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Quenching and Time Evolution

• Evolution of correlation functions in quenched systems

- Prepare an isolated quantum many-body system in a state        , typically eigenstate of

- At            turn on interaction      , and evolve system with :

• Time evolution of observables  

- Many experiments: cold atom systems, nano-devices,  molecular electronics, photonics
- New   technologies,  old questions

- Dynamics of evolution of the Kondo resonance in a quantum dot: Anderson model

Measure time evolution of 
the Kondo peak.
- Time resolved photo emission 
spectroscopy

- Time dependent current

Quench at t = 0 :   couple dot to leads

Questions: (as an introduction)

DOS

energy



Closed systems: quenching – long time limit, thermalization

• Long time limit and thermalization:
- is there a limit
- is there a density operator    such that ?  

Does it depend on                   not on

t

- Diagonal matrix elements of physical operators       do not fluctuate much around constant 
energy surface (ETH-eigenstate thermalization hypothesis,  Deutsch 92, Srednicki 94)

- Occupation numbers          do not fluctuate on the energy surface for reasonable IC

- Both fluctuate but are uncorrelated

• Scenarios of  thermalization (Rigol et al)

• Thermalization, Integrability, Non-Boltzmannian ensembles, Rigol, Cardy, Cazalilla, Kollath

If conservation laws are present – how do they affect  dynamics  of  thermalization?

• Manifestation of interactions in time evolution dynamics

The subject of this talk: bosons in 1-d

Time evolution and statistical mechanics:



Open systems: quenching and non-thermalization, transport

• Two baths or more
time evolution in a nonequilibrium set up

Goldhaber-Gordon et al, Conenwett et al, Schmid et al

• What is the time evolution of the current            ?

• Asymptotic limit? 

• Under what conditions is there a steady state? Dissipation?

• Steady state – is there a  non thermal      ?

• New effects out of equilibrium? New scales? Phase transitions, universality?

Quench
or
Keldysh

Interplay - strong correlations and 
nonequilibrium

Nonequilibrium currents



Quenching in  1-d systems

Special features of 1- d : theoretical
• Strong quantum fluctuations for any coupling strength
• Powerful mathematical methods:

- RG methods, Bosonization, CFT methods,  Bethe Ansatz approach

Physical Motivation:
• Natural dimensionality of many systems: 

- wires, waveguides, optical traps, edges 
• Impurities: Dynamics dominated by s-waves, reduces to 1D  system
• Many experimental realizations: Cold atom traps, nano-systems..

- BA Quench dynamics of  many body systems?  Exact!
Others approaches: Keldysh, t-DMRG, t-NRG, t-RG

- Bethe Ansatz approach:  allows complete diagonalization of H
- Experimentally realizable: Hubbard model, Kondo model, Anderson model, 
Lieb-Linniger model,  Sine-Gordon model, Heisenberg model, Richardson model..



Time Evolution and the Bethe Ansatz

• A given state          can be formally time evolved in terms of

• Use the Bethe Ansatz to study quenching and evolution                     

If       integrable eigenstates are known via the  Bethe-Ansatz

- Standard approach: impose PBC   Bethe Ansatz eqns spectrum               thermodynamics

a complete set of energy eigenstates

Some progress was made  - J. S. Caux et al

- Non equilibrium entails more  difficulties:
i. Compute overlaps ii. Sum over complete basis iii. Take limits

• New technology is necessary:



The Bethe Ansatz - Review

iii. assign  amplitude         to region

S  S  S = S  S  S12 13 13 1223 23

i. divide configuration space into N! regions

• General       - particle state  

• The BA -wave function much simpler -
Product of single particles wave functions            and S-matrices       ,

Yang-Baxter  relation

• Wave function very complicated in general 
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iv. amplitudes related by S-matrices

v. do it consistently: 

(e.g.

ii particles interact only when they cross:

)

inside a region product of single particle wave funct.

Example:



The contour representation

Contour representation of

with: Bethe eigenstate

obtained from  Bethe eigenstate by setting  

contour in momentum space          chosen according to pole structure of

then:

Note: in the infinite volume limit momenta are not quantized            
- no Bethe Ansatz equations,       free parameters

- easier to calculate

Computed S-matrix of Dicke model

V.  Yudson, sov. phys. JETP (1985)

Instead of introduce  (directly in infinite volume):



Boson Systems - experiments

Bosons in optical traps

Bloch et al (Nature 2005, Rev Mod  Phys 2008)



Interacting bosonic system
Bosons in a 1-d  with short range interactions

Equivalently:

• Initial condition I :  bosons in a 
periodic optical lattice

• Initial condition II : bosons in a 
trap - condensate

- coupling constant
repulsive
attractive



Bosonic system – BA solution
The N-boson eigenstatestate (Lieb-Linniger ‘67)

i. - satisfy BA eqns if PBC imposed,

- unconstrained in open space

The 2-particle S-matrix

The energy eigenvalues

ii.   real, - for

complex “strings” - for

Eigenstates
labeled by 
Momenta

n-string

Dynamic factor:



bosonic system: contour representation

It time evolves to:

“Central theorem”

- Expression contains full information about the  dynamics of the system

Repulsive c > 0

contour  accounts for 
strings, bound states

Attractive c < 0, 

denote:



Keldysh
• Time evolution of expectation values:

Non-perturbative Keldysh:

carried out on the Keldysh contour      , with separate fields for the top and 
bottom lines:



What to calculate?

More structure: main peaks, sub peaks

Effects of interactions?

- two sources:    originally  stars

- many free particles:

Free bosons

Free Fermions

1. Evolution of the density 

2. Evolution of noise correlation

competition between quantum broadening and attraction

repulsive bosons evolve into fermions

• attractive bosons  evolve to a condensate

time dependent Hanbury-Brown Twiss effect

• We shall study:

Time Of Flight experiment

Measure:

- two free particles:
Similar, but time dependent



Evolution of a bosonic system: density
Density evolution:
(Time of flight experiment)

Initial
condition

Attractive: Time period of oscillations
- independent of IC

Repulsive:  almost coincides with free boson diffusion

Attractive: competition between attraction and diffusion

attractive

repulsive
non-interacting

Att:

Rep:

Two bosons

t

with



Emergence of an asymptotic Hamiltonian
Long time asymptotics - repulsive:
• Bosons turn into fermions as time evolves  (for any            ) (cf.   Buljan et al. ’08

- In the long time limit repulsive bosons for any       propagate under the 
influence of   a Tonks – Girardeau Hamiltonian (hard core bosons=free fermions)

where

- valid independently of

antisymmetrizer

• Scaling argument fails for attractive bosons (instead, they condense to a bound state)



Evolution of a bosonic system: saddle point app

Corrections to long time asymptotics -
Stationary phase approx at large times (carry out     - integration)

Repulsive – only stationary phase contributions (on real line);

Attractive – contributions from stationary phases and poles.
For two particles:

Pole contributions from deformation of contours – formation of bound states

- repulsive correlations depend on              only  (light cone propagation)
- attractive correlations maintain     dependence (bound states provide additional scales)

(cf. Lamacraft 2011)



Evolution of a bosonic system

• General expression – attractive (poles and bound states)

Long time asymptotics:

• General expression – repulsive

Pole contributions follow 
recursive pattern:

Pattern corresponds to successive 
formation and contributions of 
bound states

function of      only,  light-like propagation Exp: Bloch et al   
Nature 2012



Evolution of repulsive bosons into fermions:  HBT
Long time asymptotics - repulsive:

• Bosons turn into fermions as time evolves  (for any            )

• Can be observed in the noise correlations: (dependence on      only via                   )

Fermionic correlations evolve

• Fermionic dip develops for any repulsive interaction on time scale set by



Evolution of a bosonic system: noise correlations

3 particles

5 particles

10 particles

Noise correlations – many particles

Fermionic dip as

Repulsive bosons

Structure emerges at 

Attractive bosons

central peaks increase with time
- weight in the bound states increases

Blue       -short times 
Violet -longer
Magenta -longest

2 particles

3 particles

peaks diffuse – momenta redistribute

Blue       -short times 
Violet -longer
Magenta -longest



Time evolution  “Renormalization Group”

“Dynamic” RG interpretation

• Can view time evolution as RG flow

• Other fixed points?

(Free fermions)

- As time evolves the weight of eigenstate contributions varies, time successively “integrates out”
high energy states

(Free fermions)(Condensed bosons)

• Are there “basins of attraction” for perturbations flowing to dynamic fixed points

• Universality out of equilibrium

(Condensed bosons)

perturbations e.g. Bose-Hubbard?



Evolution of a bosonic system

• Does not need the spectrum of Hamiltonian or normalized eigenstates

• Generalize to correlation functions (open)

Big Questions:
• What drives thermalization of pure states?  Canonical typicality,  entanglement entropy 
(Lebowitz, Tasaki, Short…)

• Time evolution at finite temperatures (under discussion)

• General principles, variational?  F-D theorem out-of-equilibrium? Heating? Entanglement?

• What is universal?  RG Classification?

• Time evolution at finite volume, finite density (in progress, with Deepak Iyer)

To do list:
• Generalize to other integrable models:  Heisenberg  model (in progress, with Deepak Iyer),      
Anderson model (Deepak Iyer, Paata Kakashvili), Lieb-Linniger + impurity ( Huijie Guan)

• Study approach to nonequilibrium steady state (in progress,  with P. Kakashvili)

Conclusions:

• Takes into account existence of bound states without dealing with large sums over strings
• Asymptotics calculable for both repulsive and attractive interactions in the Lieb-Liniger model

• Numerical tests of dynamic RG hypothesis (in progress, with P.  Schmitteckert,  t-DMRG)




