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Averaging methods:

� While weighted and un-weighted averaging methods are 
most common, they do not give satisfactory answers all 
the time. 

� Modified weighted averaging methods: LWM, NRM, RT
� Other averaging methods: Mandel-Paule method, Method 

of best representation (MBR); and median method 
Bootstrap.

� Methods of finding outliers (for possible rejection) in a 
dataset also exist to help the evaluator to average the 
appropriate data since a poor measurement may skew the 
average

� Here we description of these methods; handling 
asymmetric uncertainties

� Display of a computer code incorporating above methods



Need for averaging methods?

� Often measurements of a single quantity are made 
independently by different experimenters using different 
methods/apparatus.

� How does an evaluator handle a data set to obtain best 
recommended value? 

� Example: Mean lifetime of Free Neutron (                    )



Neutron mean lifetime data

Author Original Value (sec) Reanalyzed value (sec)
2000Ar07 885.4(10) 881.6(21)*: 2012Ar05

1989Ma34 887.6(30) * 882.5(21) * ; 2012St10
2010Pi07 880.7(18) *
2005Se01 878.5(8) **
2003De25 886.8(34) 886.3(39) *; 2005Ni13
1990By05 893.6(53) 889.2(48) *; 1996By03
1993Ma62 882.6(27) *
1992Ne11 888.4(33) Withdrawn by 2005Se01

F. E. Wietfeldt and G.L. Greene: The neutron lifetime: RMP 83, 1117 (Oct-Dec 
2011)



Options for a data evaluator
� Ideally one will prepare a critical compilation by reading every paper, 

evaluating methodology of measurement and assignment of both 
statistical and systematic uncertainties.

� Sufficient details not being available in a publication could be a 
reason for not including the measurement in the analysis. Could 
contact authors if possible to obtain the details and policy of 
uncertainty assignments. But when encountering large data sets 
and/or quite old measurements, this may become impossible or 
cumbersome.  

� Select a dataset from available experimental results which you 
believe represents reliable set of measurements and realistic 
uncertainties. (Watch out very low and unrealistic uncertainties). 

� Sometimes a single measurements merits recommendation due to 
superior technique used and uncertainty budget accounted for 
properly.

� Often resort to statistical methods since such a single measurement 
rarely exists.    



Statistical Procedures: conditions

� Each measurement is made using accurate techniques
� By examining the methods of each experiment,  result(s) not satisfying 

this assumption should be discarded
� For example in a half-life measurement using integral beta counting, if 

the impurities also present but were not well known then it is possible 
the result is skewed. One may select data based on discrete gamma 
rays.

� Each measurement is independent and uncorrelated with other 
measurements
� The data set should only include results which are obtained by different 

groups or by the same group using different methods

� The standard deviation of each measurement is correctly estimated 
(i.e. the precision is reasonable)
� The experimenter, when quoting the final value, properly analyzed and 

accounted for both statistical and systematic uncertainties 
� If it is clear the quoted uncertainty is unrealistically low, it may be 

necessary to inflate the uncertainty at the discretion of the evaluator



Statistical Procedures
� Check if the dataset you have selected is discrepant: poor 

agreement between different measurements, i.e. deviations of 
>3 or so quoted standard deviations.

� Take a weighted average. If reduced  χ2 > critical χ2 at 95-99% 
confidence level, then the data are deemed discrepant. If data 
are not discrepant then various methods described later will 
most likely converge.

� If data seem discrepant, look for outliers. Over the years several 
methods have been proposed, but these should be used with 
extreme caution. It may happen that the outlier is actually 
closest to the true value!



Outliers in a data set
� Identifying and possibly omitting outliers is not a process 

universally agreed upon and often discouraged. Finally it 
comes down to the discretion of an evaluator.  

� Two prescriptions of finding such data points are 
Chauvenet’s and Peirce’s criteria, both circa 1860, former 
being more popular, although, latter is more rigorous 
statistically. 
In Chauvenet's words, " For the general case….. when there are several 

unknown quantities and several doubtful observations, the modifications which 
the rule [Chauvenet's criterion] requires renders it more troublesome than 
Peirce's formula…...What I have given may serve the purpose of giving the 
reader greater confidence in the correctness and value of Peirce's Criterion". 
William Chauvenet, A Manual of Spherical and Practical Astronomy V.II , 
Lippincott, Philadelphia, 1st Ed (1863)



Chauvenet’s Criterion (in manual of practical astronomy) 

� William Chauvenet decided (circa 1860) an “outlier” should be defined as a 
value in a set of n measurements for which the deviation from the mean, 
di=|xi- |, would be observed with probability less than 1/2n assuming the data 

are distributed according to a normal distribution with the sample mean,     , 
(unweighted average) and variance, s2, given by the unbiased sample variance 
(a quantity defined in any statistics text). Iterative approach with one outlier 
picked up at a time

x =

1
n ∑

i=1

n

x i

x

s2
=

∑i=1
n

xi−x2

n−1

x

� Note that the uncertainties of the individual data points are not taken into account
� A formula for the criterion is thus obtained by the following calculation

where erf(x) is the “error function”
defined by

and erfc(x) is the complimentary error 
function  defined by erfc(x) = 1 – erf(x)

erfx = 2
π

∫
0
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Peirce’s Criterion
� Benjamin Peirce developed a criterion for finding outliers a few years 

before Chauvenet and his work is more mathematically rigorous
� He assumes the data are distributed according to the same normal

distribution as Chauvenet, however the principle used to identify outliers is 
very different

� A subset of m points are called outliers if
(likelihood of the complete data set) < (likelihood of the remainder of the data 

set)(Probability of the existence of m outliers)
� The principle includes the identification of more than one outlier hence the 

procedure for identifying outliers need not be iterated as with Chauvenet’s
criterion

� It is difficult to obtain an exact, closed form solution to the inequality above 
using the appropriate likelihood functions; however an iterative procedure 
can be used to find the maximum deviation from the mean, above which 
the measurements can be considered outliers by the above principle



Peirce’s Criterion

� After working with the mathematical formulation for Peirce’s principle the 
following four equations are derived to obtain the ratio of the maximum 
deviation from the unweighted mean, dmax, to the square root of the sample 
variance, s, as defined for Chauvenet’s Criterion: rmax=dmax/s.
� Suppose in a set of n measurements m are suspected as outliers

Qn
=

m m
n−m 

n−m

n n λ
n−m Rn

= Qn

rmax
2

= λ
2
+

n−1
m 1 − λ

2
 R = e

1
2

rmax
2

−1 erfc rmax

2

� These lend themselves to the iterative procedure to find rmax
� 1. Calculate Q using equation (1)
� 2. Begin with an approximate value for R
� 3. Use Q and R to calculate λ by equation (2)
� 4. Use λ to calculate rmax using equation (3)
� 5. Use rmax to refine the estimate on R using equation (4)
� Repeat steps 3-5 until R converges to one value, the rmax which gives that R is the 

required maximum ratio

(1) (2)

(3) (4)



Peirce’s Criterion
� To apply Peirce’s criterion:

� First assume one point is an outlier (m=1), then check if that 
is true by checking if any points exceed the maximum 
deviation from the unweighted mean calculated as on the 
previous slide

� If there are any outliers then assume there is one more (for 
example if 3 points exceed the maximum deviation then try 
the calculation with m=4) and repeat the calculation until no 
more outliers are identified

� Note that even though Peirce’s criterion in more rigorous than 
Chauvenet’s and does not arbitrarily choose a probability which 
indicates outliers, this formulation still does not include the 
uncertainties of the respective data points as they are not 
included in the likelihood functions



Method to including uncertainties by M. Birch

� It is proposed here that a criterion for identifying outliers which takes 
into account the uncertainties on each data point may be defined as 
follows:

� A measurement xi ± σi is outlier with respect to a supposed mean μ ± σμ

if the difference 
d = xi - μ is “inconsistent with zero” at a given confidence level, α.

� It can then be proven that the random variable 
D = Xi - M will be normally distributed about d with variance
σd

2 = σi
2 + σ

μ

2 where Xi and M are normally distributed random 
variables with their respective peak values at the measurement xi and
supposed mean μ

� We can say D is inconsistent with zero at a confidence level α if
Pr(0<D<2d) > α when d > 0 or Pr(2d<D<0) > α if d < 0, since these 
intervals correspond to the set of values more likely to occur than zero.

� This results in the formula

erf |xi−μ|

2 σ i
2
+σ

μ

2
> α



Outlier Identification Including Uncertainties

� This criterion should be applied by simply checking each measurement 
individually;  should not be iterated!

� It should always be kept in mind that this criterion identifies outliers with 
respect to the given mean which should be the evaluator’s best estimate of 
the true value, generally a weighted average. This may be chosen using 
any of the averaging techniques to be discussed.

� Evaluator’s choice whether to keep or omit outliers 
prior to using averaging procedures



Coming back to neutron mean lifetime:
Average (recommended) value

� Particle Data Group 2012 evaluation: used weighted average by 
including for the first time, seemingly discrepant value from 
2005Se01, but not pointed out an outlier by any method, provided
revised value from 2012St10 is used; otherwise the original value 
from these authors is an outlier according to new proposed 
procedure. 

PRD 86, 010001 (July 2012): 880.1(11) sec (with inflated σ)

Reduced χ
2=2.98 compared to critical χ2=2.80 at 99%CL, 2.10 at 95%CL 

(Inclusion of 2012St10 correction gives 880.0(9) or 880.4(10)-LWM)

Reduced χ
2=2.15 compared to critical χ2=2.80 at 99%CL, 2.10 at 95%CL 

In 2006, 2008, 2010 PDG evaluations Adopted value was 885.7(8) sec; 
2005Se01 value was not included as it was much too low to give a 
meaningful average! However, caution was recommended.



Mathematical Definitions

� Probability Density Function (PDF)
� A function,  , of a continuous random 

variable for which the integral over an interval 
gives the probability of the value of the 
random variable lying in that interval.

� PDFs are also normalized:

fx

Pra ≤ X ≤ b = ∫
a

b

fxdx

∫

−∞

∞

fxdx = 1



Mathematical Definitions

� Mean
� The mean (or expected) value of a continuous random 

variable X with PDF         is defined to be:

� For a discrete random variable, X, with n possibilities 
x1, x2, …, xn which occur with associated probabilities p1,
p2, …, pn such that             the mean value is:

fx

EX = ∫

−∞

∞

xfxdx

∑

i=1

n

pi = 1

EX = ∑
i=1

n

pix i



Mathematical Definitions

� Variance
� The variance of a random variable with mean 
μ is defined to be:

VarX = EX − μ
2


= ∫

−∞

∞

x − μ
2 fxdx

= ∑

i=1

n

x i − μ
2pi

(Continuous)

(Discrete)



Mathematical Definitions

� The Normal (Gaussian) Distribution
� A random variable is normally distributed if it 

has a PDF of the form

� One can then show the mean of a normally 
distributed random variable is μ and the 
variance is σ2

Nx;μ,σ = 1
2πσ

e−

x−μ2

2σ2



Mathematical Definitions

� Standard Deviation
� Standard deviation is defined to be the square 

root of the variance.
� Hence, for a normal distribution the standard 

deviation is σ.
� This is an important measure for a normally 

distributed random variable, X, since the 
probability of X lying within 1σ, 2σ and 3σ of
the mean is 68%, 95% and 99.7% respectively



Mathematical Definitions

Prμ − σ ≤ X ≤ μ + σ = ∫

μ−σ

μ+σ

1
2π σ

e−
x−μ2

2σ2 dx ≈ 0.6827

Prμ − 2σ ≤ X ≤ μ + 2σ ≈ 0.9545

Prμ − 3σ ≤ X ≤ μ + 3σ ≈ 0.9973



Importance of the Normal Distribution

� The Central Limit Theorem
� For a set of n independent and identically distributed random 

variables X1, X2, …, Xn with mean μ and variance σ2, the 
quantity tends to be normally distributed with 
mean 0 and variance σ2 as n tends to infinity.

� In the context of experiment one can think of the n random 
variables as realizations of many sources for error in a 
measurement (e.g. In various electronic devices), the central 
limit theorem then says the total error in each measurement 
can be expected to follow a normal distribution

� It can also be argued that the use of a normal distribution for 
error frequency is the best assignment based on the 
available information without making additional assumptions 

Y = n 1
n ∑

i=1

n

Xi − μ



Definition of Uncertainty

� Consistent with the Central Limit Theorem, a 
quoted measurement with uncertainty of a 
quantity X, μ ± σ, represents a normal 
distribution with mean μ and standard 
deviation σ



Extension to Asymmetric Uncertainty

� For a quoted measurement with asymmetric uncertainty of a 
quantity X,       , it is assumed the values μ, a, and b correspond 
to the parameters of the PDF

μ
−b
+a

NAx;μ,a,b =

2
πa+b 2 e−

x−μ2

2b ,x ≤ μ

2
πa+b 2 e−

x−μ2

2a ,x > μ



Associated Definitions
� Reproducibility

� A measurement which is reproducible would have its result 
repeated if the experiment were re-performed

� If the uncertainty is correctly quoted the result should reflect
reproducibility of 68% within its error

� Precision
� A measurement which is precise is one for which the 

uncertainty is low
� Accuracy

� A measurement which is accurate is one for which the 
measured value is close to the “true value”



Associated Definitions

� Clearly, measurements can be:
� Neither Precise nor accurate
� Accurate but not precise (first figure)

� Precise but not accurate
(second figure)

� Both Precise and Accurate (ideal)
(third figure)



Example: 182Ta

� Frequently used in gamma ray detector 
calibration



Evaluation of 182Ta Half-life
Reference Measurement (days) Method
1980Sc07 114.43(4) 4π ion. chamber
1973Vi13 114.740(24) Well-type NaI(Tl)
1972Em01 115.0(2) 4π ion. chamber
1967Wa29 117.3(10) Diff. ion. chamber
1958Sp17 118.4(5) GM counter
1958Ke26 114.80(12) Single-ion chamber
1957Wr37 115.05(25) Single-ion chamber
1951Ei12 111.2(5) Single-ion chamber
1951Si25 111(1) Single-ion chamber
Meitner 117.5(18) -
1947Se33 117(3) -
Zumstein et al. 117(3) -

�Reasonable to assume accuracy

Cannot 
identify 
methodology 
problems in 
experiments; 
all seem 
equally valid.



Evaluation of 182Ta Half-life
Reference Measurement (days) Method
1980Sc07 114.43(4) 4π ion. chamber
1973Vi13 114.740(24) Well-type NaI(Tl)
1972Em01 115.0(2) 4π ion. chamber
1967Wa29 117.3(10) Diff. ion. chamber
1958Sp17 118.4(5) GM counter
1958Ke26 114.80(12) Single-ion chamber
1957Wr37 115.05(25) Single-ion chamber
1951Ei12 111.2(5) Single-ion chamber
1951Si25 111(1) Single-ion chamber
1948Me29 117.5(18) -
1947Se33 117(3) -
Zumstein et al. 117(3) -

Same method; 
different groups

Same group; 
different methods

� Reasonable to assume independence



Evaluation of 182Ta Half-life
Reference Measurement (days) Method
1980Sc07 114.43(4) 4π ion. chamber
1973Vi13 114.740(24) Well-type NaI(Tl)
1972Em01 115.0(2) 4π ion. chamber
1967Wa29 117.3(10) Diff. ion. chamber
1958Sp17 118.4(5) GM counter
1958Ke26 114.80(12) Single-ion chamber
1957Wr37 115.05(25) Single-ion chamber
1951Ei12 111.2(5) Single-ion chamber
1951Si25 111(1) Single-ion chamber
1948Me29 117.5(18) -
1947Se33 117(3) -
Zumstein et al. 117(3) -

�Reasonable to assume correct precision estimation

No single 
data point 
seems 
unrealistically 
precise 
compared 
with others



Evaluation of 182Ta Half-life
� With the assumptions of statistical methods 

reasonably justified a recommended value may be 
obtained via these procedures

� Many Possibilities:
� Unweighted average
� Weighted average
� Limitation of Relative Statistical Weights Methods 

(LRSW/LWM)
� Normalized Residuals Method (NRM)
� Rajeval Techique (RT)
� Bootstrap Method
� Mandel-Paule Method (MP)
� Method of Best Representation (MBR)



Unweighted Average
� Origin

� Maximum likelihood estimator for the mean of a normal 
distribution from which a sample was taken

� Extra implied assumption: the data set is a sample from a 
single normal distribution

� Formula for a set of measurements {x1, x2, …, xn}

x =

1
n ∑

i=1

n

x i
∑i=1

n
xi−x2

nn−1
(uncertainty estimate) =



Unweighted Average

� Result for the 182Ta half-life data set
� 115.29(68) days

� Unweighted average treats all measurements 
equally as if all from the same distribution, 
however different experiments have different 
precisions and therefore different standard 
deviations and probability distributions

� Does not make use of the third assumption: 
the standard deviation of each measurement 
is well estimated



Weighted Average
� Origin

� Maximum Likelihood estimator for the common mean of a 
set of normal distributions with known variances

� Extra implicit assumption: the data set is well suited to a 
single mean about which each result is independently 
normally distributed with the standard deviation quoted in the 
uncertainty

� Formula for a set of measurements {x1, x2, …, xn} with 
associated uncertainties {σ1, σ2, …, σn}

x w =

∑i=1
n wixi

W wi =
1
σ i

2W = ∑i=1
n wi

1
W

, where and

(uncertainty estimate) =



Note about Extension to Asymmetric Uncertainties

� Since uncertainties are to represent the standard 
deviation, which is the square-root of the variance, 
the weights of weighted averaging and all other 
quantities which use the uncertainties in their 
formulation will instead use the standard deviations 
calculated from the PDF defined previously, g(x;μ,a,b)

� One can compute the variance of that distribution to 
obtain the following formula for the standard deviation

1 −

2
π

a − b2
+ ab(Standard deviation) =



Weighted Average – Chi-Squared Test

� The weighted average makes use of all three original assumptions
as well an additional proposition, the Chi-Squared test gives an 
indication to the validity of this extra assumption

� Theorem:
� If X1, X2, …, Xn are normally distributed continuous random 

variables with means μi and standard deviations σi (i=1, …, n)
then the following quantity has a Chi-Squared distribution with 
n degrees of freedom

Y = ∑

i=1

n
Xi−μi
σ i

2



Weighted Average – Chi-Squared Test

� In the case of the weighted average μ1=μ2=…=μn=xw, which is 
deduced from the data. The “uses up” one degree of freedom so 
by the previous theorem the quantity (called chi-squared after its 
expected distribution) should have n-1 degrees of freedom

χ
2
= ∑

i=1

n


xi−xw
σ i


2

� The number of degrees of freedom is simply a parameter of the chi-
squared distribution which determines its mean and variance

� For a chi-squared distribution with ν degrees of freedom, the mean is ν
and the variance is 2ν

� Therefore the reduced chi-squared can be defined which should be 
close to unity

χR
2
=

χ
2

n−1



Weighted Average – Chi-Squared Test

� A confidence level α can be used to assign a critical value of 
chi-squared which, if exceeded, indicates it is reasonable to 
reject the assumption of weighted averaging

χ
ν

2
x, where is the PDF of the chi-squared distribution

with ν degrees of freedom

� For example the critical reduced chi-square for five degrees of 
freedom at a 95% confidence level is approximately 
11.05/5=2.21

α = Prχ2
≤ χC

2


= ∫
0

χC
2

χ
ν

2
xdx



Weighted Average – External Uncertainty

� The uncertainty estimate       is based purely upon the standard
deviations intrinsic to each measurement, hence it is an internal 
uncertainty

� An external uncertainty based on the spread of the values can 
be calculated by multiplying the internal uncertainty by the 
square-root of the reduced chi-squared (the Birge Ratio)

� It is recommended for data evaluation that the higher of the 
internal and external uncertainties be used as the standard 
deviation to accompany the recommended weighted mean, 
although, it is unrealistic to assume that each input uncertainty 
is underestimated by this factor (also called scaling or inflation 
factor)  

1
W

χ
2

Wn−1 
(external uncertainty estimate) =



Weighted Average

� Result for the 182Ta half-life data set
� 114.668(81) days; reduced chi-squared=16.24

� Reduced chi-squared is very much greater 
than critical chi-squared.

� Indicates a problem with one or more of the 
assumptions about the data set

� Other methods may be attempted which try to 
resolve the discrepancy



Limitation of Relative Statistical Weights (LRSW/LWM)

� Origin
� Adopted by the IAEA during a CRP on gamma and X-ray 

standards
� Formulation

� A “Relative Statistical Weight” is defined to be the ratio of the 
individual weight of a data point to the sum of all weights.

� Searches for outliers (original version: Chauvenet’s criterion)
� If the data are deemed discrepant and If any data point has a 

relative weight greater than 50% its weight is reduced to be 
50% by increasing the uncertainty of the measurement, an 
ordinary weighted average is then calculated. 

� If the critical chi-squared is still exceeded after this adjstment
then the unweighted average is also calculated, if the weighted 
and unweighted averages overlap within their uncertainties then 
the weighted average is adopted, otherwise the unweighted
value is adopted

� If necessary, the uncertainty of the adopted result is then 
increased to overlap the uncertainty of the most precise value 
in the data set



Limitation of Relative Statistical Weights (LRSW/LWM)

� This procedure addresses the third assumption 
regarding estimation of standard deviation

� If one value has greatly under-estimated its 
uncertainty as to get more than 50% of the weighting 
it is corrected

� The final adjustment of uncertainty also ensures a 
somewhat conservative estimate of the adopted 
standard deviation

� Since ultimately a weighted average is still 
performed, the same assumptions apply but to a 
modified data set in which some of the uncertainties 
may be greater. Hence a chi-squared test can still be 
used to determine if one should reject the weighted 
average assumptions



Limitation of Relative Statistical Weights (LRSW/LWM)

� Result for the 182Ta half-life data set
� 114.62(10) days; reduced chi-squared=15.47
� The uncertainty on 1973Vi13 was increased 

from 0.024 to 0.037 to lower its weight to 50%
� Increasing the uncertainty of the most precise 

data point raised the final standard deviation 
estimate and lowered the reduced chi-
squared, however it is still unacceptably high

� Perhaps try another method



Normalized Residuals Method (NRM)

� Origin
� NIM Paper by M.F. James et al. (1992)

� Formulation
� For each data point a “normalized residual,” ri, is 

calculated

� If |ri| is greater than some critical value R then the 
uncertainty of that point is adjusted such that |ri|=R

� Once all the required adjustments have been made an 
ordinary weighted average is calculated with the 
adjusted data set

ri =
wiW

W−wi
x i − x w, where wi, W and xw are as before



Normalized Residuals Method (NRM)

� This again addresses the third assumption and adjusts 
uncertainties which may have been under estimated based on 
how far the point lies from the bulk of the data

� The critical value R can be approximated based on the 
probability, p (in percent), of one point out of n in the data set 
having a normalized residual greater than the critical value

R ≈ 1.8 n
p  + 2.6

� Once again the chi-squared test can be applied to the modified 
data set since a weighted average is performed



Normalized Residuals Method (NRM)

� Result for the 182Ta half-life data set
� 114.738(44) days; reduced chi-squared=3.78
� Uncertainties increased for 1980Sc07, 1958Sp17, 

1951Ei12, 1951Si25 (with R from p=1)
� Reduced chi-squared far improved, but still 

greater than the critical reduced chi-squared 
of 2.25 for a distribution with n-1=11 degrees
of freedom at a 99% confidence level



Rajeval Technique

� Origin
� NIM Paper by M.U. Rajput and T.D. Mac Mahon (1992)

� Formulation
� Done in three stages:

� Population Test – checks for outliers and excludes 
them from the remainder of the analysis

� Consistency Test – check the remainder of points for 
consistency

� Adjustment – the uncertainty on points which appear 
inconsistent with the rest of the data have their 
uncertainties increased until the whole data set is 
consistent



Rajeval Technique – Population Test

� The quantity yi is calculated for each data 
point

� If | yi | is greater than the critical value of 1.96 
the data point is an outlier at a 95% 
confidence level and is excluded

� The test can be made less severe by using a 
critical value of 2×1.96 (99% CL) or 3×1.96 
(99.99% CL)

yi =
x i − μi

σ i
2
+ σ

μi
2

, where μi is the unweighted mean 
excluding the ith point and σ

μi is the 
associated standard deviation



Rajeval Technique – Consistency Test

� The quantity zi is calculated, which is normally 
distributed with mean 0 and unit variance, thus the 
probability of attaining values less than zi can also be 
computed

� The absolute difference of this probability from 0.5 is 
a measure of the central deviation of the 
measurement, if it exceeds the critical value 0.5n/(n-1)

then the data point is considered inconsistent

zi =
x i − x w

σ i
2
+ σw

2
, where xw is as before and σw is the uncertainty 
estimate on the weighted average

zi =
x i − x w

σ i
2
+ σw

2
, where xw is as before and σw is the uncertainty 
estimate on the weighted average

PrZ ≤ zi = ∫

−∞

zi

1
2π

e−

x2
2 dx



Rajeval Technique – Adjustment 

� Any points which were deemed inconsistent have 
their uncertainties incremented by adding the 
weighted average uncertainty in quadratutre

� Steps two and three are repeated until no data point 
is considered inconsistent

� Once the iteration is finished an ordinary weighted 
average is calculated on the modified data set

σ i
′

= σ i
2
+ σw

2



Rajeval Technique
� This procedure first attempts to verify our first original assumption that 

all measurements are accurate by looking for outliers and removing 
them

� It also tries to validate the third assumption as LWM and NRM did by 
increasing uncertainties on “inconsistent” data points

� Since it too is based on a weighted average in the end the chi-squared 
test can be applied

� Result for the 182Ta half-life data set
� 1958Sp17, 1951Ei12, and 1951Si25 were marked as outliers in the first 

stage at 99% confidence, if these points are included anyways the 
result is 14.761(72) days; reduced chi-squared=2.14 and half the 
data points have uncertainty adjustments

� If the outliers are allowed to be excluded the result is 114.766(61); 
reduced chi-squared=1.50 with the four most recent measurements 
receiving uncertainty adjustment

� Both reduced chi-squared values are acceptable at a 99% confidence 
level, however major modifications were made to the uncertainties in 
data points to attain the final result. This is a common feature with the 
Rajeval Technique



Bootstrap Method
� Origin

� Commonly employed in data analysis in medicine and social sciences
� Formulation for a set of n measurements

� If the three original assumptions are satisfied then a Monte Carlo 
approach can be taken in which n points are randomly sampled from 
the normal distributions defined by the measurements and the median 
is taken of the sample

� The median of a discrete sample x1, x2, …, xn is the central value xn/2
when the sample is sorted in increasing order and the number of 
elements is odd; and is the unweighted average of the two central 
elements xn/2, xn/2+1 of the sorted sample when n is even

� This sampling procedure is repeated many times (800,000 is the 
default for the present implementation) and finally an unweighted
average is taken of the medians

� The uncertainty is estimated using the unbiased sample variance

(uncertainty estimate) =
∑i=1

n
xi−x2

n−1



Bootstrap Method
� An advantage to the Bootstrap Method is it has little 

sensitivity to outliers or very precise data points.
� The Bootstrap method does not return the mean of 

any probability distribution, therefore the chi-squared 
test does not apply here since the test determines 
whether one can reasonably reject the proposed 
common mean to a set of normal distributions

� The numeric value of the reduced chi-squared can 
serve as a general indicator of the consistency of the 
data set at the discretion of the evaluator

� Result for the 182Ta half-life data set
� 115.15(70) days; reduced chi-squared=68.57



Mandel-Paule Method
� Origin

� Simplified approximation to the maximum likelihood estimator of the 
parameter μ in the measurement model of inter-laboratory experiments: xij =
μ + bi + eij, where xij is the jth measurement in the ith laboratory, bi is the 
error contribution for the laboratory and eij is the error contribution for the 
particular measurement

� Developed by Mandel and Paule at NIST (1982)
� Used by NIST (USA) for adopted values of standard references

� Formulation
� The result is again a weighted average, however the weights are of the form

� The square-root of y also serves as the uncertainty estimate for the method

wi =
1

y + σ i
2

, where y is found as the solution to the equation ∑

i=1

n

wix i − x m 
2
= n − 1

with xm being the Mandel-Paule mean, x m =

∑i=1
n wixi

∑i=1
n wi



Mandel-Paule Method

� Again the weighted average chi-squared test does 
not apply here because the measurement model 
used is different than that of weighted averaging, but 
the value is still as general indicator of consistency

� Result for the 182Ta half-life data set
� 115.0(21) days; reduced chi-squared=41.28
� Note the large error and closeness to the unweighted 

average value (115.29 days), this is common in the MP 
method since y effectively evens out the weighting by 
being included in all values



Method of Best Representation (MBR)

� Origin
� Developed as an alternative to other averaging 

techniques
� Formulation

� The MBR builds a “Mean Probability Density Function”, 
M(x), to represent the entire data set by calculating the 
unweighted mean of the individual PDFs

� The value of the Mean PDF evaluated at a measured 
value xi is interpreted as being proportional to the 
frequency with which that measurement is expected to 
occur

� Weights are then assigned to each measurement 
according to its expected relative frequency and a 
weighted average is computed



Method of Best Representation (MBR)

Mx = 1
n ∑

i=1

n

Nx;x i,σ i 

wi =
Mx i

∑i=1
n Mx i

x B = ∑

i=1

n

wix i

∑

i=1

n

wi
2
σ i

2

∑

i=1

n

wix i − x B 
2

The Mean PDF, (where the ordinary normal distribution is   

substituted with the asymmetric normal distribution defined previously for 
asymmetric uncertainties) is used to define the weights

, which then define the mean (note analogy with

statistical expected value). The internal uncertainty is estimated according to 

, which follows from a theorem about linear combinations of normally 

distributed random variables, and the external uncertainty is estimated by

(note analogy with statistical variance). As with the weighted 

average, the higher of the internal and external uncertainties should be used as the 
uncertainty estimate for the final result



Method of Best Representation (MBR)

� The MBR has the advantage that it does not  modify the data set in any 
way, but still does not rely heavily on the first of the original 
assumptions: that all measurements are accurate

� Measurements which are close together will build up the Mean PDF in 
that region, giving a higher weight, whereas an apparent outlier would 
receive less weight because of its low expected frequency (but it is still 
not discounted entirely, which is important since later experiments may 
show the “outlier” was actually the only accurate measurement of the 
set)

� The final assumption is also still considered since the height of the 
peak of an individual normal distribution is inversely proportional to the 
standard deviation, hence the maximum contribution a measurement
can make to the Mean PDF also depends on the uncertainty

� However, this assumption also plays less critical of a role since the 
dependence of the weights on the uncertainties is not as great as with 
the weighted average because in MBR both the central value and 
uncertainty of a measurement contribute to the weight.



Method of Best Representation (MBR) – Test of Mean PDF Model

� The MBR does rely on the Mean PDF model of the data set being an accurate 
description, which is not necessarily true a priori

� To test the model a variation on the Chi-Squared test for the weighted average is 
used

� The expected number of measurements above,      , and below,    , the mean is 
calculated by

� This expectation is compared with the actual number of measurements above,        
and below,        , using the statistic, Q, which should have an approximate chi-
squared distribution with one degree of freedom if the model is valid

� Therefore the confidence level of the test which could reject the mean PDF model 
is Pr(X<Q) and thus the confidence we can hold in the model is 1 – Pr(X<Q)

ne
+ ne

−

na
+

na
−

ne
−

= nPrX ≤ xB

= n ∫
0

xB
Mxdx

ne
+
= nPrX > x B

= n1 − PrX ≤ x B 

= n − ne
−

Q =

na
+
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+


2
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+

+

na
−
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−


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ne
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Method of Best Representation (MBR)

� Result for the 182Ta half-life data set
� 114.8(12) days; Confidence Level=72.9%

� This result overlaps all the measurements 
except for the two highest and two lowest, the 
value also lies close to the five most precise 
measurements (see figure)

� The confidence level also indicates the model 
can be reasonably accepted

� Therefore this result could be used as a 
recommended value for the 182Ta half-life



Method of Best Representation (MBR)



Summary of Results for 182Ta Half-Life

Method Result Test Statistic
Unweighted Average 115.26(68) -
Weighted Average 114.668(81) 16.24
LWM 114.62(10) 15.47
NRM 114.738(44) 3.78
RT (outliers used) 114.761(71) 2.14
RT (outliers excluded) 114.766(61) 1.50 (<critical at 95%)
Bootstrap 115.15(70) -
Mandel-Paule 115.0(21) -
MBR 114.8(12) 72.9% acceptance confidence level

ENSDF
DDEP

114.74(12)
114.61(13)

NRM for 5 most precise values. χ2=2.2
LWM , χ2=16!

χ
2

n−1 =

χ
2

n−1 =

χ
2

n−1 =

χ
2

n−1 =

χ
2

n−1 =



182Ta Gamma Intensity – 100.1 keV

Reference Measurement

1998Mi17 38.5(2)

1992Ch26 41.4(5)

1992Ke02 40.5(5)

1992Su09 42.6(9)

1990Ja02 40.45(51)

1990Me15 40.4(5)

1986Wa35 39.03(64)

1983Ji01 40.3(6)

1981Is08 41.6(14)

1980Ro22 40.6(26)

1980Sc07 40.33(98)

1977Ge12 40.8(13)

1974La15 37.43(80)

1972Ga23 40.3(40)

1971Ja21 40.2(10)

1971Ml01 38(2)

1969Sa25 40.7(41)



182Ta Gamma Intensity – 100.1 keV

Method Result Test Statistic
Unweighted Average 40.18(31) -
Weighted Average 39.48(30) 4.77;  critical: 2.0, 99%
LWM 39.48(78) 4.77
NRM 40.29(26) 2.04
RT (outlier used) 40.28(23) 1.27
RT (outlier excluded) 40.46(21) 1.08 (<critical at 95%)
Bootstrap 40.28(47) -
Mandel-Paule 40.10(93) -
MBR 40.34(85) 73.9% :acceptance CL

ENSDF
DDEP

40.3(3)
40.42(24)

NRM
LWM
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χ
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100Pd: First 2+ Level at 665.5 keV: 
Mean-lifetime measurement by RDDS
� No lifetime currently given in 2008 update in ENSDF 

� New measurements:
� 2009Ra28 – PRC 80, 044331:   9.0(4) ps

� Cologne Plunger
� App. Rad. & Iso. 70, 1321 (July 2012), also 

2011An04: Acta Phys.Pol. B42, 807 and 
Thesis by V.Anagnostatou (U. of Surrey):  13.3(9) ps
� New Yale Plunger device (NYPD)
� Authors note statistics not as good as 2009 work, 

however experiment done in inverse kinematics
� One common author (Radeck, first author of 2009 

work)



100Pd: First 2+ State Lifetime

Method Result Comment
Unweighted Average 11.2(22)

Weighted Average 9.7(16) Reduced Chi-Squared=19.1 too large

MBR 10.3(20) CL=100%

LWM 11.2(22) Reduces to unweighted average for two points since max. 
weight=50%, and the data are discrepant

NRM/RT - Not to be performed on less than three points 
(recommendation by original authors)

Bootstrap 11.1(16) Very close to unweighted average

Mandel-Paule 11.1(30) Very close to unweighted average

� Decision to make: MBR seems the best choice, or 
one of the points individually?



222Th Alpha Decay Half-Life
� Measurements:

� 1970Va13: 2.8(3) ms
� Exclude : first observation of 222Th, half-life does not seem reliable

� 1970To07: 4(1) ms
� Exclude: stated in paper that the 222Th alpha peak was very weak

� 1990AnZu: 2.6(6) ms
� Exclude: same experiment as 1991AuZZ

� 1991AuZZ: 2.2(2) ms *
� 1999Ho28: 4.2(5) ms

� Exclude: same group as 1999Gr28
� 1999Gr28: 2.2(3) ms and 2.1(1) ms
� 2000He17: 2.0(1) ms
� 2001Ku07: 2.237(13) ms
� 2005Li17: 2.4(3) ms

� Could take an average of values not excluded, however 2001Ku07 is the only 
paper to give a decay curve which shows good statistics and measurement of 
decay curve for 40 half-lives and the fragment-alpha correlation method is 
superior to other methods.

� Only drawback about 2001Ku07:  from conference proceedings!
� One can adopt 2001Ku07, increasing the uncertainty to 1% if one feels it is too 

precisely quoted.  ENSDF value revised June 2012 based on above: 2.24(3) ms.



Conclusion and recommendations
� Many averaging procedures exist for analyzing data which 

satisfy three major assumptions, some rely on each assumption 
more or less than others and some add extra assumptions

� The evaluator should be aware of the assumptions being made 
when employing these techniques

� Which method returns the most acceptable result is chosen at 
the discretion of the evaluator, guided by available statistical
tests for the methods

� For difficult data sets, methods may need to be combined to 
produce an acceptable result

� Averaging may not be necessary if careful analysis of the data 
set show adopting one value is a reasonable choice. Such 
analysis should be done on every data set before averaging

� A computer code by Michael Birch determines outliers and 
deduces averages using all the methods described here.


