

2358-16

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

Radioactive decay

D.H. Abriola *IAEA Austria*

International Atomic Energy Agency

Radioactive decay

D. Abriola

Nuclear Data Section Department of Nuclear Sciences and Applications

ICTP, ENSDF, August 2012

Outline

Stability vs Change

• The atom and the atomic nucleus

- Mass & Energy
- When a decay channel is possible?
- Rutherford & Soddy law of Radioactive decay
- Radioactive decay
 - β , α & γ decay
- Alpha decay
- Conclusions

What is Stable?

... it depends on

- shape
- position
- environment

Equilibrium

Stable

The Nucleus

⁴₂He₂

How to specify a nuclide

- Z: Atomic number (protons)
- N: Neutron number (neutrons)
- A: Mass Number (Z+N)

Chart of nuclides (Table of Isotopes)

International Atomic Energy Agency

What determines the Energy?

Physics' most famous formula:

 $E = m c^2$

Energies measured in electron-Volts (eV) MeV=10⁶ eV

$m = E / c^2$

Masses measured in MeV/c²

Where to find masses?

NUCLEAR WALLET CARDS	Appendix-II Frequently-Used Constants		
April 2005	The frequently used constants are given below in familiar units. Only approximate values are given, see App-III for values to current known precision. Symbol Constant Value		
	1/α=ħc/e²	² Fine structure constant	137.0
Jagdish K. Tuli National Nuclear Data Center www.nndc.bnl.gov	с	Speed of light in vacuum	2.998×10 ¹⁰ cm/s
	h ħ=h/2π ħc	Planck constant	6.626×10 ⁻²⁷ erg s 6.582×10 ⁻²² MeV s 197.3 MeV fm
	$k = R/N_A$	Boltzmann constant	8.617×10 ⁻¹¹ MeV/K
	$r_{e} = e^{2}/m_{e}c$	2 Classical e ⁻ radius	2.818 fm
	λ _{C,e} =ħ/m _e	_e c Compton wavelength of e ⁻	386.2 fm
	λ _{C,p} =ħ/m	pc Compton wavelength of p	0.210 fm
	$\chi_{C,\pi}=\hbar/m$	Compton wavelength of a	1.414 fm
	u	Atomic mass unit	931.5 MeV/c ²
	m _e	Electron mass	0.511 MeV/c^2
	m _n	Neutron mass	939.6 MeV/c ²
	mp	Proton mass	938.3 MeV/c ²

Energy equivalent

E(m_e)= 0.511 MeV

...but in order to simplify the writing we simply use: m_e = 0.511 MeV

Isotope mass

One could think that the mass of a nuclide X is calculated adding up the masses of the constituent protons and neutrons:

$$M\left(\begin{array}{c}A_{Z}X_{N}\right) = Zm_{p} + Nm_{n}$$

However, when the isotope mass is measured (i.e. with a mass spectrometer) it is seen that ALWAYS:

$$M\left(\begin{array}{c}A_{Z}X_{N}\right) < Zm_{p} + Nm_{n}$$

ENERGY $Zm_{p} + Nm_{n}$ **Difference of mass** (difference of energy) $M(^{A}_{Z}X_{N})$

This energy is called **BINDING ENERGY** (E_B) and is the energy that would be released by the Z protons and N neutrons while joining together to form the isotope ^AX

$\mathbf{E}_{\mathsf{B}} = Z \, \mathbf{m}_{\mathsf{p}} + N \, \mathbf{m}_{\mathsf{n}} - \mathbf{M} \left({}^{\mathsf{A}}_{\mathsf{Z}} \mathbf{X}_{\mathsf{N}} \right)$

Example: Mass of Deuteron

Gamma ray of energy 2.3 MeV

Binding energy

This is a nuclear reaction (neutron capture):

```
n + p => d + γ (2.3 MeV)
```

There is also the inverse reaction (deuteron photodisintegration):

 $d + \gamma$ (2.3 MeV) => n + p

2.3 MeV is a relatively "small" energy, it is said that the deuteron is weakly bounded.

Its Binding energy per nucleon (E_B / A) = 2.3 MeV/2 = 1.15 MeV/A

Binding energy

The Binding Energy for ¹²C is:

 $E_B = 6 m_p + 6 m_n - M(^{12}C) = 92.16 MeV$

 $E_B / A = 92.16 / 12 MeV / A = 7.68 MeV / A$

D.ABRIOLA ICTP, Trieste Aug. 2012

International Atomic Energy Agency

Binding energy

Rutherford & Soddy 1902

Radioactive Decay law

 $N=N_0 e^{-\lambda t}$

 N_0 : initial # of atoms

 λ : decay constant [1\s]

N_0 Initial number of radioactive nuclei λ : probability of disintegration per atom per unit of time t

If ΔN = atoms disintegrate in Δt

 $\Delta N = -\lambda N \Delta t \longrightarrow \Delta N/N = -\lambda \Delta t \quad \text{If } \Delta t \longrightarrow 0$ $dN/N = -\lambda dt \longrightarrow \int dN/N = -\lambda dt$

$$\ln N = -\lambda t \quad \longrightarrow \quad N = N_0 e^{-\lambda t}$$

A similar formula is obtained for the number of disintegrations per second: **Activity**

$$N = N_0 e^{-\lambda t} \longrightarrow A = A_0 e^{-\lambda t}$$

 A_0 is the Inicial Activity: $A_0 = \lambda N_0$ The unit of Activity (1 disintegracion per second) is called **Becquerel (Bq)**

A (

1Ci=3.7 10 ¹⁰ Bq

International Atomic Energy Agency

Half-life

 $T_{1/2}$: the time required for half the atoms in a radioactive substance to disintegrate

Q = available kinetic energy

large Q → large phase space → higher rate

Beta decay of the free neutron

 $T_{1/2} = 10.6$ minutes

Why don't all the neutrons inside a nucleus decay? neutrons and protons are in specific quantized levels->

protons

neutrons

Pauli's exclusion principle

International Atomic Energy Agency

In some nuclei there is an empty proton orbit->

The energy or electron "should be": $E_e = E_n - E_p$

E. Fermi (1934) there is a third particle (neutral) that goes undetected and carries part of the energy: neutrino V (actually later was called antineutrino \overline{V})

$$n \xrightarrow{\beta^-} P + e + \overline{v}$$

Also possible p decay, but only inside a nucleus

$$P \xrightarrow{\beta^+} n + e^+ + v$$

 $\xrightarrow{\beta^-} X \xrightarrow{A} Y_{N-1} + e + \overline{v}$

International Atomic Energy Agency

All Beta decays I>80%

International Atomic Energy Agency
Also there is BETA + decay:

 $M(?) + m(\alpha)$

D.ABRIOLA ICTP, Trieste Aug. 2012

$A_0 = 1.9 \ 10^{14} \ Bq$

232 g of 232U emit 1.9 10¹⁴ alpha particles 5.3 MeV each per second

1 MeV = 1.6 10⁻¹³ Joules

Then the energy liberated is = 161.1 Joules

Since a Joule per second is a Watt the total power released is 161.1 Watts

238Pu glowing red hot

Used in Radioisotope thermoelectric generators (RTG)

Used as in the MARS explorer Curiosity (August 2012)

Medical - diagnosis

Medical - therapy

ENSDF

NDS (IAEA) Web page

LiveChart

Half life color code, value in seconds:

+ 🗖 🤜	Filter panel		Visible Nuclides: 2934		Fix info panel		Ouery Tool		1/0	150	151	152	153
Help & About Data Help & About Data		Tm		Tm 69	Tm 69	Tm 69		Tm 69	Tm 69	Tm 69	Tm 69	Tm 69	
		Er		144 Er 68	145 Er 68	146 Er 68	147 Er 68	148 Er 68	149 Er 68	150 Er 68	151 Er 68	152 Er 68	
Цa		140 Ho 67	141 Ho 67	142 Ho 67	143 Ho 67	144 Ho 67	145 Ho 67	146 Ho 67	147 Ho 67	148 Ho 67	149 Ho 67	150 Ho 67	151 Ho 67
Dv		139 Dy 66		141 Dy 66	142 Dy 66	143 Dy 66 144	144 Dy	145 Dy	146 Dy	147 Dy 66	148 Dy 66	149 Dy 66	150 Dy 66
138 Tb 65		139 Tb 65	140 Tb 65	141 Tb 65	63 142 ур Тс Delt 65 наlf	Eu Double d 1 ta (MeV) - f Life 1	lick for more + 75.6216 0.2 1 s	5 b	146 Tb 65	147 Tb 65	148 Tb 65	149 Tb 65	
Gd	136 137 Gd Gd Gd 64 64		138 Gd 64	139 Gd 64	140 Gd 64	141 Dec G(Pare 64	ay 100 EC+β+ 4 ^{it 144gd} hter 1449m ∂d Radiations		4 id	145 Gd 64	146 Gd 64	147 Gd 64	148 Gd 64
135 Eu 63 Eu 63		136 Eu 63	137 Eu 63	138 Eu 63	139 Eu 63	140 ^{Τγρι} Ει ^{ε+} 63 ^Υ	e keV 5293 1660. 817.7	% 79.7 10 9.6 0 1.56	3 .u	144 Eu 63	145 Eu 63	146 Eu 63	147 Eu 63
Sm	134 Sm 62	135 Sm 62	136 Sm 62	137 Sm 62	138 Sm 62	139 Sm 62	140 Sm 62	141 Sm 62	142 Sm 62	143 Sm 62	144 Sm 62	145 Sm 62	146 Sm 62
Pm	133 Pm 61	134 Pm 61	135 Pm 61	136 Pm 61	137 Pm 61	138 Pm 61	139 Pm 61	140 Pm 61	141 Pm 61	142 Pm 61	143 Pm 61	144 Pm 61	145 Pm 61
Nd	132 Nd 60	133 Nd 60	134 Nd 60	135 Nd 60	136 Nd 60	137 Nd 60	138 Nd 60	139 Nd 60	140 Nd 60	141 Nd 60	142 Nd 60	143 Nd 60	144 Nd 60
	131 Dr	132 Dr	133 Dr	134 Dr	135 Dr	136 Dr	137 Dr	138 Dr	139 Dr	140 Dr	141 Dr	142 Dr	143 Dr

Http://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html	P → C × (6) Live Chart of Nuclides - Table C NDS ENSDF ×
NUCLIDESNuclideSymbol ZNAZ rangeN rangeA rangeQ(β)-26300 ≤ Q $_{\beta}$ - ≤ 28500S(n)-14800 ≤ S $_{n}$ ≤ 233700Image: Comments and footnotesQ(a)-116192 ≤ Q $_{a}$ ≤ 12300Comments and footnotesImage: Comments and footnotesLEVELS	ZNAZNAeven \checkmark odd \bigcirc October 2010 snapshot of the ENSDF database maintained by the International Nuclear Structure and Decay Data Network, under the auspices of the IAEA.
$ \begin{array}{ c c c c c c c } \hline \hline \textbf{C} & \hline \textbf{C}$	0 Query tracker p ec SF] n
■ Magnetic Moment -20 ≤ µ ≤ 31 ■ Electric Moment GAMMAS ■ Energy (keV) 0	ent $-219 \le Q \le 35.5$ [4] 18,128
□ End Level En. (keV) 0 ≤ E ≤ 18.616 □ Relative In □ Theoretical CC 1.94E-09 ≤ a(K,L,); ≤ 1.23E10 □ Total CC □ Multipolarity E0 □ weak □ mixed □ Trans. Probab. W.u. 0E00 B(E0) 2.5E09	Itensity $0E00 \le I \le 2.74E07$ $0E00 \le a \le 1.3E12$ Image: Mixing Ratio $-180 \le \delta \le 4000$
Order by : Z , A \bigtriangledown Z \checkmark A \square Q(β) Sn Sp Q(α) E \square 1/2 \square Q EY Plot with ZVView X: A Y:Q(α) Z \checkmark A \square Q(β) Sn Sp \checkmark Q(α) E \square 1/2 \square Q EY Count Separate DOTUD	I α() α Β(Ε) Β(Μ) δ I α() α Β(Ε) Β(Μ) δ

even-even

D.ABRIOLA ICTP, Trieste Aug. 2012

Uuh Livermorium (Z=116)

29016 ADOPTED LEVELS: TENTATIVE 05NDS 200512 29016 H TYP=FUL\$AUT= M. GUPTA, THOMAS W. BURROWS\$CIT=NDS 106, 251 (2005)\$ 290162 H CUT=12-Aug-2005\$ **29016** O 8330 SY 1820 SY 11000 80 2003AU03,2004OG12 29016 cQ SN\$estimated uncertainty=1380 keV 29016 cQ SP\$estimated uncertainty=1330 keV 29016 cQ QA\$from E a=10.85 MeV {I8} (2004Og12,2004OgZZ). Other: 11.30 MeV {I35} 290162cQ (2003Au03. Syst.) 29016 c 20020qZX, 20030qZZ: by the complete fusion reaction 290162c {+249}Cf({+48}Ca,3n) at an energy of 265 MeV. {+290}116 is the expected 290163c daughter produced by the |a-decay of Z=118 in this reaction. See 290164c the {+294}118 Adopted Levels for details of experimental apparatus. 290165c The optimal cross-section and the highest yield of evr's is expected 290164c for the above channel by theory (2002Za19,2002Za16,2002Za01) and 290165c systematic extrapolations from the radioactive properties of neighboring even-even nuclei such as {+292}116, {+288}114, {+284}112 290166c and {+280}Ds created with {+244}Pu and {+248}Cm targets. The beam of 290167c 290168c {+48}Ca ions was provided by the JINR U400 cyclotron and EVR's were separated by DGFRS. A fission fragment calibration was performed using 290169c SF fragments from {+252}No with a known average energy release of about 29016Ac 29016Bc 176 MeV.

Barrier Penetration (I=0)

D.ABRIOLA ICTP, Trieste Aug. 2012

$$Q_{\alpha} = (M_{parent} - M_{daughter} - M_{alpha})c^{2}$$
$$T_{\alpha} = E_{\alpha} = Q_{\alpha} \frac{M_{daughter}}{M_{parent}}$$
$$T_{recoil} = Q_{\alpha} \frac{M_{alpha}}{M_{parent}}$$

D.ABRIOLA ICTP, Trieste Aug. 2012

For Parent 238U Daughter 234Th R=1.2($A_{\alpha}^{1/3}+A_{d}^{1/3}$)=9.3fm

b=60.7 fm $\frac{v}{c} = \text{sqrt}(2E_{\alpha}/M_{\alpha})=0.048$ $f = \frac{v}{2R} = 0.77 \ 10^{21} \ 1/\text{s}$ $G = \frac{zZe^{2k}}{\hbar c \frac{v}{c}} f(x) \qquad f(x) = \cos^{-1}\sqrt{x} - \sqrt{x(1-x)}....(x = E_{\alpha}/V_{B})$

$$G = \frac{2*90}{197*0.048-} f(x) \approx 29.9 \qquad \lambda = f e^{-2G} = 2.9 \ 10^{-39} s^{-1}$$

T1/2=0.693/ $\lambda = 3.1 \ 10^{17}$ s

D.ABRIOLA ICTP, Trieste Aug. 2012

Geiger-Nuttall law

Geiger-Nuttall law

<u>http://hyperphysics.phy-</u> astr.gsu.edu/hbase/nuclear/alpdec.html

Alpha Decay

- All nuclei with mass numbers greater than A of 150 are thermodynamically unstable against alpha emission (Q_{α} is positive)
- Even so alpha emission is dominant decay process only for heaviest nuclei

Energetics of alpha decay

 \bullet 238 U (mass excess Δ =+47.3070) \rightarrow 234 Th (mass excess Δ =+40.612 MeV) + α (Δ =+2.4249 MeV)

 $Q_a = 47.3070 - (40.612 + 2.4249) = 4.270 \text{ MeV}$

 Q_a is shared among α -particle and recoil daughter nucleus: α -particle kinetic energy $T_a = \frac{234}{238} Q_a = 4.198 \text{ MeV}$

$^{A}Z \rightarrow (^{A-4})(Z-2) + ^{4}He + Q_{a}$

- Q values generally increase wit Α
- Variation due to shell effects
- Peaks near N=126 shell
- short-lived α-emitters near doubly magic ¹⁰⁰Sn
 - ¹⁰⁷Te, ¹⁰⁸Te, ¹¹¹Xe
- alpha emitters have been identified along the proton drip line above A=100

Mass Number A

Qa near N=126 (Z=90)

Qa near N=126 (Z=86)

International Atomic Energy Agency

Fine structure for alpha decay

D.ABRIOLA ICTP, Trieste Aug. 2012

Theory of alpha decay I

- Geiger Nuttall law of alpha decay
 - Log t_{1/2}=A+B/(Q_a)^{0.5}
 - constants A and B have a Z dependence
- simple relationship describes the data on αdecay
- over 20 orders of magnitude in decay constant or half-life

Theory of alpha decay II

- The alpha emission rate is expressed in terms of two factors
 - rate f at which an alpha particle appears at the inside wall of nucleus
- the
- probability that the alpha particle tunnels through the barrier

$$\lambda_a = f \cdot 7$$

where *f* is frequency factor, T is transmission coefficient

- Pre-formation factor: an additional factor that describes probability of preformation of alpha particle inside the parent nucleus
 - no clear way to calculate such a factor
 - empirical estimates have been made
 - theoretical estimates of the emission rates are higher than observed rates
 - preformation factor can be estimated for each measured case
 - uncertainties in the theoretical estimates contribute to the differences

Alpha decay calculations

- Frequency for an alpha particle to reach edge of a nucleus estimated as velocity divided by the distance across the nucleus
- On the order of 10²¹ s⁻¹

$$f = \frac{v}{2R} \approx \frac{\sqrt{2(V_o + Q)/\mu}}{2R}$$

 Alpha particle barrier penetration from Gamow T=e^{-2G}

where Gamow factor

$$2G = \frac{4\pi}{h} \int_{R_1}^{R_2} \left[2\mu \left(\frac{Z_a Z_D e^2}{r} - Q_a \right) \right]^{1/2}$$

Gamow calculations

From Gamow

$$t_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{fT} = \frac{\ln 2}{(2(V_0 + Q_a)/\mu)^{1/2}} e^{-2G}$$

- Calculated emission rate typically one order of magnitude larger than observed rate
- observed half-lives are longer than predicted
- observation suggest probability to find a *preformed* alpha particle on order of 10⁻¹

• Even-even nuclei undergoing ℓ =0 decay

-average preformation factor is ~ 10⁻² -neglects effects of angular momentum -Assumes α-particle carries off no orbital angular momentum (ℓ = 0)

 If α decay takes place to or from excited state some angular momentum may be carried off by the α-particle

D.ABRIOLA ICTP, Trieste Aug. 2012

Hindrance Factors

- Previous derivation only holds for even-even nuclei
- odd-odd, even-odd, and odd-even nuclei have longer half-lives than predicted due to hindrance factors
- Hindrance obtained from difference between calculated and measured half-life

-Hindrance factors (HF) between 1 and 3E4

-Determined by ratio of measured alpha-decay half life

over calculated alpha-decay half life

 $\mathrm{HF}=\mathrm{T}_{1/2}(\mathrm{exp})/\mathrm{T}_{1/2}(\mathrm{calc})$

• Favoured transitions: HF < 4

-Takes place between levels with the same spin and parity. The assumption is that 0⁺ to 0⁺ αlpha transitions from even-even nuclei are the fastest (HF=1)

**Current theories of alpha radioactivity include: microscopic models, cluster models, combined models

Presentation of E. Browne (IAEA-ICTP Workshop on ENSDF 2008):

Energy (keV)

Most measurements are relative to a line from a standard radionuclide. Include this information in a comment. Use Ritz's (At. Data and Nucl. Data Tables 47, 205 (1991)) evaluated E_{α} and I_{α} when no new values are available.

Intensity

Give intensities preferably "per 100 α decays" (NB=1), and a branching factor BR to convert them to "per 100 decays of the parent nucleus.

Hindrance factor

HF= experimental $T_{1/2}(\alpha)$ /theoretical $T_{1/2}(\alpha)$. The theoretical value is from 1947Pr17 (M.A. Preston). The assumption is that 0⁺ to 0⁺ α transitions from even-even nuclei are the fastest (HF=1). These transitions are used to determine the radius parameter r_0 (See1998Ak04,

Y.A. Akovali). Use program ALPHAD.

Presentation of E. Browne cont'd: The Radius Parameter r0 (Y. Akovali, Oak Ridge)

- <u>Odd-N nucleus (Z, A)</u>
 r0(Z, N) = [r0(Z, N-1) + r0(Z, N+1)]/2
- Odd-Z nucleus (Z, A)

r0(Z, N) = [r0(Z-1, N) + r0(Z+1, N)]/2

 Odd-Odd nucleus (Z, A)
 r0(Z, N) = [r0(Z, N-1) + r0(Z, N+1)]/2 = [r0(Z-1, N+1)+r0(Z-1, N-1)+r0(Z+1, N+1) +r0(Z+1, N-1)]/4

Presentation of E. Browne 2008 cont'd: Example

 219Rn ⇒215Po (Odd-N) r0 (Z=84, N=131) = [r0(84, 130) + r0(84, 132)] /2
 From 1998Ak04: r0(84,214) = 1.559 8 r0(84,216) = 1.5555 2, therefore r0 (Z=84, N=131) = 1.557

Use Table 1 – "Calculated r0 for even-even nuclei" (1998Ak04). Insert R0= ... in *comment* record: CA HF R0=... Run program ALPHAD to calculate hindrance factors.

Beta decay and EC

$$\beta^{-}: n \rightarrow p + e^{-} + \overline{\nu}$$

$$\beta^+$$
: p \rightarrow n + e⁺ + v

$$EC: p + e^{-} \rightarrow n + v$$

D.ABRIOLA ICTP, Trieste Aug. 2012

statistical rate function (phase-space factor): the energy & nuclear structure dependences of the decay transition:

 $f \equiv f_{\beta} \equiv f_n, n = 0, 1, 2...$

Decay Mode	Туре	log f
β–	allowed	$\log f_0^-$
β–	1 st -forb	$\log f_0^- + \log (f_1^- / f_0^-)$
ΕC+ β+	allowed	$\log(f_0^{EC} + f_0^+)$

Beta decay Classification of allowed decay $(\pi_i \pi_f = +1)$ Fermi **Gamow-Teller** 0+0+E_β E_{β} 1 +()+ $\Delta J = \left| J_i - J_f \right| \equiv 1$ $L_{\beta} = 0 \quad S_{\beta} = 1 \uparrow \uparrow or \downarrow \downarrow$ $\Delta J = \left| J_i - J_f \right| \equiv 0$ $L_{\beta} = 0 \quad S_{\beta} = 0 \downarrow \uparrow$

mixed Fermi & Gamow-Teller

$$\Delta J = \left| J_i - J_f \right| \equiv 0 \quad J_i \neq 0$$

International Atomic Energy Agency

Logft

(logft values are only indicative)

	Туре	ΔJ	$\Delta\pi$	logft
Super allowed	F	0	Ν	< 3.6
allowed	F/GT	0,1	Ν	3.6-5.9
1FNU	F/GT	0,1	Υ	5.9-8.5
1FU	GT	2	Υ	≥ 8.5
2FNU	F/GT	2	Ν	≥ 11
2FU	GT	3	Ν	

International Atomic Energy Agency

Logft

Total half-life of level

 $T_{1/2}$: 2.831 10⁶ s

Partial half-life of β branch

 $T^{\beta-}_{1/2}$: 2.831 10⁶ s / 0.04 = 7.08 10⁷ s

International Atomic Energy Agency

Logft

84SR 84RB B- DECAY 1958BE81 97NDS 199706 84RB P 0 2- 32.77 D 14 894 3 0.04 25 84SR N 84SR L 0 0+ 0 TRANSITION(KEV)= 894 3, T1/2(SEC)= 2.831E6 12, BRANCHING(%)= 4.0 AP, PARTIAL 0 T1/2(SEC)= 7.08E7 3 LOG PARTIAL T1/2 = 7.8499 19 **FIRST-FORBIDDEN-UNIQUE** LOG(F1/F0) = 0.480 FOR BETAS, + OR -E= 894.00 LOG F1= 1.534+- 0.008 LOG F1T = 9.384+- 0.008 F1T= 0.24228E+10 AVERAGE BETA(+-) ENERGY= 332.85+- 1.214 EBAR/E = 0.3723 + 0 84SR B 4 AP 9.38AP 1U OLD CARD 84SR B 4 AP 9.4 AP 10 **NEW CARD** 84SRS B EAV=332.8 13 **NEW CARD** 84SRS B EAV= 332.8 13\$

Logft 84SR 84Y EC DECAY (4.6 S) 1976IA01 97NDS 199706 4.6 S 2 84Y P 0 6.48E+3 12 1+ 84SR N 0.35 10 1.0 1.0 84SR L 0 0+ NO POSITRON INTENSITY GIVEN 0 TRANSITION(KEV)= 6.48E3 12, T1/2(SEC)= 4.60 20, BRANCHING(%)= 65 10, PARTIAL T1/2(SEC)= 7.1 12 LOG PARTIAL T1/2 = 0.85 7 CAPTURE TO POSITRON RATIO = 1.111E-02+- 7.63E-04 LOG(E/B+)= -1.954 K/B+= 9.729E-03 POSITRON INTENSITY = 6.43E+01+- 9.9E+00, ELECTRON CAPTURE INTENSITY = 7.14E-01+- 1.2E-01, K/(EC+B+)=9.6218E-03+- 6.46E-04 L/(EC+B+)=1.1219E-03+- 7.54E-05 MNO/(EC+B+)=2.4444E-04+- 1.64E-05 E= 6480.00 LOG F0= 3.559+- 0.044 LOG F0T = 4.409+-0.082 F0T= 0.25659E+05 + AVERAGE BETA(+-) ENERGY= 2535.76+- 58.336 EBAR/E = 0.4646 65 10 0 84SR E 6410 0.7112 4.419 OLD CARD 84SR E 64 10 0.71 12 4.41 9 65 10 **NEW CARD** 84SRS E EAV=2536 59\$CK=0.0096 7\$CL=0.00112 8\$CM+=0.000244 17 **NEW CARD** 84SRS E EAV= 254E+1 6\$CK= 0.0096 7\$CL= 0.00112 8\$CM+=0.000244 17\$ + CHECK OLD SECOND CARD 0 84SR L 793.0 32+ TRANSITION(KEV)= 5.69E3 12, T1/2(SEC)= 4.60 20, BRANCHING(%)= 35 10, PARTIAL T1/2(SEC)= 13 4 0 LOG PARTIAL T1/2 = 1.12 13 CAPTURE TO POSITRON RATIO = 1.768E-02+- 1.43E-03 LOG(E/B+)= -1.753 K/B+= 1.548E-02 POSITRON INTENSITY = 3.44E+01+- 9.8E+00, ELECTRON CAPTURE INTENSITY = 6.08E-01+- 1.8E-01, K/(EC+B+)=1.5211E-02+- 1.20E-03 L/(EC+B+)=1.7747E-03+- 1.40E-04 MNO/(EC+B+)=3.8668E-04+- 3.05E-05 E= 5687.00 LOG F0= 3.247+- 0.052 LOG F0T = 4.366+-0.136 F0T=0.23201E+05 AVERAGE BETA(+-) ENERGY= 2151.59+- 57.970 EBAR/E = 0.4612 + 0 84SR E 3410 0.6118 4.3714 35 10 OLD CARD 84SR E 34 10 0.61 18 4.37 14 35 10 **NEW CARD** 84SRS E EAV=2152 58\$CK=0.0152 12\$CL=0.00177 14\$CM+=0.00039 3 **NEW CARD** 84SRS E EAV= 215E+1 6\$CK= 0.0152 12\$CL= 0.00177 14\$CM+= 0.00039 3\$

International Atomic Energy Agency

Electric (quadrupole) properties

• Partial *y*-ray half-life:

$$T_{1/2}^{\gamma}(\mathbf{E}\lambda) = \ln 2 \left\{ \frac{8\pi}{\hbar} \frac{\lambda+1}{\lambda [(2\lambda+1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2\lambda+1} B(\mathbf{E}\lambda) \right\}^{-1}$$

• Electric quadrupole transitions:

$$B(\text{E2};I_{i} \rightarrow I_{f}) = \frac{1}{2I_{i}+1} \sum_{M_{i}} \sum_{M_{f},\mu} \left| \left\langle I_{f} M_{f} \right| \sum_{k=1}^{A} e_{k} r_{k}^{2} Y_{2\mu} \left(\theta_{k}, \varphi_{k} \right) \left| I_{i} M_{i} \right\rangle \right|^{2}$$

• Electric quadrupole moments:

$$eQ(I) = \left\langle IM = I \right| \sqrt{\frac{16\pi}{5}} \sum_{k=1}^{A} e_k r_k^2 Y_{20}(\theta_k, \varphi_k) \right| IM = I \right\rangle$$

Electromagnetic transitions

Magnetic (dipole) properties

• Partial *y*-ray half-life:

$$T_{1/2}^{\gamma}(\mathbf{M}\lambda) = \ln 2 \left\{ \frac{8\pi}{\hbar} \frac{\lambda+1}{\lambda [(2\lambda+1)!!]^2} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2\lambda+1} B(\mathbf{M}\lambda) \right\}^{-1}$$

• Magnetic dipole transitions:

$$B(M1;I_{i} \to I_{f}) = \frac{1}{2I_{i} + 1} \sum_{M_{i}} \sum_{M_{f},\mu} \left| \langle I_{f} M_{f} | \sum_{k=1}^{A} (g_{k}^{l} l_{k,\mu} + g_{k}^{s} s_{k,\mu}) | I_{i} M_{i} \rangle \right|^{2}$$

• Magnetic dipole moments:

$$\mu(I) = \langle IM = I | \sum_{k=1}^{A} \left(g_{k}^{l} l_{k,z} + g_{k}^{s} s_{k,z} \right) | IM = I \rangle$$

Electromagnetic transitions

 $E0 \qquad E1(M2,E3) \qquad E2(M3,E4...)$

International Atomic Energy Agency 🕺 🛠

M1

Electromagnetic transitions

Hindrance Factor in γ-ray decay

F	$_{W(N)} = \frac{B(XL)_{Theory}}{B(XL)_{Exp}}$	$= \frac{T_{1/2}^{\gamma}(XL)_{Exp}}{T_{1/2}^{\gamma}(XL)_{Theory}}$	<u>Hind</u>	rance Factor: Weisskopf shell mod <u>Nilsson (N</u>	(W): based on spherical el potential): based on deformed
			Nilsson model potential		
EL	$B(EL)_W, e^2 fm^{2L}$	$T_{1/2}^{\gamma}(EL)_W$, sec	ML	$B(ML)_W, \mu_N^2 fm^{2L-2}$	$T_{1/2}^{\gamma}(ML)_W$, sec
E1	$0.06446A^{2/3}$	$6.762 A^{-2/3} E_{\gamma}^{-3} \times 10^{-15}$	M1	1.7905	$2.202 E_{\gamma}^{-3} \times 10^{-14}$
E2	$0.0594A^{4/3}$	$9.523A^{-4/3}E_{\gamma}^{-5}\times10^{-9}$	M2	$1.6501A^{2/3}$	$3.100A^{-2/3}E_{\gamma}^{-5} \times 10^{-8}$
E3	$0.0594A^2$	$2.044 A^{-2} E_{\gamma}^{-7} imes 10^{-2}$	М3	$1.6501A^{4/3}$	$6.655 A^{-4/3} E_{\gamma}^{-7} \times 10^{-2}$
E4	$0.06285A^{8/3}$	$6.499A^{-8/3}E_{\gamma}^{-9}\times 10^{4}$	M4	$1.7458A^2$	$2.116A^{-2}E_{\gamma}^{-9} \times 10^{5}$
E5	$0.06929A^{10/3}$	$2.893A^{-10/3}E_{\gamma}^{-11}\times10^{11}$	M5	$1.9247 A^{8/3}$	$9.419A^{-8/3}E_{\gamma}^{-11}\times10^{11}$

International Atomic Energy Agency

Thank you

