

2358-9

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

NuDat

A. Sonzogni Brookhaven National Lab. USA

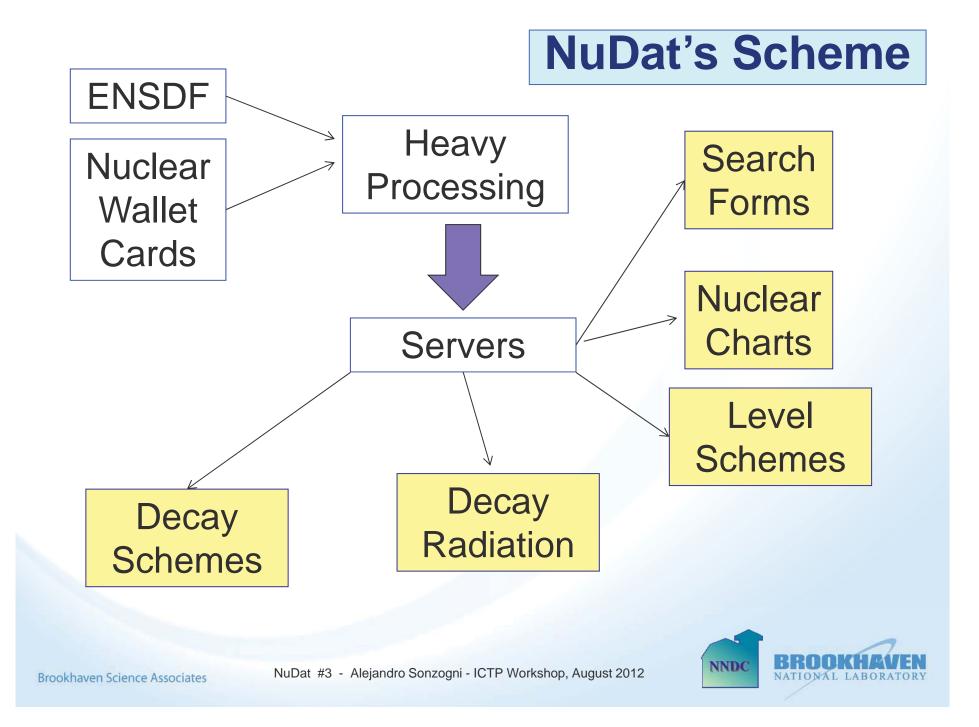
NuDat

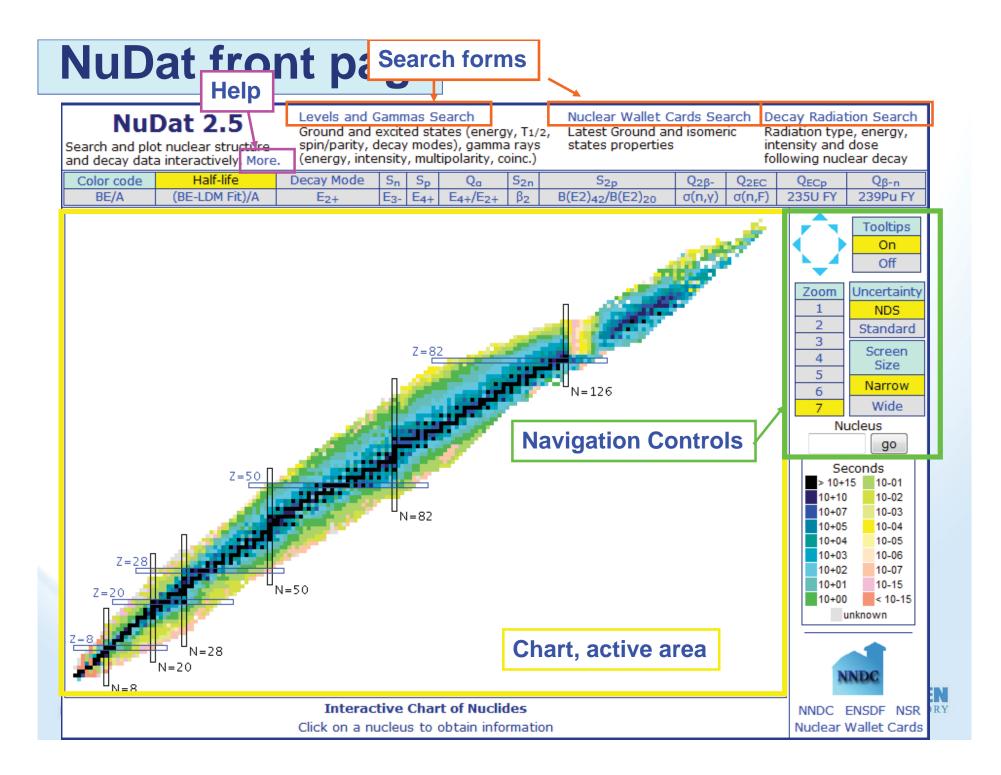
Alejandro Sonzogni National Nuclear Data Center

a passion for discovery

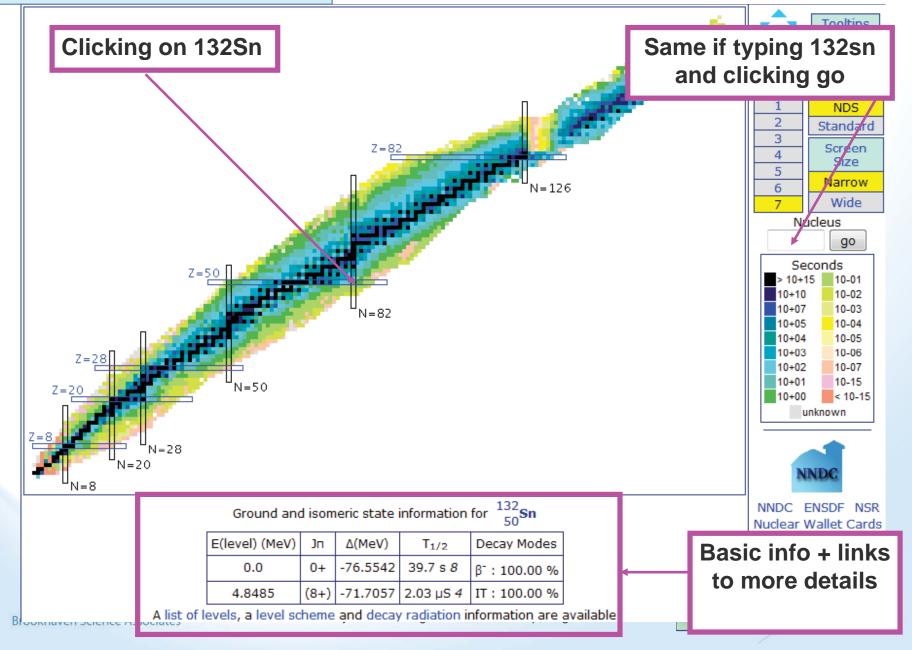
NuDat www.nndc.bnl.gov/nudat2

NuDat is a web application with two main goals, a) to present nuclear structure and decay information from ENSDF in a user-friendly way, and b) to allow users to execute complex search operations in the wealth of data contained in ENSDF. NuDat provides an interactive chart of nuclides for navigation and an output in the Table of Isotopes style. NuDat contents are updated regularly as new evaluations are entered into ENSDF.


NuDat 2 was developed by the National Nuclear Data Center (NNDC) in Brookhaven National Laboratory Using NuDat 2, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose).


More on www.nndc.bnl.gov/nudat2/help

NuDat #2 - Alejandro Sonzogni - ICTP Workshop, August 2012



Brookhaven Science Associates

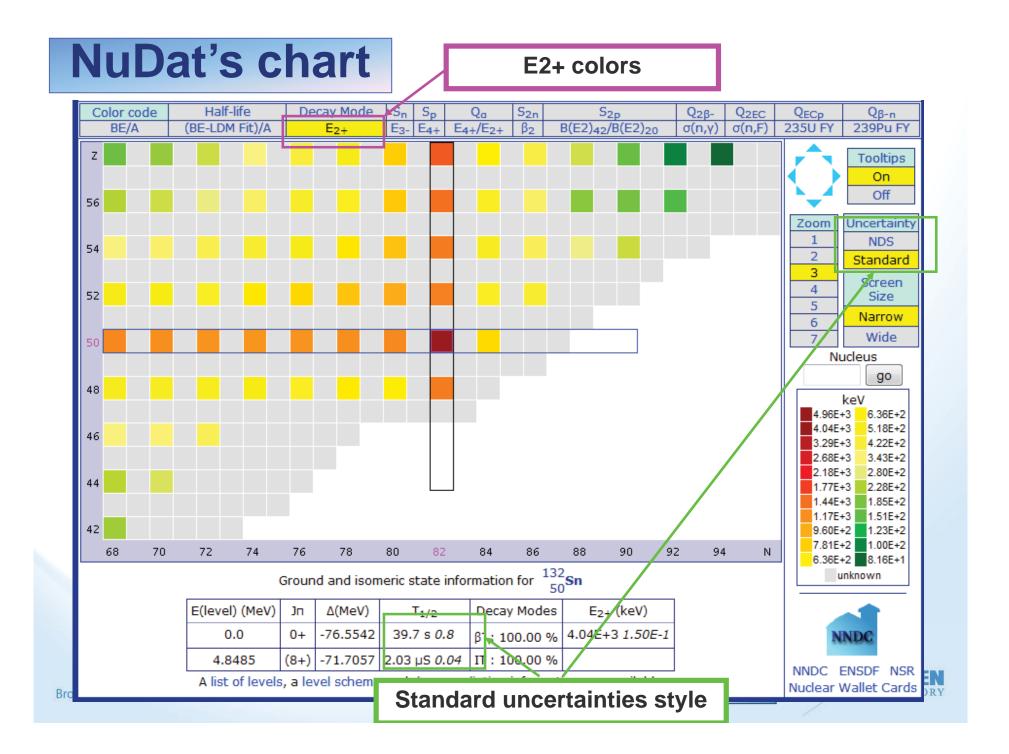
NuDat's chart

NuDat's chart

z	130Te >5E+23 Y 34.08% 28-: 100.00%	131Te 25.0 M β-: 100.00%	132Te 3.204 D 8-: 100.00%	133Te 12.5 М 8-: 100.00	134Те 41.8 М % В-: 100.0	1 19	5Te 0.0 S 00.00% (136Te 17.63 S 8-: 100.00%	137Те 2.49 S 8-: 100.00%	138Te 1.4 S 8-: 100.00%	$\langle \rangle$	Tooltips On
								β-n: 1.31%	β-n: 2.99%	β-n: 6.30%	Zoom	Off Jncertainty
	1298b 4.40 H	130Sb 39.5 M	131Sb 23.03 M	132Sb 2.79 M	133SE 2.5 M		4Sb 78 S	1358b 1.679 S	136Sb 0.923 S	137Sb 450 MS	1	NDS
51	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00	% β-: 100.0	00% β-: 1		8-: 100.00% 8-n: 22.00%	β-: 100.00% β-n: 16.30%	β-: 100.00% β-n: 49.00%	2 3 4	Standard Screen Size
	1288n 59.07 M	1298n 2.23 M	130Sn 3.72 M	131Sn 56.0 S	132Sr 39.7 S		38n 45 8	134Sn 1.050 S	1358n 530 MS	1368n 0.25 8	5	Narrow
50	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00	% β-: 100.0			8-: 100.00% 8-n: 17.00%	β-: 100.00% β-n: 21.00%	β-: 100.00% β-n: 30.00%	7 Nu	Wide
	127In 1.09 S	128In 0.84 S	129In 0.61 S	130In 0.29 S	131In 0.28 S		2In 07 S	133In 165 MS	134In 140 MS	135In 92 MS	Se	go conds
49	β-: 100.00% β-n≤ 0.03%	β -: 100.00% β -n < 0.05%	β-: 100.00% β-n: 0.25%	β-: 100.00 β-n: 0.939				8-: 100.00% 8-n: 85.00%	β-: 100.00% β-n: 65.00%	β-: 100.00% β-n ≻ 0.00%	> 10+1 10+10 10+07	5 10-01 10-02 10-03
	126Cd 0.515 S	127Cd 0.37 S	128Cd 0.28 S	129Cd 0.27 S	130Co 162 M		1Cd MS	132Cd 97 MS			10+05 10+04	10-04 10-05
48	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-	β-: 100.0 β-n: 3.5			8-: 100.00% 8-n: 60.00%			10+03 10+02 10+01	10-06 10-07 10-15
	78	79	80	81	82		13	84	85	N	10+00	< 10-15 nknown
			Ground a	nd isome	eric state in	formation	for $\frac{132}{50}$ s	'n				
			E(level) (MeV) Jn	Δ(MeV)	T _{1/2}	Decay M	odes			N	NDC
			0.0	0+	-76.5542	39.7 s <i>8</i>	β ⁻ : 100.	00 %				
			4.8485	(8+) ·	-71.7057 2	2.03 µS 4	IT : 100.	00 %				ENSDF NSR Vallet Cards

Changing the zoom value

Nuclear Wallet Cards


NATIONAL LABORATORY

NNDC

A list of levels, a level scheme and decay radiation information are available

Brookhaven Science Associates

NuDat #6 - Alejandro Sonzogni - ICTP Workshop, August 2012

Nuclear Decay

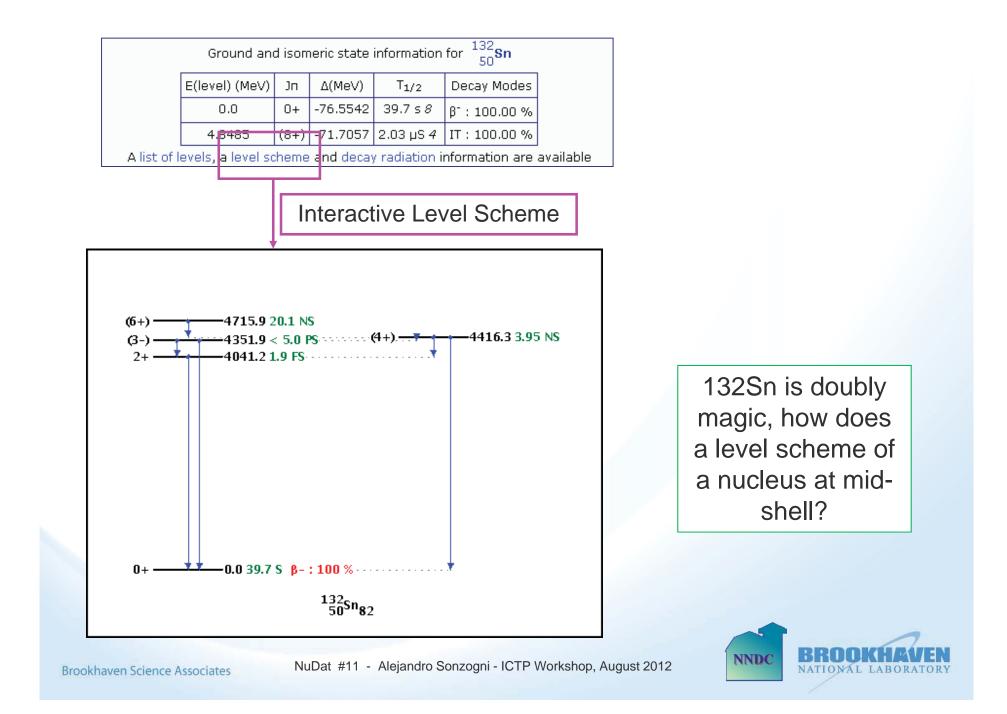
A process where the protons and neutrons in a given nucleus are rearranged into a lower energy state. The transition may involve states of the same nucleus (gamma emission, electron conversion) or levels of different nucleus. Each different process is known as a 'decay mode':

- * Gamma emission, electron conversion
- * β decay
- * β + decay
- * Electron Capture (EC)
- * β -delayed particle emission
- * Double β decay
- * Proton decay
- * Alpha decay
- * Cluster decay
- * Spontaneous Fission (SF)

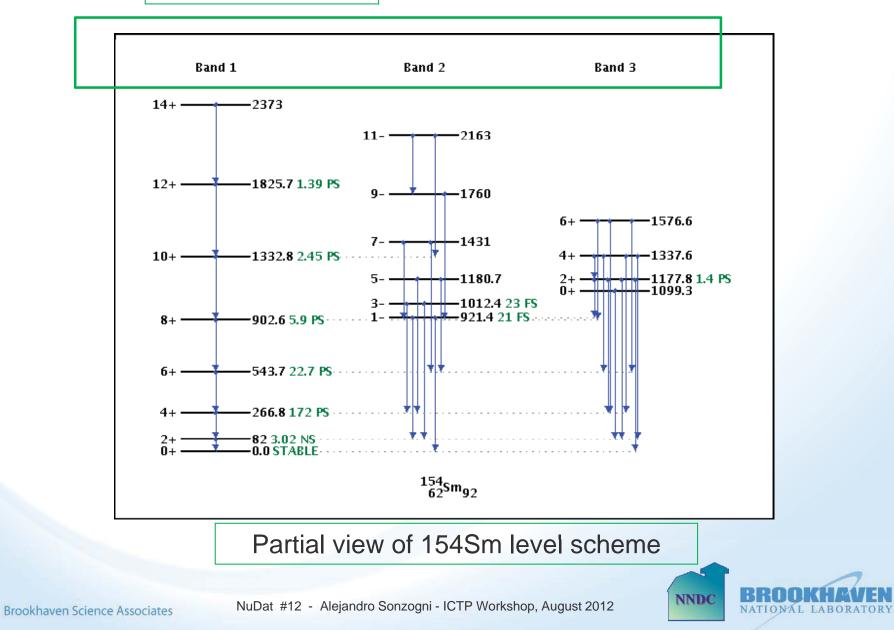
The probability of undergoing a given nuclear decay is often indicated using the percent sign followed by the decay mode name and the probability per 100 decays.

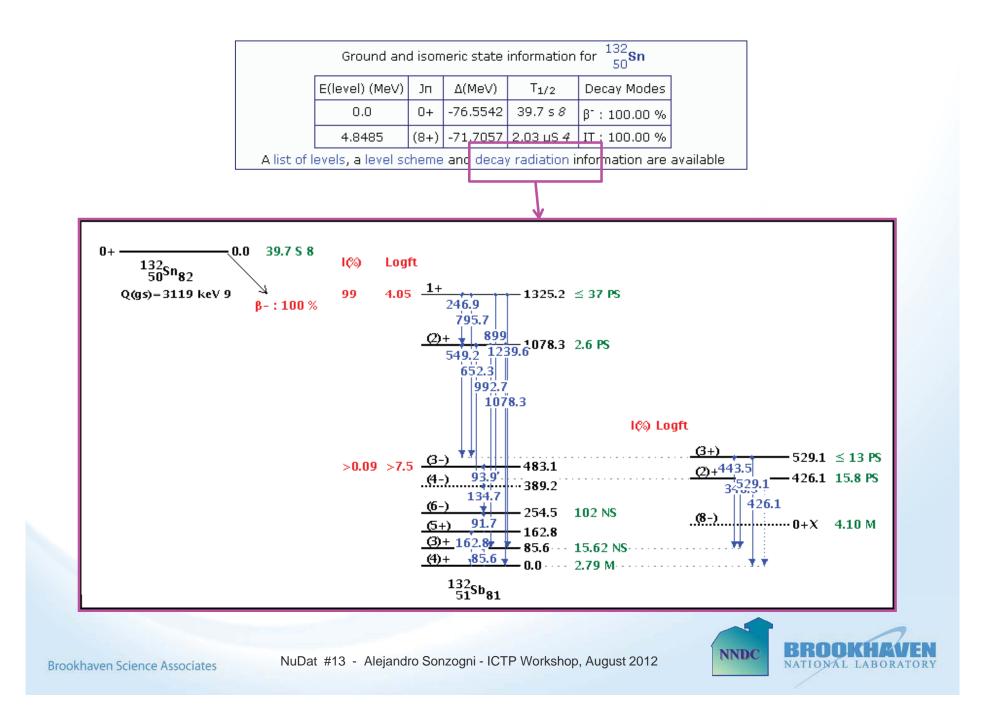
For instance, $\%\beta$ -=100 means 100% probability of β - decay.

The energy released during the decay is called 'Q-value'. For a given decay mode to have a probability larger than 0, the Q-value has to be positive.

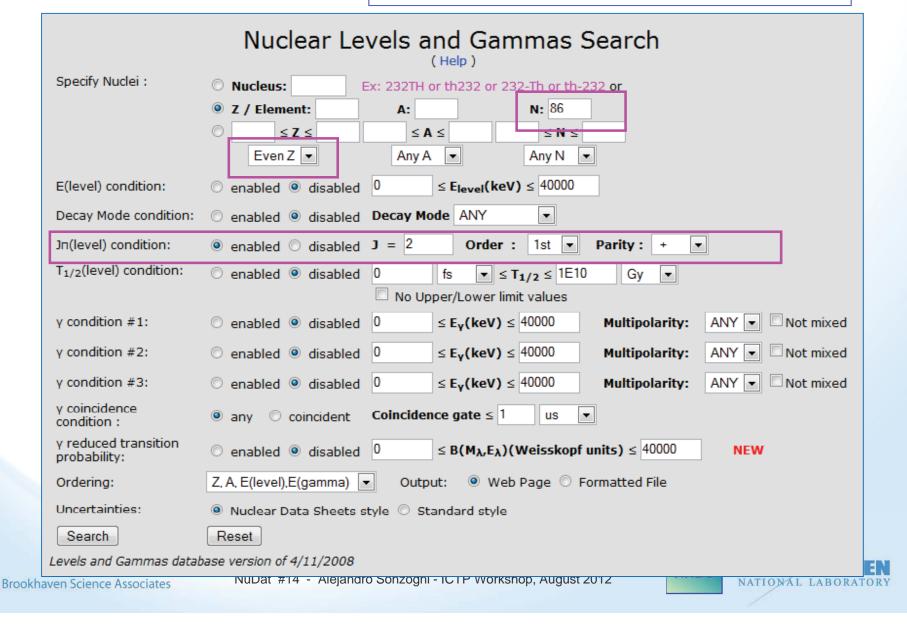

Uncertainties

The uncertainty associated with a given quantity can be expressed in the so-called <u>Nuclear Data Sheets</u> style, or in a standard style. The Nuclear Data Sheets style has been used for a long time since it facilitates data storage, which was crucial in the early days. A table with a brief explanation of the Nuclear Data Sheet style is given below:


NDS Style	Standard style and meaning
4.623 3	4.623 +- 0.003
4.6 h 12	4.6 +- 1.2 hours
5.4 × 10 ³ 2	5400 + - 200
4.2 +8-10	4.2 + 0.8 - 1.0
9.22 SY	9.22 is a result of a systematic study
9.22 CA	9.22 value is not an experimental one, but the result of a theoretical calculation

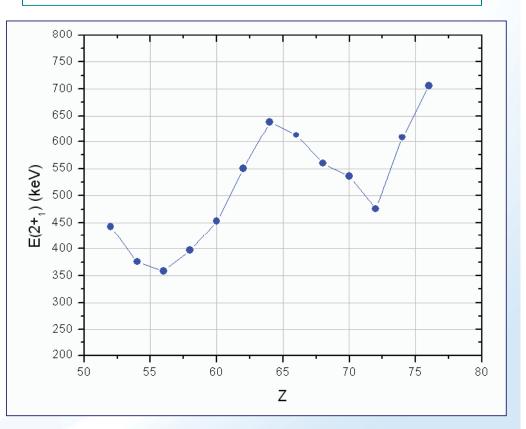


.0 3485 3 level s VELS,	0.0 0+ - 3485 (8+) - a level scheme a		formation are ava	ilable j		f or 132SN FED LEVELS, B- DECAY (0	GAMMA						
485 a level s VELS,	VELS, GAM	-71.7057 2.03 µS <i>4</i> and decay radiation in IMAS for ¹³² Sn	IT : 100.00 % formation are ava	ilable]	ADOP:	TED LEVELS,	GAMMA						
vels	VELS, GAM	and decay radiation in IMAS for ¹³² Sn	formation are ava	ilable]	ADOP:	TED LEVELS,	GAMMA						
VELS,	VELS, GAM	MAS for ¹³² Sn		ilable]	ADOP:	TED LEVELS,	GAMMA						
			NJ SINGH				GAMMA						
			N SINGH				GAMMA						
			AJ SINGH		□ 132IN	B- DECAY (0		S					
A.A. ROD	NA. RODIONOV AI	ND S. SAKHAROV, BALR/	N SINGH				.207 S)						
					🗌 132SN	IT DECAY (2	.03 US)						
					🗆 133IN :	B-N DECAY	(165 MS)						
,= 7311 k	,= 7311 keV 25 🖇	B _p = 15710 keV 30 Q _α = 1	1.69E3 keV 29		□ 248CM	SF DECAY							
2.03 µŠ) (165 MS)	207 S) 2.03 µS) (165 MS) TION			(OMB EXCITA		trieve all date					
XREF	XREF J7	τ ^Τ 1/2	E _γ (keV)	I _Y	y mult.	Final le	evel						
ABCDE	ABCDE 04	+ 39.7 s & % β = 100											
	AB DE 2-	+ 1.9 fs <i>+14</i> -	6 4041.1	100		0.0	0+						
AB DE	A D (3-	-) < 5.0 ps	310.7 4351.9	11.0 100	(E1) [E3]	4041.20 0.0	2+ 0+						
	4416.29 <i>I</i> / AB D (4+) 3.95 ns <i>I</i> / 64.4 1.3 [E1] 4351.94 (3-) 375.1 100 / (E2) 4041.20 2+												
$1 \times \beta^{-} = 100$													


Rotational bands

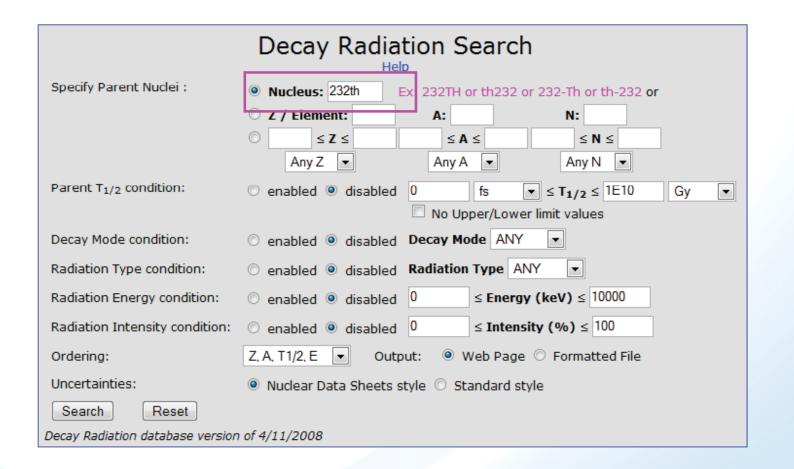
Levels Search

Search for first 2+ states in N=86 Nuclides

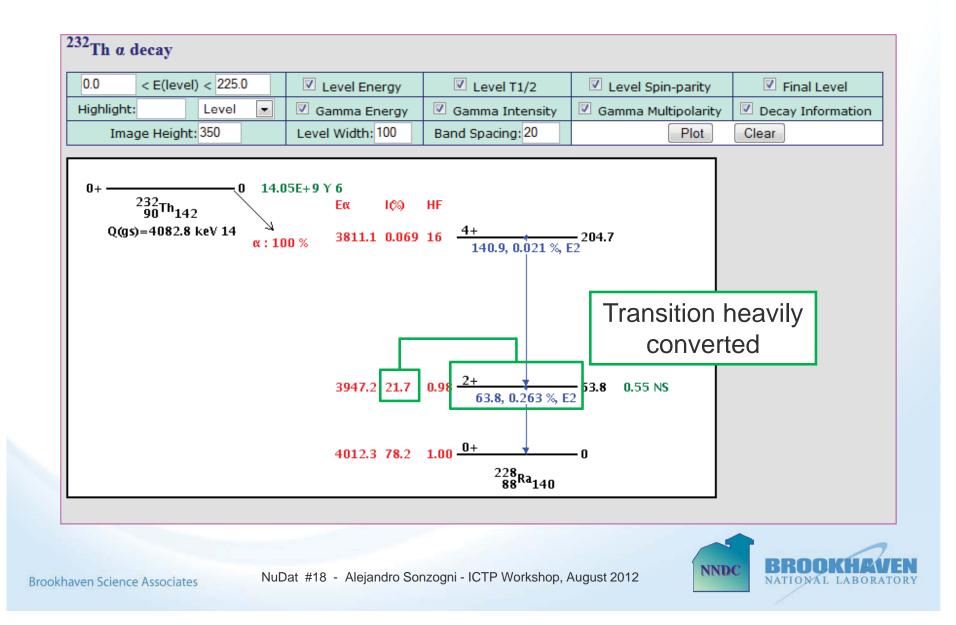


Results

Nucleus	E _{level} (keV)	Jπ	T _{1/2}
138TE	443.1 <i>10</i>	(2+)	
140XE	376.658 <i>15</i>	2+	70.5 ps <i>22</i>
142BA	359.597 <i>14</i>	2+	65 ps 2
144CE	397.441 <i>9</i>	2+	35.4 ps <i>20</i>
146ND	453.77 <i>5</i>	2+	21.6 ps <i>13</i>
148SM	550.255 <i>8</i>	2+	7.72 ps <i>32</i>
150GD	638.045 <i>14</i>	2+	
152DY	613.82 <i>7</i>	2+	10 ps <i>5</i>
154ER	560.8 <i>1</i>	2+	
156YB	536.4 <i>1</i>	2+	
158HF	476.36 <i>11</i>	2+	
160W	609.9 2	2+	
162OS	706.7 <i>3</i>	(2+)	


For more search examples, see Help file

Tool for systematic studies



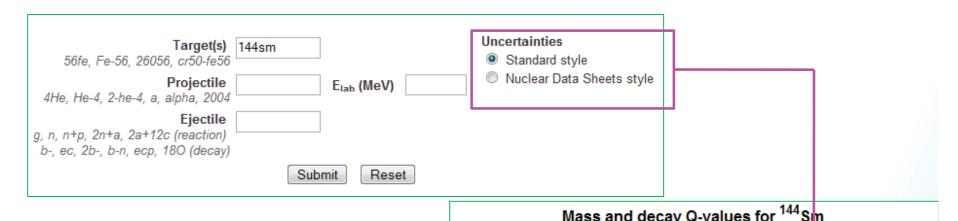
<u>Author</u> : A	uthor: AGDA ARTNA-COHEN <u>Citation</u> : Nuclear Data Sheets 80, 723 (1997)														
Parent Nucleus	Parent E(level)		Parent T _{1/2}	Decay Mode	GS-GS Q-value (keV)	Daughter Nucleus									
²³² 90 ^т h	O	0+	14.05E+9 у б	a: 100 %	4082.8 <i>14</i>	²²⁸ 88 ^{Ra}	Decay Scheme								

Results

<u>Alphas</u> :					Electrons:			
Ene (ke		Intensity (%)	Dose (MeV/Bo			Energy (keV)	Intensity (%)	Dose (MeV/Bq-s)
2011	.1 14	0.069 % 13	0.002	6 5	Auger L	9.09	8.7 % <i>5</i>	7.9E-4 <i>4</i>
	.2 20	21.7 % <i>13</i>	0.86		CE K	36.958 <i>13</i>	0.0060 % 11	2.2E-6 4
	.2 20	21.7 % 13 78.2 % 13	3.14		CE L	44.573 <i>10</i>	15.8 % 8	0.0070 3
4012	.3 14	18.2 % 13	3.14	5	CE M	58.988 <i>10</i>	4.27 % 21	0.00252 1
					CE NP	62.602 <i>10</i>	1.53 % 8	9.6E-4 <i>5</i>
					Auger K	65.9	1.9E-4 % 4	1.3E-7 <i>3</i>
amma and	l X-ray radiati	on:			CE L	121.643 <i>10</i>	0.031 % <i>6</i>	3.8E-5 7
-		Tehona	.	Dees	CE M	136.058 <i>10</i>	0.0084 % 16	1.14E-5 2
	nergy (keV)	Intensi (%)		Dose (MeV/Bq-s)	CE NP	139.672 <i>10</i>	0.0030 % <i>6</i>	4.3E-6 <i>8</i>
IR 1	12.3	7.1 %	5	8.8E-4 6				
	63.81 <i>1</i>	0.263	% 13	1.68E-4 &	,	Where	e are the	
KR ka2	85.431	0.001	7 % 3	1.4E-6 <i>3</i>				
KR kal	88.471	0.002	8 % 5	2.4E-6 <i>5</i>	ele	ectrons of	coming fr	om? 🗆
R kβ3	99.432	3.4E-	4 % б	3.3E-7 б			3	
KR k <mark>β</mark> 1	100.13	6.4E-	4 % 12	6.5E-7 <i>12</i>	,			
KR kβ2	102.498	2.4E-	4 % 5	2.5E-7 <i>5</i>				1
	140.88 <i>1</i>	0.021	% 4	3.0E-5 б	- ICTP Works	shop, August 2012	NNDC BRU	L LABORATOR

Interactive Decay Scheme

Q-calc *www.nndc.bnl.gov/qcalc*


Nuclear reaction and decay Q-values can be calculated using the Q-Calc tool, which uses the 2003 atomic mass evaluation of Audi et al., G.Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A729, 337 (2003).

For a nucleus with Z protons, N neutrons and mass M(Z,N), the most common decay Q-values are:

β-	$Q(\beta-)=M(Z,N)-M(Z+1,N-1)$	The neutron and
Electron capture	Q(EC)=M(Z,N)-M(Z-1,N+1)	proton separation
β+	$Q(\beta+)=M(Z,N)-M(Z-1,N+1)-2Me$	energies are defined as:
Alpha emission	$Q(\alpha)=M(Z,N)-M(Z-2,N-2)-M(2,2)$	denned as.
Proton emission	Q(p)=M(Z,N)-M(Z-1,N-1)-M(1,1)	S(p)=-Q(p)
Double β-	$Q(2\beta)=M(Z,N)-M(Z+2,N-2)$	S(n)=-Q(n)
Double EC	Q(2EC)=M(Z,N)-M(Z-2,N+2)	

NuDat #19 - Alejandro Sonzogni - ICTP Workshop, August 2012

In ENSDF evaluation, most of the time we are interested in decay Q-values, which can be obtained by simply giving the nucleus of interest

Mass and decay Q-va	alues for Sin						
Quantity	(207)						
Mass Excess	-81971.96 2.81						
Binding Energy/A	8303.72 <mark>3 <i>0.019</i></mark>						
Atomic Mass (AMU)	143.912 <i>0.00301</i> *						
Atomic Mass/neutron Atomic Mass	142.67574 <i>0.00299</i> **						
Ω _β	-6350.3 <i>10.9</i>						
Q _{EC}	-550.85 <i>2.55</i>						
Q _{β+}	-1573.05 2.55						
Q _n	-10520.08 2.36						
Qp	-6295.19 2.73						
Q _{2n}	-19121.7 5.63						
Q _{2p}	-10594.7 <i>1.79</i>						
Q _a	-145.1 28.1						
Q ₂₈₋	-10212.5 28.1						
- ICTP Workshop, August 2012	NATIONAL LABORATORY						

Brookhaven Science Associates

Q-calc *www.nndc.bnl.gov/qcalc/qcalc4eval.jsp*

Q-value Calculator for ENSDF evaluators											
Nuclide 56fe, Fe-56, fe, 56	94sr										
	 Nuclear Data Sheets style Standard style 										
	Submit Reset										

Nucleus	KeyNumber	Q _{β-}	SY	ΔQ _{β-}	Sn	SY	∆Sn	Sp	SY	∆Sp	Qα	SY	ΔQ_{α}	$Q_{\beta\text{-}n}$	SY	$\Delta Q_{\beta\text{-}n}$	Q _{ECp}	SY	ΔQ_{ECp}
940	2003AU03	3508		8	6827		10	13512		10	-6295		20	-2689		13	-2.211E+4		10
⁹⁴ Sr	2009AUZZ	3510		8	6827		10	13509		11	-6307		7	-2686		13	-21994		8

