

2357-22

Innovations in Strongly Correlated Electronic Systems: School and Workshop

6 - 17 August 2012

When Mott meets BCS: Molecular Conductors and the Search for High-Tc Superconductivity

> Massimo CAPONE CNR IOM and SISSA, Via Bonomea 265 Trieste ITALY

ICTP2012: Innovations in Strongly Correlated Electron Systems: School and Workshop

Massimo Capone

WHEN MOTT MEETS BCS: MOLECULAR CONDUCTORS AND THE SEARCH FOR HIGH-TC SUPERCONDUCTIVITY

Massimo Capone

erc

Massimo Capone

COWORKERS AND FUNDING

G. Giovannetti

M. Fabrizio (Trieste) C. Castellani (Rome) E. Tosatti (Trieste)

http://www.lemsuper.eu

http://superbadproject.wordpress.com

FRAMEWORK

Standard, conventional, boring...

Exotic, unconventional, interesting, beautiful...

- New pieces in the puzzle (organics, iron-based, MgB₂, aromatics)
- Where do the iron-based SC belong ?
- Electron-phonon superconductors which benefit from correlations "the other high-T $_{\rm c}$ s"

 $\begin{array}{l} \text{Cs}_3\text{C}_{60}, \text{K}_3\text{C}_{60}, \ldots: \text{M.C., M. Fabrizio, C. Castellani and E. Tosatti \\ \text{Ba}_{1-x}\text{K}_x\text{BiO}_3 \ \beta\text{-HfNCl} \ \text{Z. P. Yin, A. Kutepov, G. Kotliar} \\ & \text{Aromatics?} \end{array}$

CARBON SUPERCONDUCTORS

AROMATIC SUPERCONDUCTORS

and 1,2:8,9-dibenzopentacene with T_c =33K

M. Xue et al. Scientific Report

A FEW EXAMPLES: THREE IS THE MAGIC NUMBER

SPECIFIC HEAT (Ba_{1.5}-PHENANTHRENE)

 $\Delta(0)/k_{\rm B}T_{\rm c} = 1.95$

Intermediate coupling s-wave with single gap

T_c INCREASES, MORE PIECES OF THE PUZZLE

M. Xue et al. Scientific Report, 2, 389 (2012)

AROMATIC SUPERCONDUCTORS: WHAT DO WE KNOW?

- 3 electron seems a magic number
- Possibly s-wave
- Molecular character (orbitals)
- Electron-phonon interaction?
- Correlations?

OUR NORTH STAR: THE FULLERIDES

- Solid C₆₀ forms a molecular crystal
- Undoped Band insulator with a <u>3-fold degenerate</u> (t_{1u}, like p) LUMO

A₃C₆₀: alkali-metal atoms
donate electrons to C₆₀ bands
$$A = K, Rb, Cs$$
• A=K, Rb s-wave superconductor
• A=Cs AFM insulator
• SC with T_c=38K at 5 kbar

THE FIRST ANSWER: ELECTRON-PHONON

"old" (90s) compounds (K₃C₆₀, Rb₃C₆₀)

- Carbon Isotope effect on T_c
- Regular Specific heat jump at T_c
- Increase of T_c and DOS with lattice spacing

Ordinary "BCS" Superconductors with "moderate" effective mass enhancement

O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997)

Massimo Capone

A "NEW" ENTRY: Cs₃C₆₀

Massimo Capone

A NEW ENTRY: A15 Cs₃C₆₀

Comparison between A15 (bcc) and fcc Cs_3C_{60}

- Frustration reduces T_{N} by an order of magnitude

1.0

0.8

7₆/7₆ (max)

0.4

0.2

0.0

0.7

U/W/U/W

T_c and the dome are essentially identical

The SC dome comes close to Mott

- Takabayashi *et al* Maniwa *et al.*

Superconductivity

750

720

780

Volume par C_{eo} (A³)

Metal

Insulator

Magnetism

810

40

20

7 (K)

>

Innovations in Strongly Correlated Electron Systems, Trieste 17/08/2012

1.1

1.0

A. Y. Ganin et al. Nature 466, 221 (2010)

BACK TO THE QUESTION: ELECTRON-PHONON OR NOT ?

C₆₀ molecule MOs

Solid C_{60} bands

Molecular Crystal: the bands are formed by molecular orbitals

MODELING A_nC₆₀

One C60 per lattice site Alkali only donate their s electrons

Coulomb Repulsion U ~ 1/1.5 eV

A correlated system (even the "old" K, Rb guys)!

MODELING A_nC₆₀ Chap. 2 - ELECTRON-PHONON

Electron-phonon interaction t_{1u} coupled to H_{1g} phonons (deformations of the ball)

The interaction lives on a single molecule

$$-J_{H}(2S_{i}^{2} + \frac{1}{2}L_{i}^{2}) - \frac{5}{6}J_{H}(n_{i} - 3)^{2}$$

Hund's rule (F₂ Slater integral)

$$J = -J_H + J_{el-ph} \qquad J_{el-ph} \approx 0.1 eV \qquad J_H \approx 0.07 eV$$

J > 0 favors minimum S e L (inverted Hund's rule)

HOW DO WE SOLVE THE MODEL?

An atom in a self-consistent medium

Anderson Impurity model

A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg. Rev. Mod. Phys. 68, 13 (1996)

DMFT PHASE DIAGRAM

Superconductivity close to a Mott state is enhanced by correlations

M. C., M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod. Phys. 81, 943 (2009) [before the experiment in Cs_3C_{60}] M. C. and G. Giovannetti, arXiv1204.0253

WHY?

Active Phonons are coupled with Spin/Orbital Degrees of Freedom still active when charge fluctuations are frozen by correlations even in the Mott state the singlet energy gain is J

$$W \longrightarrow ZW$$
 Z << 1

 $\left[U \longrightarrow ZU \right]$

Coulomb Repulsion

$$J \longrightarrow J$$

Electron-phonon

Enhanced Superconductivity

Take-home message: coupling to molecular phonons can be enhanced by Coulomb repulsion

M.C., M. Fabrizio, C. Castellani, and E. Tosatti, Science 296, 2364 (2002)

WHAT DOESN'T KILL YOU MAKES YOU STRONGER

Correlation can enhance Tc when the attraction is not renormalized

A SIMPLER MODEL FOR SCS

Two-Orbital Hubbard model with inverted J

Bridge with the Cuprates: The pairs of molecular orbitals are local "bonds"

Same of diagram of 2d Hubbard model in cluster DMFT E. Gull, O. Parcollet and A. Millis, arXiv:1207.2490

LESSONS FROM THE IMPURITY MODEL

Competition between ordinary Kondo screening leading to a Fermi liquid and J which forms local singlets (for two electrons)

- In the screened phase we obtain the FL Kondo resonance on top of a broader resonance
- In the unscreened phase the narrow peak becomes a Pseudogap
- At the Fixed Point only the broad resonance survives
- Superconductivity is the leading instability: it "cures" the critical point

L. De Leo and M. Fabrizio, Phys. Rev. B. 69, 245114 (2004)

Massimo Capone

WHATEVER DOES NOT KILL YOU SIMPLY MAKES YOU STRANGER

SUPERCONDUCTIVITY "HEALS" THE ANOMALOUS METAL CLOSE TO THE CRITICAL POINT

> Superfluid delta-function in optical conductivity larger than the Drude Weight of the metal

(as it happens in u.d. cuprates)

SPECIFIC HEAT JUMP

PHOTOEMISSION SPECTRA

$$O(\varepsilon,\omega) = -\frac{1}{\pi} \operatorname{Im} G(\varepsilon,\omega)$$

- No pseudogap in the "overdoped" side (small lattice spacing, K_3C_{60})
- Pseudogap in the "underdoped" side (expanded, Cs_3C_{60})

BACK TO K-PICENE

MOLECULAR ORBITALS

We build a lattice model and include the interactions

CORRELATION EFFECTS IN K-PICENE

G. Giovannetti and M.C. Phys. Rev. B 83, 134508 (2011); M. Kim et al.

- Using HSE functional within DFT we find a low-spin AFM state
- No AFM using LDA, GGA We need correlations
- AFM ordering competing with SC
- cRPA evaluation of U/W by Y. Nomura, K. Nakamura and R. Arita U/W > 1

Correlation effects are important

ELECTRON-PHONON AND CORRELATIONS

40% of the e-ph coupling comes from dopant+intermolecular modes

- The intramolecular phonons can behave like in fullerene
- The intermolecular and intercalant are expected to be depressed

ELECTRON-PHONON AND CORRELATIONS

Cs ₃ C ₆₀	K ₃ picene
Threefold degenerate orbitals	Nearly degenerate
U/W ~ 2	U/W ~ 1.2
Coupling Molecular Phonons	Coupling to all sorts of phonons

A more subtle competition (wrt fullerene) whose result can depend on the specific aromatic molecule

Preliminary DMFT results for pure correlation effects

- We are on the verge of the Mott transition (confirming DFT)
- Electron-phonon interaction should reduce the effective U

G. Sangiovanni et al., Phys. Rev. Lett. 94, 026401 (2005), Phys. Rev. B 73, 165123 (2006)

CONCLUSIONS

- Electron-phonon interaction and Mott physics can live happily everafter
- Phononic Superconductivity favored by strong correlation if it involves internal degrees of freedom
- A general mechanism for superconductivity in correlated systems
- Cs₃C₆₀ is a clear example: experimental phase diagram predicted on the basis of e-ph+e-e+multiorbital
- Aromatic Superconductors share many similarities, but the interplay between e-ph and e-e is more subtle

G. Giovannetti and M.C. Phys. Rev. B 83, 134508 (2011)

M. C., M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod. Phys. 81, 943 (2009)