REASON BEHIND NEW EXPONENTS: Infinite number of conserved quantities 
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Hence the initial distribution function which is also conserved 
during the dynamic is

Initial state is ground state of

Time-evolution is due to

Initial state a ground state of Hi 0ppaa

Density modes of the Bose gas 
with interaction Ko

Density modes of the Bose gas 
with interaction K

Generalized Gibbs Ensemble can recover new exponents

p
pppp bb

GGE
GGE e

Z
1

ppGGEippi bbTrbbwhere
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NEXT: What happens in the presence of non-linearities that take the system away
from exact solvability?

I will consider a non-linearity in the form of a commensurate periodic potential.
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Ground state properties: Interacting bosons in a periodic potential

Mott-Insulator

gg

Superfluid
Berezinskii-Kosterlitz-Thouless Flows

g

K
Kc

Increasing 
interactions

g
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Approach 1:  After an initial quench from Ko ---> K, assume bosons have 
reached a nonequilibrium steady-state characterized by a GGE. 
Perturbatively study the effect of the periodic potential on the GGE.  
Technically simpler as the system is time-translationally invariant.

Approach 2: At an initial time, not only the interaction is being quenched from 
Ko K, but also the lattice potential is being switched on suddenly. Study 
time evolution from the initial pure state. Problem no longer time-
translationally invariant. 

Ko

K System dephases to 
the GGE

time

Ko

K +

time

tiH
GGE

tiH

tK
ff eeTrLtZ

tiH
ii

tiH
K

ff eeTrZ

Mitra and Giamarchi, PRL 2011, PRB 2012

A. Mitra, arXiv: 1207.3777
Tavora and Mitra (in preparation)

0

0
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RG procedure to study the effect  of a periodic potential: Approach 1, 
initial state is GGE.

Expand Zk to quadratic order in g and integrate fast modes.

Keldysh Action

Quadratic Part

Cosine Potential

Split fields into slow and fast modes in momentum space

GGE implies oscillations 
due to
have been averaged out

Go=Correlators for the slow 
and fast fields

tiH
GGE

tiH
K

ff eeTrZ
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T
i

2
coth2 Ti4

0

Under RG usual corrections to K and g. In addition the following terms generated:

Dissipation
Dissipation*Temperature

Generation of dissipation and noise
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RG equations

New location 
of the critical point

0,TI

When K=Ko, usual BKT 
flow equations
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EFFECT 1: CHANGE IN THE LOCATION OF THE CRITICAL POINT.                         

0r neqKr 2
1teqneq KK

2
0

2
0 1

2 K
KKKneq

However, since the nonequilibrium
system is more disordered (faster 
decay of correlations) ,the periodic 
potential is less effective in 
localizing the system.

Thus critical point for the Mott transition in the nonequilibrium system is 
shifted to larger values of  interactions.

g

K
)( 0KK neq

c

“Relevant”
strong coupling

“Irrelevant”
weak coupling

Phase diagram is still separable into two regimes, one where the periodic potential
is “irrelevant” in the sense that perturbation theory is valid. And another phase
where the periodic potential is “relevant” in that perturbation theory breaks down.
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g

K
)( 0KK neq

c

RelevantIrrelevant
22

*

1
2

1
xt u

u
dx

K
S

Naïve expectation when the periodic 
potential is irrelevant: The same
quadratic theory but with slightly 
renormalized parameters:

Instead a quadratic theory with qualitatively different features:
Generation of dissipation (over-damped boson density modes):

011 *22
* txt u

uK

and also a temperature, which is strictly speaking defined in the classical 
limit of mode frequency << temperature 
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Low frequency, long-wavelength properties near the 
nonequilibrium fixed-point:

Quench from Ko=3 K

Non-monotonic dependence of
the dissipation on quench amplitude

time

K

Ko g
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Dissipation => Inelastic scattering results in 
energy exchange between low frequency 
modes and high frequency modes. 

Thus as the high frequency modes are gradually I
integrated out via RG, they act as a 
reservoir for the low-frequency modes giving it 
a damping.

System effectively  acts as its own reservoir.

Classical analog of the  Fluctuation-Dissipation-Theorem is obeyed. Low-frequency
part is subjected to a “noise” due to the integrated out high-frequency modes:

T2
coth2 effT4

0
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Consequences  

Density-density correlators now decay exponentially fast (as compared to a power-law):

||
*

yx
u

KTeffeyx

Dissipation implies finite dc conductivity

regD

reg
D

22

Dissipation=0, but finite temperature would have  
implied an infinitely long-lived current
carrying state, and hence an infinite dc conductivity.

||
*

0
tKTeff

et
Unequal positions: Unequal times:

Dissipation is also generated in equilibrium and finite 
temperature, see example Sirker et al, PRL 2009
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Approach 2: At an initial time, not only the interaction is being quenched from 
Ko K, but also the lattice potential is being switched on suddenly.  Problem 
no longer time-translationally invariant. Study the time-evolution 
perturbatively in the periodic potential.

Ko

K +

time

tiH
ii

tiH
K

ff eeTrZ

A. Mitra, arXiv: 1207.3777
Tavora and Mitra (in preparation)

22
Expand Zk to quadratic order in g and integrate fast modes.
Corrections  to the action that now depend on time after the quench. 

Split fields into slow and fast modes in momentum space

Go=Correlators for the slow 
and fast fields
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At short times Tm<<1, power-law in space with exponent Ko
At long times, Tm>>1, power-law in space and time, with exponent Kneq
The crossover between these two limits determined by Ktr
SCALING DIMENSION OF THE LATTICE IS TIME-DEPENDENT

time

K

Ko
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RG equations that depend explicitly on the time Tm after the quench

Scaling dimension of the lattice is 
time-dependent. At short times it is
Ko, at long times it is Kneq

Dissipation and noise whose
strengths are now time-dependent.

Time after the quench acts as an
additional inverse energy scale in
the problem
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For times              we may neglect  dissipation and noise. 
1

mT

)( mKeff TIggConvenient to define an effective coupling
that vanishes at Tm=0, and reaches a steady state 
value at Tm >> 1  

effg

0

effg

a. b.

c.

d.

a. Periodic potential irrelevant at all times.
b. Periodic potential relevant at all times
c. Periodic potential relevant at short times, irrelevant at long times.
d. Periodic potential irrelevant at short times, relevant at long times. This case 
shows a dynamical phase transition

Arrows connect 
Hamiltonians before and 
after the quench

2
41 2

m

tr
neq T

KK
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effg

0

effg

a. b.

c.

d.

Results agree with a lattice quench
at the exactly solvable Luther-Emery point (Iucci and Cazalilla)

1)(

1

*

*

Olg
l

eff

2

2
1cos gg

At strong coupling
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Dynamical Phase Transition 

At a time Tm* such that                             a non-analytic 
behavior in the solution of the RG equations. 

Non-analytic behavior at a critical time in the Loschmidt echo in the transverse-field Ising model 
after a quench: Heyl, Polkovnikov, Kehrein, arXiv:1206.2505

effg

0

Pure lattice quench

Lattice and interaction quench
I

II

I:
II:
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For times              when the lattice potential is irrelevant: A quantum kinetic
equation approach. 

1
mT

Tavora and Mitra (in preparation)

22 egO

Even to leading order in the potential, multi-particle scattering processes are involved. 

May also be generalized to the “relevant” regime where 421cos ba

F: Boson distribution function
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QUENCH IN THE XX CHAIN (FREE FERMIONS):
Playing with the initial condition can generate interesting non-equilibrium 
states such as those that carry current:

29

Jordan-Wigner 
transformation

Lancaster and Mitra, PRE 2010
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Quench from a spatially inhomogeneous state  can lead to 
current carrying steady states. These states for a free theory 
can be described by a GGE  with a suitable Lagrange 
multiplier that imposes current flow via the boundary 
conditions.  
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CAN “FRICTION” APPEAR FOR INTERACTING 
FERMIONS THAT ARE OUT OF EQUILIBRIUM?

In equilibrium: Sound modes of an interacting Fermi gas = weakly interacting bosons

In general one expects that a sound mode (or boson) at (w,q) can decay via the 
creation of electronic (particle-hole) excitations.

nk

-kF kF

Fermion distribution function at T=0

k
k+q

w = E(k+q) – E(k)

In 1D and in equilibrium, these processes do not occur due to phase space
restrictions:  sound modes are long lived.

By quenching a parameter of the Hamiltonian, we 
generate non-interacting but out of equilibrium fermions. We study how they 
respond to weak interactions
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kF

-kF

kF

-kF

k

pi/2 + q/2

pi/2 - q/2

kF +q

Particle-hole continuum and 
collective mode for the 
XXZ chain from RPA

2
sin2 qJ

qJ sin

Recall: Particle-hole continuum for
spinless lattice fermions



QUENCH FROM ISING CHAIN TO XX CHAIN

JORDAN-WIGNER
TRANSFORMATION

QUENCH FROM ISING CHAIN WITH DZYALOSHINSKII-MORIYA 
INTERACTIONS TO XX CHAIN

Produces current
carrying states after
the quench
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Effect of SzSz  
(or nearest neighbour) interactions?

Distribution function of fermions are far out of equilibrium :

Random Phase Approximation to find the collective (sound) modes.

k0 is related to current strength
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NON-EQUILIBRIUM FERMIONS: OVERDAMPED SOUND MODES

Collective mode for repulsive interactions
are still undamped on the lattice.

Thus for nonequilibrium fermions,
we find over-damped modes for attractive 
interactions.

In equilibrium

Highly broadened fermion distribution 
function. Phase space constraints 
are lifted, and collective modes can 
decay into  particle-hole excitations.



Conclusions
• Quantum quenches in free theories can lead to interesting 

nonequilibrium states that may or may not be described by a 
generalized Gibbs ensemble (GGE). 

• In the presence of non-linearities, an analytic approach to study 
dynamics is presented that is valid in the thermodynamic and long-
time limit where numerical studies are still hard to do.

• Even when the periodic potential is “irrelevant”, its effect is non-trivial 
as it generates a dissipation and a noise.

• When the periodic potential is relevant, a new kind of non-equilibrium 
phase transition is identified which corresponds to non-analytic 
behavior during the time-evolution. In particular an order-parameter is 
found to be zero at all times t<t*, and non-zero after this time.

• The RG makes predictions for how an order-parameter evolves in 
time. The results are in agreement with a lattice quench at the exactly 
solvable Luther-Emery point, and generalizes the results to the case 
where the model is not exactly solvable. 
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