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Quenching and Time Evolution

- Prepare an isolated quantum many-body system in a state|®,), typically eigenstate of F,
- At ¢ = 0 turn on interaction H,, and evolve system with # = H, + H; :

B, t) = et | Do)
- Many experiments: cold atom systems, nano-devices, molecular electronics, photonics

- New technologies, old questions

L
Questions: (as an introduction) )
)

* Time evolution of observables (O(t)) = (Do, t|O| Do, t
 Evolution of correlation functions in quenched systems (®olA(t +7)B(1)|®o) = (@0, 1)[A(7) B|®o, 1)

- Dynamics of evolution of the Kondo resonance in a quantum dot: Anderson model

Quenchatt=0: couple dot to leads

— =4 , Measure time evolution of
o ol | | . _.% Nf the Kondo peak. N
| e et~y - Time resolved photo emission

spectroscopy
s u:FInJ energy
DOS

- Time dependent current



Closed systems: quenching — long time limit, thermalization

* Manifestation of interactions in time evolution dynamics

The subject of this talk: bosons in 1-d

Time evolution and statistical mechanics:

 Long time limit and thermalization:
-istherealimit 0O = lim (O(t))?

- is there a density operatorP such that O = tr(p0)? )
Does it depend on  Ey = (1| H|1,) noton |¢0>

|U) € A <3 Eg — AE < E, < Eg+ AE

e Scenarios of thermalization (Rigol et al)

- Diagonal matrix elements of physical operators A, do not fluctuate much around constant
energy surface (ETH-eigenstate thermalization hypothesis, Deutsch 92, Srednicki 94)

- Occupation numbers |, |2 do not fluctuate on the energy surface for reasonable IC

- Both fluctuate but are uncorrelated

* Thermalization, Integrability, Non-Boltzmannian ensembles, Rigol, Cardy, Cazalilla, Kollath

If conservation laws are present — how do they affect dynamics of thermalization?



Open systems: guenching and non-thermalization, transport

Nonequilibrium currents Goldhaber-Gordon et al, Conenwett et al, Schmid et al
e Two baths or more
time evolution in a nonequilibrium set up 5

Quench
or

. li Keldysh

LEAD 1 LEAD 2

H = H;'.wa.rf.ﬂ o Hr'.m.p o H{'"{{-{i.ﬁ’—fi“-}i

o <0, leads decoupled, system described by: p,

e =0, couple leads to impurity

Interplay - strong correlations and e >0, evolvewith H(t) = Hy+ H;
nonequilibrium

* What is the time evolution of the current (7(¢))?
* Asymptotic limit?
* Under what conditions is there a steady state? Dissipation?

* Steady state — is there a non thermal ps?

* New effects out of equilibrium? New scales? Phase transitions, universality?



Quenching in 1-d systems

Physical Motivation:
* Natural dimensionality of many systems:
- wires, waveguides, optical traps, edges
e Impurities: Dynamics dominated by s-waves, reduces to 1D system

* Many experimental realizations: Cold atom traps, nano-systems..

Special features of 1- d : theoretical
e Strong quantum fluctuations for any coupling strength
 Powerful mathematical methods:

- RG methods, Bosonization, CFT methods, Bethe Ansatz approach

- Bethe Ansatz approach: allows complete diagonalization of H

- Experimentally realizable: Hubbard model, Kondo model, Anderson model,
Lieb-Linniger model, Sine-Gordon model, Heisenberg model, Richardson model..

- BA —— Quench dynamics of many body systems? Exact!
Others approaches: Keldysh, t-DMRG, t-NRG, t-RG



Time Evolution and the Bethe Ansatz

* A given state |3,) can be formally time evolved in terms of
a complete set of energy eigenstates |F*)

[@o) =205 [FA)(FA Qo) —— Do, 1) = e Do) = 30, e N|EFN) (A o)

If 7 Integrable — eigenstates [*) are known via the Bethe-Ansatz

e Use the Bethe Ansatz to study quenching and evolution

e New technology is necessary:

- Standard approach: impose PBC — Bethe Ansatzegqns —  spectrum —  thermodynamics

- Non equilibrium entails more difficulties:
I. Compute overlaps Il. Sum over complete basis Iii. Take limits

Some progress was made - J. S. Caux et al



The Bethe Ansatz - Review

_ Example:
* General IV - particle state Bess : :
N H=— Z ((');,L_j . (:Z R GHEED
A N, A(= j=1; i<j
Py = [ @ P@ [l @l @) L e
J=1 . \i — )+ ic
Sii(Ai — Aj) = nEaEe

* Wave function very complicated in general
* The BA -wave function much simpler -
Product of single particles wave functions f\(z) and S-matrices S
I. divide configuration space into N! regions (), {zo:1 < . < zqn}

Il particles interact only when they cross: inside a region product of single particle wave funct.
iii. assign amplitude A< to region @

iv. amplitudes related by S-matrices S;; (e.g. A132 = §23 A123)

— | FMN@) = Y gesy A% I1; Fros (25)

v. do it consistently: Yang-Baxter relation g S
132 231
13 23 23 R
Sl S S= Sl o33 52
312 2



The contour representation

Instead of |Pg) = >, |F)(F*®p) introduce (directly in infinite volume):

Contour representation of |®o)

V. Yudson, sov. phys. JETP (1985)
_ N A A
‘(I)U> - / a" A |F >(F |@0> Computed S-matrix of Dicke model
8l

with: |F'*) Bethe eigenstate

|[*)  obtained from Bethe eigenstate by setting S — | - easier to calculate

Y contour in momentum space { \ } chosen according to pole structure of S(Ai —Aj)

Note: in the infinite volume limit momenta{ \} are not quantized
- no Bethe Ansatz equations,{ \ } free parameters

then:

@0, ) :/dNA e PP (FA @)

v




Boson Systems - experiments

Bosons in optical traps
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Superfluid Mott insulator ransition Maott insulator — initial condition
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Density and noise comelation functions

Imaging of density cloud using a CCD

Bloch et al (Nature 2005, Rev Mod Phys 2008)



Interacting bosonic system

Bosons in a 1-d with short range interactions

_ t 2 4 i ¢ - coupling constant
H fdﬂi‘b (x)0°b(x) + c/dfcb (2)b(z)b" (z)b(x) c>0  repulsive
c < (0 attractive
Equivalently:
N
H=-> 02 +c) 6z —x)
j=1 i<j

i f\

Quench: Turn on intergction and release trap

* Initial condition | : bosons in a
periodic optical lattice

e Initial condition Il : bosons in a

trap - condensate \ *
—» N




Bosonic system — BA solution

The N-boson eigenstatestate (Lieb-Linniger ‘67)

A Aw) = / TT 2% (0 — A [T €™ b (u;))0)

Yi<j j

_ " i. - satisfy BAegns if PBC imposed, :
Eigenstates n-string
labeled by - unconstrained  in open space N N
Momenta 3 )\JE ) = Xo + (n/2 - j)ic

i. real, - for ¢>0 _
A1,y AN T J=0,---,n—1
. complex “strings” - for ¢ <0
The 2-particle S-matrix Dynamic factor:
Ai — A F1c Ai — Ni —icsgn(y; — y;)
ii(Ai — Aj) = J _ Yy, o)) = 2 J gnly; — Y,
Si; i) N i Z¥ (N — Xj)

Ai - )\j —1c
The energy eigenvalues

H‘AlaaAN>:Zj)\? |)\13'”3AN>



bosonic system: contour representation

“ Central theorem” denote: 0(Z) = 0(z1 > zo > -+ .2y)
Bg) = f Do(@)b! (2) - --bl (21)[0) =
/\’i — Aj —ic sgn(yi — Y;) iXj (Y5 —z5) pt
= | [ o@e e e b (4)/0)
%<j‘ ]
A
Ag L B
if 1 contour accounts for

strings, bound states

Repulsive ¢ >0 Attractive ¢ <0,

It time evolves to:

. . /\ A\j —ic sgn(y; — it i (y;—;
w0t = [ [ [ o ]2t [ e e

1<J

- Expression contains full information about the dynamics of the system



Keldysh

» Time evolution of expectation values:

Oa, (t) = (Dolet O e HE|Dp) = (D, t| O | Do, t)
Non-perturbative Keldysh:

— [DE Db O eSS Or) S 0] di

carried out on the Keldysh contour (', with separate fields for the top and
bottom lines:

D) t =0

o>t =1

Do) t =0




What to calculate?

* We shall study:

1. Evolution of the density

Ci(x,t) = (p(x,t)) Time Of Flight experiment

competition between quantum broadening and attraction

2. Evolution of noise correlation

(e, Do)
Co(21,223t) = T ey — |

time dependent Hanbury-Brown Twiss effect
- repulsive bosons evolve into fermions

e attractive bosons evolve to a condensate

Hanburns-Brown Twiss effect
Measure:  Co(xz1,x0,1)
- two sources: originally stars
Free bosons Ca(z,—x) ~ cosx
Free Fermions Cs(z,—z) ~ —cosx
- two free particles:

Similar, but time dependent

- many free particles:

More structure: main peaks, sub peaks
Effects of interactions?



Evolution of a bosonic system: density

Density evolution:

(Time of flight experiment) (p(z0,t)) = (Po(1)[bT (20)b(0)|Po(t))
Two bosons p
" wf repulsive
: non-interacting
Initial —_— | attractive
condition
= 1 a - . | t
1 _1)? _ (@ata)? . . . _— Ar
Dy) = - T 2T e 202 bl (24)b] 0 Attractive: Time period of oscillations 7" = 7
. (mo?)z f1€ ’ (@) (22)i0) - independent of IC

Rep: Do (t))s = [, & . (1 — eV/mith(ys — y1)es® Derf (% ZT/(?))

2 2
1.’(‘,9’1—11’1) (yo—xo)

A [00(1)s = [, S g T (1 oA — e erf (51260

)

with alt) = 2ct —i(yy — x1) — i(y2 — x2)

Repulsive: almost coincides with free boson diffusion

Attractive: competition between attraction and diffusion



Emergence of an asymptotic Hamiltonian

Long time asymptotics - repulsive:

® Bosons turn into fermions as time evolves (for any ¢ > 0) (cf. Buljanetal.’08

)\-—)\-—icsgn(y,-—y-) >
@,t — @ H J ? J 32)\15 )\ Y4 LCJ) b'f U
Pot) f/;/ o 11 s vt | G H (3)[0)

J

1<3 /\'_ — )\J — ’LC\/IE j
— /// (Z)Po(X)e i85 05— (45 =2 /\fnsgny — Y Hb y;)|0)

1<J 7

— e—iHé"i/ Az 0(2)®o(2) | | ¢ (25)10).
x,k j

A, antisymmetrizer
where

H] = — [ ct(2)8%c(c

- In the long time limit repulsive bosons for any ¢ > 0 propagate under the
influence of a Tonks — Girardeau Hamiltonian (hard core bosons=free fermions)

- valid independently of @,

® Scaling argument fails for attractive bosons (instead, they condense to a bound state)



Evolution of a bosonic system: saddle point app

Corrections to long time asymptotics -
Stationary phase approx at large times (carry out A - integration)

= Repulsive — only stationary phase contributions (on real line);  (cf. Lamacraft 2011)

_ Yy ) g —1c Sgn(é- @) Z i “ifz-t—i{jj:nj
= —,x,t e—i 7
¢ (f 2t 4mt z H

— & —1ic

= Attractive — contributions from stationary phases and poles.
For two particles:

Pole contributions from deformation of contours — formation of bound states

1 51*52*3089?1(51*52) Z ?61‘ i€z " >
. t) =S I >
gb(faia ) £[47T’Lt 51 fg—zc + ﬂ?
L 2008 — &) €3t —i€1a1 —i(61—ic) (6 —ic) (242 —2)]
At

- repulsive correlations depend on& = =~ only (light cone propagation)

- attractive correlations maintain ¢ dependence (bound states provide additional scales)



Evolution of a bosonic system

Long time asymptotics:

e General expression — repulsive

|(I)(},t> :/fg(f)®0 ng ég 1C 8GN éz 53 H - ?,{f t—if;x 7E)T( )|0>
rJYy \/ it

i3 — & —ic

Exp: Bloch et al

function of ¢ = y/2¢ only, light-like propagation Nature 2012

* General expression — attractive (poles and bound states)

_ NP (7 § — & +icsgn(& — &) i(€])2t+ig]) (266, —x;) pt
w0= | [ GG 2 e Hm b (47)10)

£ tici<gi<g
Pole contributions follow \ Pattern corresponds to successive
recursive pattern: e g formation and contributions of
\\ bound states
[ =, \\
N



Evolution of repulsive bosons into fermions: HBT

Long time asymptotics - repulsive:
® Bosons turn into fermions as time evolves (for any ¢ > 0)

® Can be observed in the noise correlations: (dependence on ¢ only via & = 1:/2t)

CQ(xla Z2, t) — 02(51752) — (;ﬁggl)g?ﬁ()%;%) T ]-7

Fermionic correlations evolve

® Fermionic dip develops for any repulsive interaction on time scale set by c?



Evolution of a bosonic system: noise correlations

Noise correlations — many particles

Repulsive bosons Attractive bosons

Cale, 8 2particles  gy(¢,—¢)/1

3 particles n n n\ l\ (\ﬂ “ n n ﬂ [\
' / Violet  -longer
; Magenta -longest
Ca(€, =€)
; . _ / . fa

central peaks increase with time
W 1{ Vﬁ 230 - weight in the bound states increases

Blue -short times

5 particles -

02(67_5)/t
3 particles
Blue  -short times
Violet -longer

10 particles 4 Magenta -longest

Fermionicdipas & — 0O

= f a

Structure emerges at £a = o peaks diffuse — momenta redistribute



Time evolution “Renormalization Group”

“Dynamic” RG interpretation

 Universality out of equilibrium

« Can view time evolution as RG flow ¢ ~ In(Dgy/D)

- As time evolves the weight of eigenstate contributions varies, time successively “ integrates out”
high energy states

C c=0 ¢
(Condensed bosons) —o0 < <0 ® >0 » 00 (Free fermions)

 Are there “basins of attraction” for perturbations flowing to dynamic fixed points

c c=0 ¢>0
(Condensed bosons) —oo < <0 o = » 00 (Free fermions)

tionm;-Hubbard?

e Other fixed points?



Evolution of a bosonic system

Conclusions:

* Does not need the spectrum of Hamiltonian or normalized eigenstates
* Takes into account existence of bound states without dealing with large sums over strings
* Asymptotics calculable for both repulsive and attractive interactions in the Lieb-Liniger model

To do list:

» Generalize to other integrable models: Heisenberg model (in progress, with Deepak lyer),
Anderson model (Deepak lyer, Paata Kakashvili), Lieb-Linniger + impurity ( Huijie Guan)

* Time evolution at finite volume, finite density (in progress, with Deepak lyer)

* Time evolution at finite temperatures (under discussion)

* Study approach to nonequilibrium steady state (in progress, with P. Kakashvili)

* Numerical tests of dynamic RG hypothesis (in progress, with P. Schmitteckert, t-DMRG)
» Generalize to correlation functions (open)

Big Questions:

* What drives thermalization of pure states? Canonical typicality, entanglement entropy
(Lebowitz, Tasaki, Short...)

* General principles, variational? F-D theorem out-of-equilibrium? Heating? Entanglement?

e \What is universal? RG Classification?





