



2358-10

#### Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

**Experimental Nuclear Physics** 

E. Ricard McCutchan Brookhaven National Lab. USA

# Experimental Nuclear Physics: Part I

E.A. McCutchan

National Nuclear Data Center Brookhaven Nation Laboratory



a passion for discovery



## • How to make nuclei

## How to observe their decay



# History: 100 years and counting

- 1896-1898 The beginning:- Becquerel and Curie make first discovery of radioactivity
- 1910-1938 Discovery Era:- Nuclear size, Neutron, Isotopes, Masses, Binding Energy
- 1939-1945 Fission Era:- Fission....and activity leading to bombs & nuclear power
- **1946-1970** Light Ion Era:- Near Stability, Shell and Collective Models.
- 1971-2001 Heavy Ion Era:- Far from Stability, Shapes, Hot, High Spin, Very Heavy.
- 2002-20?? RIB Era:- Neutron Rich "Terra Incognita"



### **The Scope of Nuclear Structure Physics**

#### **The Four Frontiers**

- 1. Proton Rich Nuclei
- 2. Neutron Rich Nuclei
- 3. Heaviest Nuclei
- 4. Evolution of structure within these boundaries



### Terra incognita — huge gene pool of new nuclei

We can customize our system – fabricate "designer" nuclei to *isolate and amplify* specific physics or interactions







### The Theoretical Landscape

Experiment and Theory are NOT separate sciences!!!!!



Sizes and forces (very basic)

# How big is a nucleus ??



### Sizes and forces (very basic)



From electron scattering we know nuclear density is independent of A

## Choosing the right probe



Energy of probe related to size of probee and production device

### What's as big as a nucleus??

### Another nucleus !!





### Schematic view of nuclear reactions







### Heavy-ion Fusion Evaporation Reactions

# The appeal of near barrier heavy ions

The heavy ion era (1970 ~ ????) opened up the proton-rich nuclei landscape for exploration, from stability to beyond the proton drip line.

It also opened the cornucopia of High Spin Phenomena

And the path to very heavy nuclei.

Taming Heavy ion fusion and turning it into a spectroscopy tool took two decades.



 $^{40}Ca + ^{96}Ru \rightarrow ^{136}Gd^*$ 



### A nice tool for planning experiments ...



- Designed for fragmentation reactions
- Lots of good basic calculators

http://lise.nscl.msu.edu/lise.html









### Calculating the reaction yield

# of reactions/sec =  $N_{beam}N_{target}\sigma$ 

Typical beam current ~ 1-100 enA

N<sub>beam</sub> = 10x10<sup>-9</sup> / 1.6x10<sup>-19</sup> 10<sup>10</sup> particles/sec

 $N_{target} = [N_A/A]^{*}$ thickness

Typical target thickness ~ 0.1 – 10 mg/cm<sup>2</sup>

 $N_{target} = [6x10^{23}/100]*1x10^{-3}$   $fx10^{18}$  particles/cm<sup>2</sup>

### Looks like we are winning ...



### Calculating the reaction yield

# of reactions/sec =  $N_{beam}N_{target}\sigma$   $N_{beam} = 10x10^{-9}/1.6x10^{-19}$  10<sup>10</sup> particles/sec  $N_{target} = [6x10^{23}/100]*1x10^{-3}$  6x10<sup>18</sup> particles/cm<sup>2</sup>

Cross section: remember the size of a nucleus



Probability of "hitting" the nucleus ~  $\pi R^2$ 1 barn (b) = 10<sup>-24</sup> cm<sup>2</sup>

Typical fusion cross sections are in the mb's # of reactions/sec =  $10^{10} \times 6 \times 10^{18} \times 100 \times 10^{-27}$ # of reactions/sec = 6000



### Decay of the Compound Nucleus

Heavy beam:

- Need high energy
- Brings in high
  angular momentum

Light beam:

- Can use lower E
- Brings in less angular momentum



Angular momentum



### **Gamma-Ray Emission**



$$E_{\gamma} = E_i - E_f$$
$$\left|I_i - I_f\right| \le L \le I_i + I_f$$
$$\Delta \pi (EL) = (-1)^L$$
$$\Delta \pi (ML) = (-1)^{L+1}$$

### Possible decay modes:

- β decay
- p,n emission
- $\alpha$  emission
- Internal conversion
- Fission
- γ-ray emission

# Gamma-ray emission is usually the dominant decay mode

- Energy
- Spin, Parity
- Magnetic, quadrupole moment
- Lifetime

...







### Gamma rays tell you something about shape



### Partial Level Scheme of <sup>152</sup>Dy

#### ... as an example of the richness of $\gamma$ -ray spectroscopic information







## **Radiation Detectors**

- Almost all work on the same general idea
- When an energetic charged particle passes through matter it will rapidly slow down and lose its energy by interacting with the atoms of the material (detector or body)

•Mainly with the atomic electrons

- It will 'kick' these electrons off of the atoms leaving a trail of ionized atoms behind it (like a vapor trail of a jet plane)
- Radiation detectors use a high voltage and some electronics to measure these vapor trails. They measure a (small) electric current).
- The larger the energy the deposited, the larger the signal measured



### Gamma-ray interactions with matter



**Photo effect** – photoelectron is ejected carrying the total γ-ray energy



Compton Scattering – Elastic scattering of  $\gamma$  ray off an electron. A fraction of the  $\gamma$  ray energy is transferred to the electron



Pair production – In the Coulomb \_field of the nucleus, a positronelectron pair can be formed. The pair has γ-ray energy minus  $2m_ec^2$ 

### Gamma-ray interactions with matter





### The "best" gamma-ray detector

0.0 0.2 0.4

### HPGe detector



### Clover detector





### **Compton Suppression**



### **Compton Suppressed Arrays**

For the last ~ 15 - 20 years, large arrays of Compton-suppressed Ge detectors such as EuroBall, JUROBALL, GASP, EXOGAM, TIGRESS, INGA, Gammasphere and others have been the tools of choice for nuclear spectroscopy.



#### $\gamma$ - $\gamma$ coincidence: a must in constructing a level scheme





### <u>Channel Selection for gamma-ray spectroscopy:</u> <u>Finding a needle in a haystack</u>

Detection of Light Charged Particles (a,p,n)

PLUS Efficient, flexible, powerful....inexpensive.

**MINUS** Countrate limited, Contaminant (Carbon etc, isotopic impurities) makes absolute identification of new nuclei difficult.

CROSS SECTION LOWER LIMIT ~100µb th

that is,  $\sim 10^{-4}$ 

**Detection of Residues in Vacuum Mass Separator** 

PLUS True M/q, even true M measurement. With suitable focal plane detector can be ULTRA sensitive. Suppresses contaminants.

MINUS Low Efficiency

CROSS SECTION LOWER LIMIT ~100nb

that is  $\sim 10^{-7}$ 

#### **Detection of Residues in Gas Filled Separator**

Improves efficiency of vacuum separators, at cost of mass information and cleanliness. In some cases (heavy nuclei) focal plane counters clean up the data for good sensitivity.

### Microball charged particle detector





### 95 CsI(TI) detectors Nearly $4\pi$ coverage



### Microball charged particle detector





Works on basic principle of charged particle moving in magnetic or electric field



Very useful in heavy mass region (and superheavies) where fission dominates the cross section



### **Types of Separators**

#### **Gas-Filled Separators**

- RITU Jyvaaskylaa
- BGS Berkeley
- GFRS Dubna
- GARIS RIKEN
- TASCA GSI



<sup>58</sup>Ni +<sup>60</sup>Ni @ 220 MeV M/ $\Delta$ M = 450

**Horizontal Distance** 

#### **Vacuum Separators**

- FMA Argonne
- RMS Oak Ridge





Prompt y-rays correlated with M/Q and (X, Y) position of recoil in DSSD



### The heart of the technique

#### Double sided Si strip detector (DSSD)



Strips : 40x40 = 1600 pixels

### Records

- Implant, E and t
- Decay, E and t



#### $\gamma$ -ray spectroscopy of the odd-odd N = Z + 2 deformed proton emitter <sup>112</sup>Cs

P. T. Wady,<sup>1,2</sup> J. F. Smith,<sup>1,2,\*</sup> E. S. Paul,<sup>3</sup> B. Hadinia,<sup>1,2,†</sup> C. J. Chiara,<sup>4,‡</sup> M. P. Carpenter,<sup>5</sup> C. N. Davids,<sup>5</sup> A. N. Deacon,<sup>6</sup> S. J. Freeman,<sup>6</sup> A. N. Grint,<sup>3</sup> R. V. F. Janssens,<sup>5</sup> B. P. Kay,<sup>6,§</sup> T. Lauritsen,<sup>5</sup> C. J. Lister,<sup>5</sup> B. M. McGuirk,<sup>3</sup> M. Petri,<sup>3,∥</sup> A. P. Robinson,<sup>5,¶</sup> D. Seweryniak,<sup>5</sup> D. Steppenbeck,<sup>6,\*\*</sup> and S. Zhu<sup>5</sup>



#### PHYSICAL REVIEW C 85, 034329 (2012)

#### $\gamma$ -ray spectroscopy of the odd-odd N = Z + 2 deformed proton emitter <sup>112</sup>Cs

P. T. Wady,<sup>1,2</sup> J. F. Smith,<sup>1,2,\*</sup> E. S. Paul,<sup>3</sup> B. Hadinia,<sup>1,2,†</sup> C. J. Chiara,<sup>4,‡</sup> M. P. Carpenter,<sup>5</sup> C. N. Davids,<sup>5</sup> A. N. Deacon,<sup>6</sup> S. J. Freeman,<sup>6</sup> A. N. Grint,<sup>3</sup> R. V. F. Janssens,<sup>5</sup> B. P. Kay,<sup>6,§</sup> T. Lauritsen,<sup>5</sup> C. J. Lister,<sup>5</sup> B. M. McGuirk,<sup>3</sup> M. Petri,<sup>3,||</sup> A. P. Robinson,<sup>5,¶</sup> D. Seweryniak,<sup>5</sup> D. Steppenbeck,<sup>6,\*\*</sup> and S. Zhu<sup>5</sup>



(

### **RDT Instrumentation at JYFL**



#### In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in <sup>246</sup>Fm

J. Piot,<sup>1,\*</sup> B. J.-P. Gall,<sup>1</sup> O. Dorvaux,<sup>1</sup> P. T. Greenlees,<sup>2</sup> N. Rowley,<sup>3</sup> L. L. Andersson,<sup>4</sup> D. M. Cox,<sup>4</sup> F. Dechery,<sup>5</sup> T. Grahn,<sup>2</sup> K. Hauschild,<sup>2,6</sup> G. Henning,<sup>6,7</sup> A. Herzan,<sup>2</sup> R.-D. Herzberg,<sup>4</sup> F. P. Heßberger,<sup>8</sup> U. Jakobsson,<sup>2</sup> P. Jones,<sup>2,†</sup> R. Julin,<sup>2</sup> S. Juutinen,<sup>2</sup> S. Ketelhut,<sup>2</sup> T.-L. Khoo,<sup>7</sup> M. Leino,<sup>2</sup> J. Ljungvall,<sup>6</sup> A. Lopez-Martens,<sup>2,6</sup> P. Nieminen,<sup>2</sup> J. Pakarinen,<sup>9,‡</sup> P. Papadakis,<sup>4</sup> E. Parr,<sup>4</sup> P. Peura,<sup>2</sup> P. Rahkila,<sup>2</sup> S. Rinta-Antila,<sup>2</sup> J. Rubert,<sup>1</sup> P. Ruotsalainen,<sup>2</sup> M. Sandzelius,<sup>2</sup> J. Sarén,<sup>2</sup> C. Scholey,<sup>2</sup> D. Seweryniak,<sup>7</sup> J. Sorri,<sup>2</sup> B. Sulignano,<sup>5</sup> and J. Uusitalo<sup>2</sup>



# The future





### **Production of Rare Isotopes in Flight** E > 50 MeV/nucleon

1. Accelerate heavy ion beam to high energy and pass through a thin target to achieve random removal of protons and neutrons in flight



### Example : In-Flight Production at NSCL



FIONAL LABORA'

### Particle identification

#### Separation with the fragment separator





### Radioactive Ion Beam Facilities Worldwide



### Lots of new, exciting data on the horizon !!

