



2358-15

#### Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

IAEA - NSDD Network: Recent Relevant CRPs and other activities

D.H. Abriola IAEA Austria



#### **International Atomic Energy Agency**

## IAEA - NSDD Network: Recent Relevant CRPs and other activities

## **D. Abriola**

Nuclear Data Section Department of Nuclear Sciences and Applications ICTP ENSDF WORKSHOP 2012

#### Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

#### **NAPC: Physics and Nuclear Data Sections**



Nuclear Data

Atomic and Molecular Data

International Atomic Energy Agency

#### **IAEA Nuclear Data Section**

#### Nuclear Data Section

Organization Chart (June 2012)

Section Office (and INDC Secretariat)



#### **IAEA Nuclear Data Section**

#### Role

- Provision of atomic and nuclear data services to scientists worldwide (data libraries, bibliographies, documents) through the internet, CD and other media
- Coordination of three international atomic and nuclear data networks
- Production of new databases through Coordinated Research Projects (CRPs) and Data Development projects
- Assist developing countries through technology transfer activities

## **Activities of the NDS**

- Maintain and develop databases
- Network coordination (IRDC + NSDD+A&M)
- Coordinated Research Projects (10-15...)
- Staff technical work + contracts + consultants
- Technology transfer + Workshops



#### Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

## **International Network of NSDD evaluators**

Biennial meetings of the International Network of Nuclear Structure and Decay Data Evaluators (NSDD) are funded and organized under the auspices of NDS

The 19<sup>th</sup> meeting of NSDD network was held at the IAEA Vienna, Austria, 4–8 April 2011 (INDC(NDS)-0595). This meeting was attended by 35 scientists from 20 Member States



#### **International Network of NSDD evaluators**





## **International Network of NSDD evaluators**

#### **14 Centres**

#### **A-Chain Evaluation Responsibility**

| Center |         | Mass Chains                                      |    | nter       | Mass Chains               |  |
|--------|---------|--------------------------------------------------|----|------------|---------------------------|--|
| a.     | US/NNDC | S/NNDC 45-50,57,58,60-73(ex 62-64),82-88 (ex83), |    | Russia/StP | 130-135,146               |  |
|        |         | 94-97,99,118,119,136-148,150,                    | h. | PRC        | 51-56,62,63,195-198       |  |
|        |         | 152-165 (ex 164), 180-183, 185, 189, 230-        | i. | France     | 113-117                   |  |
|        |         | 240,>249                                         | j. | Japan      | 120-129                   |  |
| b.     | US/NDP  | 241-249                                          | k. | Kuwait     | 74-80                     |  |
| C.     | US/LBNL | 21-30,59,81,83,90-93,166-171,184,186,187,        | I. | Canada     | 1,31-44,64,89,98,100,149, |  |
|        |         | 191-193,210-217                                  |    |            | 151,164,188,190,194       |  |
| d.     | US/TUNL | 2-20                                             | m. | Australia  | 172-175                   |  |
| e.     | US/ANL  | 106-112,176-179,199-209                          | n. | Hungary    | 101-105                   |  |
| f.     | India   | 218-229                                          |    |            |                           |  |

## **International Network of NSDD evaluators**

Specific mass chain activities, horizontal evaluations and technical issues

Problems are still being experienced in maintaining suitable numbers of mass chain evaluators (expressed as FTE – Full Time Effort)

Thanks to IAEA efforts, evaluators are being supported and are actively performing evaluations

NDS staff will continue to support new evaluators and collaborate in mass chain evaluations

## **International Network of NSDD evaluators**

List of 51 actions

| 27 | NNDC                | XUNDL compilation date                                                      | Expand XUNDL index to show compilation date by nuclide.                                                                             |
|----|---------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 28 | Firestone           | ENSDF into XML                                                              | Look into possibilities working with LLNL.                                                                                          |
| 29 | Kibedi              | Calculate conversion<br>coefficients.<br><i>Recommendation</i>              | Mixing ratio default to be determined statistically or by evaluator, in either case comments should appear.                         |
| 30 | Kibedi              | Mixing ratio for E0, E2, M1.                                                | Suggest changes to format in order to define mixing ratios.                                                                         |
| 31 | Sonzogni,<br>Kibedi | Improve data that quantify<br>Auger electron and<br>continuum beta spectra. | Develop and recommend analysis codes<br>to provide more detailed presentations<br>of Auger electrons and continuum beta<br>spectra. |
| 32 | Network             | New production code for<br>Nuclear Data Sheets.                             | Provide comments to B. Singh based on<br>two mass chains (A=40, A=182) placed<br>on the web site.                                   |
| 33 | NNDC                | Checking code<br>Recommendation                                             | Download Mitropolski code and<br>incorporate into FMTCHK.                                                                           |
| 34 | All evaluators      | Atomic masses<br>Recommendation                                             | Use 2011AuZZ masses and quote 2003Au03 in a comment.                                                                                |
| 35 | Audi                | Atomic masses                                                               | Provide 2011 evaluation to NNDC by end of April 2011 (2011AuZZ).                                                                    |
| 36 | Evaluators          | BE2 compilation                                                             | Comments and feedback on the presentation and the paper attached to B. Prytichenko and B.Singh.                                     |
| 37 | All                 | Masses<br>Recommendation                                                    | To obtain masses for new nuclides, communicate directly with AMDC                                                                   |



## **International Network of NSDD evaluators**

#### **Bilateral visits:**

- M.A. Kellett (IAEA-NDS) to CIEMAT. Attendance at the 3<sup>rd</sup> Workshop of Radioactive Decay Data Evaluators. 9–11 June 2010
- D.H. Abriola (IAEA-NDS) to NNDC. Attendance at USNDP meeting and carry out ENSDF evaluation work. 20 Oct-3 Nov 2010
- B. Pritychenko, NNDC to NDS. Install and load NSR database on NDS MySQL database server, discuss NSR compilations and revise technical procedures. 19–26 November 2010



### **International Network of NSDD evaluators**

- Bilateral visits (cont.):
- B. Singh, McMaster University to NDS. Collaborate on the update of the most neutron deficient nuclides of A=148: 148Tm, 148Er and 148Ho for ENSDF database. 14–16 June 2011
- D.H. Abriola (IAEA-NDS) to McMaster University. Collaborative work with B. Singh on beta-delayed neutron emission evaluation. 7–11 November 2011
- D.H. Abriola (IAEA-NDS) to NNDC. Attendance at USNDP meeting, and carry out ENSDF work. 13–23 November 2011
- B. Pritychenko, NNDC to NDS. Install and load NSR database on NDS MySQL database server and revise technical procedures. 21–25 November 2011

#### **International Network of NSDD evaluators**

#### Next meeting in Kuwait, January 2013





#### Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

**NSDD** activities in the IAEA

#### **ENSDF evaluations** (D. Abriola )

• Collaboration with A. Sonzogni, A=72 NDS 111 (2010) 1-140.

 New Mass chain A=144 to be submitted Nov.
2012 in collaboration with A. Sonzogni (17 nuclei, 93 new experimental references, 21 XUNDL-files)

#### NSDD activities in the IAEA

#### **NSR compilations (M. Kellett)**

IAEA has compiled [and keyworded] the following papers:

| 2005: | 258 [134] | (from Sept to Dec)        |
|-------|-----------|---------------------------|
|       | 2006:     | 479 [ <mark>348</mark> ]  |
|       | 2007:     | 869 [ <mark>495</mark> ]  |
|       | 2008:     | <b>529</b> [ <b>298</b> ] |
|       | 2009:     | 670 [217]                 |
|       | 2010:     | <b>596</b> [ <b>298</b> ] |
|       | 2011:     | 259 [108]                 |
|       |           |                           |

Total: 3660 [1898] (in ~5.5 years)



#### 6+2+1 Contracts – 2010...2012

- 1. Joshi and Jain (India)
- 2. Wang and Audi (China) Atomic Mass Evaluation (Horizontal)

International Atomic Energy Agency

- 3. Zuber (Poland)
- 4. A. Negret (Romania)

- 5. J. Timar Z. Elekes (Hungary)
- 6. N. Stone (USA) Nuclear Moments (Horizontal): Compilation and evaluation
- 7. Lalkovski (Bulgaria)
- 8. Abusaleem Kalifeh (Jordan)
- 9. S. Erturk (Turkey August 2012)

#### Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

#### Nuclear Data Development

## <u>Nuclear Data Projects</u> – Status, May 2012

International Atomic Energy Agency

#### **Coordinated Research Projects**

- 8 completed
- 3 active
- 3 planned

#### **Data Development Projects**

• 8 active



#### Completed CRPs

Table 3. Status of Coordinated Research Projects Dedicated to Nuclear Data

| No. | Short title                                                        | Duration  | Participants<br>(contracts) | Project<br>Officer | Status                                                     | Section |
|-----|--------------------------------------------------------------------|-----------|-----------------------------|--------------------|------------------------------------------------------------|---------|
| 1   | Nuclear data for Th-U fuel cycle                                   | 2002–2007 | 11 (6)                      | Trkov<br>Capote    | Completed (2010)<br>IAEA STI/PUB/1435<br>and webpage       | 6.1.1   |
| 2   | RIPL-3                                                             | 2003–2008 | 11 (5)                      | Capote             | Completed (2009)<br>Nucl. Data Sheets paper<br>and webpage | 6.1.2   |
| 3   | Nuclear data for the<br>production of therapeutic<br>radionuclides | 2003–2007 | 9 (4)                       | Capote             | Completed (2012)<br>IAEA TRS 473<br>and webpage            | 6.1.3   |
| 4   | Reference database for ion beam analysis                           | 2005–2010 | 10 (4)                      | Abriola            | Completed/ document in preparation                         | 6.1.4   |
| 5   | Reference database for neutron activation analysis                 | 2005–2010 | 7 (4)                       | Kellett            | Completed/ document<br>undergoing final editing            | 6.1.5   |
| 6   | Updated decay data library for actinides                           | 2005–2010 | 7 (4)                       | Kellett            | Completed/ document in press                               | 6.1.6   |
| 7   | Heavy charged-particle<br>interaction data for<br>radiotherapy     | 2007–2010 | 12 (2)                      | Capote             | Completed/ document in preparation                         | 6.1.7   |
| 8   | Minor actinide neutron<br>reaction data (MANREAD)                  | 2007–2011 | 12 (4)                      | Otsuka             | Completed/ document in preparation                         | 6.1.8   |



#### **On-going and Planned CRPs**

| 9  | Nuclear data libraries for<br>advanced systems: fusion<br>devices (FENDL-3)                 | 2007–2011 | 15 (3)  | Forrest           | On-going            | 6.1.9  |
|----|---------------------------------------------------------------------------------------------|-----------|---------|-------------------|---------------------|--------|
| 10 | Prompt fission neutron spectra for actinides                                                | 2009–2012 | 12 (6)  | Capote            | On-going            | 6.1.10 |
| 11 | Charged-Particle Monitor<br>Reactions and Nuclear<br>Data for Medical Isotope<br>Production | 2012–2015 | ~15 (6) | Capote            | Approved by<br>CCRA | 6.1.11 |
| 12 | Nuclear data for Particle<br>Induced Gamma Ray<br>Emission (PIGE) analysis                  | 2011–2014 | 11 (6)  | Abriola           | On-going            | 6.1.12 |
| 13 | Validation of the<br>International Dosimetry<br>Library IRDFF                               | 2013–2017 | -       | Simakov<br>Capote | Planned             | 6.1.13 |
| 14 | Beta-delayed Neutron<br>Emission Evaluation                                                 | 2013–2017 | -       | Abriola           | Planned             | 6.1.14 |

#### **Beta-delayed neutron emission evaluation**



# Beta-delayed neutron emission evaluation (2013-2017) D. Abriola

#### **Motivation:**

- Beta-delayed neutrons are important for energy production, astrophysics and nuclear theory
- Most of the data available are from precursors coming from fission fragments
- New experimental facilities are available which will be able to produce new precursors in the neutron-rich region
- Last evaluation with theoretical comparisons is from 2002
- There is no database that compiles all relevant data

**Beta-delayed neutron emission evaluation** 

**Consultant's meeting** 

• A related CM was held at IAEA Vienna, 10-12 October, 2011, the consultants pointed out the need of a CRP on the topic



#### **Beta-delayed neutron emission evaluation**

#### **LIST OF PARTICIPANTS**

| CANADA                                                                                         | SPAIN                                                                                |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Balraj Singh                                                                                   | Daniel Cano                                                                          |  |  |
| Department of Physics and Astronomy<br>A.N. Bourns Science Building 241<br>McMaster University | Centro de Investigaciones<br>Energéticas Medioambientales y<br>Tecnológicas (CIEMAT) |  |  |
| GERMANY                                                                                        | USA                                                                                  |  |  |
| Iris Dillmann                                                                                  | Alejandro Sonzogni                                                                   |  |  |
| GSI Darmstadt and<br>Justus-Liebig-Universität                                                 | Brookhaven National Laboratory<br>National Nuclear Data Center                       |  |  |
| GERMANY                                                                                        |                                                                                      |  |  |
| Bernd Pfeiffer                                                                                 | Daniel Abriola                                                                       |  |  |
| GSI Helmholtzzentrum für<br>Schwerionenforschung                                               | NAPC Nuclear Data Section                                                            |  |  |
| SPAIN                                                                                          | Mark A. Kellett                                                                      |  |  |
| José L. Tain                                                                                   |                                                                                      |  |  |
| Instituto de Fisica Corpuscular<br>Centro Mixto CSIC-Univ. Valencia                            | NAPC Nuclear Data Section                                                            |  |  |







The PARTICIPANTS, reviewed the status of the field, Theory, measurements, compilations and evaluations. Report INDC(NDS)-599



 $\beta^{-}: {}^{A}Z \rightarrow {}^{A}(Z+1) + e^{-} + \overline{V}_{e}$ 

• β-decay is a "simple" process which is very sensitive to the nuclear wave function



transition probability or strength

• An accurate knowledge of the distribution of the  $\beta$ -decay probability over the daughter-nucleus levels provides information for the understanding of the structure of nuclei

 In itself the knowledge of these data is of importance for applications, notably in the fields of nuclear technology and astrophysics



D.ABRIOLA ICTP, August 2012

International Atomic Energy Agency

## log ft

$$\lambda = \frac{g^2 |M_{if}|^2}{2\pi^3 \hbar^7 c^3} \int_{0}^{p_{\text{max}}} F(Z_D, p_e) p_e^2 (Q - T_e)^2 dp$$

$$\lambda = \frac{g^2 |M|^2 m_e^5 c^4}{2\pi^3 \hbar^7} f(Z_D, Q) \qquad \text{f=Fermi integral}$$

$$ft_{1/2} = \ln 2 \frac{2\pi^3 \hbar^7}{g^2 |M|^2 m_e^5 c^4} \propto \frac{1}{g^2 |M|^2}$$

#### Beta-strength $S_{\beta}$ and Beta Intensity $I_{\beta}$



## **Beta-strength** $S_{\beta}$ and **Beta Intensity** $I_{\beta}$ How to estimate $P_n$ ?

$$\frac{1}{T_{1/2}} = \int_0^{Q_{\beta}} S_{\beta}(E_x) \cdot f(Q_{\beta} - E_x) dE_x$$



International Atomic Energy Agency

**Kratz-Herrmann model** 

## Assuming strength function=0 below cut-off value C

$$\mathsf{P}_{\mathsf{n}} = a. \left[ \frac{(Q_{\beta} - S_{n})}{(Q_{\beta} - C)} \right]^{k}$$

C=  $\begin{pmatrix} 0 & e-e \\ 13/A^{1/2} & o-mass \\ 26/A^{1/2} & o-o \end{pmatrix}$ 

Z. Phys.263 (1973) 435 International Atomic Energy Agency
K.-L. Kratz and G. Herrmann



Fig. 1. Plot of the neutron emission probability,  $P_n$ , versus the reduced energy window,  $(Q_\beta - B_n)/(Q_\beta - C)$ . In the left diagram,  $Q_\beta$  and  $B_n$  values were taken from the mass formula of Garvey *et al.* [17], for the right diagram, averages obtained from four different mass formulae [17-20] were used

438

## March 2012 data



# **Experimental techniques (Pn)**

Produce and separate the Precursor Measure  $\beta$ Measure n (long counters (NERO, BELEN, <sup>3</sup>Hen...) Measure  $\gamma$ ...

 "n/β": Neutron-beta coincidences. Beta efficiency not required. Neutron efficiency is determined in absolute terms:

 $P_n = 1/\epsilon_n * N_{\beta n}/N_{\beta}$ 

"n-β": Neutrons and betas counted separately (no coincidences) but simultaneously.

 $P_n = \epsilon_\beta / \epsilon_n * N_n / N_\beta$ 



## **Experimental techniques (n-spectrum)**

Neutron Spectrometers: 3 He(n,p)T + 764 keV p-recoil TOF NE213 (MONSTER) BC537 (DESCANT)

. . .

#### The ideal neutron detector for decay experiments

Conclusions of "Workshop on neutron detectors for DESPEC-FAIR and other facilities" (CIEMAT – Madrid, July 2006)

n-γ discrimination ⇒ necessary for reducing backgrounds, enable β-2n,3n ... detection → Liquid scintillators NE213 (or "new" solid scintillators – Neutromania project)

#### improved ∆E<sub>n</sub>/E<sub>n</sub>

thin, small volume detectors with increased d<sub>flight</sub>~3,4 m (space for both n and γ setups)

lowest possible threshold in  $E_n \rightarrow \text{ check with thin, small volume detectors + digital electronics (30 keV <math>E_n$ )

#### cross-talk rejection $\Rightarrow$ enable $\beta$ -2n, 3n... detection

→ modular, highly granular array (>100 detectors) + variable geometry (cm alignement precision is Ok).



D. Cano-Ott, β-delayed neutron meeting, 10<sup>th</sup> of October 2011 Vienna



Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

high ε<sub>n</sub> ⇒ identification →  $1\pi \le \Delta\Omega_n \le 2\pi$ 

and  $\epsilon_{\!\gamma}$  for combined neutron/gamma measurements  $\Rightarrow$  identification of n-decay to excited states

 $\rightarrow$  large volume high efficiency Ge det's (conflict with the need for high  $\Delta\Omega_n$ )

**digital electronics**  $\Rightarrow$  control of systematic uncertainties.

# JYFL (Jyväskylä, Finland)



Courtesy J.L. Tain

## **JYFL 2009: "Decay properties of** β**-delayed neutron emitters"** (A. Algora-IFIC, D.Cano-CIEMAT, B.Gomez-UPC, et al.)





- Measured: <sup>88</sup>Br, <sup>94,95</sup>Rb, <sup>138</sup>I
- Calibration/verification measurements
- 20 <sup>3</sup>He proportional counters
- PE moderation matrix + shielding
- Si detector for β-counting
- Ge detector for additional source

#### decomposition

Implantation/decay cycles optimized according T<sub>1/2</sub>









## Beta-delayed neutron emission evaluation Motivation Creation of Database is timely:

- 1. Much better mass measurements, mass-evaluations and theoretical predictions
- 2. Last evaluation in 1993 last compilation in 2002, 60+ papers not yet included
- 3. Radioactive beam facilities (RIB) in France (Spiral-2), Germany (FAIR), Japan (RIBF), and the USA (FRIB)
- 4. Theoreticians need a reliable basis of experimental data to set constraints on their models, and in turn help experimentalists to better plan new measurements
- 5. Human component : many scientists who have been working in the field of  $\beta$ -delayed neutrons for decades are retiring now



*Motivation New experimental facilities and detectors* Radioactive beam facilities (RIB) in France (Spiral-2), Germany (FAIR), Japan (RIBF), and the USA (FRIB)



BELEN neutron detector at the IGISOL-JFLTRAP facility

International Atomic Energy Agency

D.ABRIOLA ICTP, August 2012

Motivation

New experimental facilities and detectors

Radioactive beam facilities (RIB) in France (Spiral-2), Germany (FAIR), Japan (RIBF), and the USA

(FRIB)

#### **CTRIUMF**

#### DESCANT

#### **DEuterated SCintillator Array for Neutron Tagging**

- 70 element Neutron array formed of deuterated scintillators
- Digitization with 1GHz sampling and gammaneutron discrimination in FPGA
- Couples directly to TIGRESS or GRIFFIN support structure
   Sept 1<sup>st</sup> 2011





**Motivation** New experimental facilities and detectors Radioactive beam facilities (RIB) in France (Spiral-2), Germany (FAIR), Japan (RIBF), and the USA (FRIB) Hen Detector (HRIBF@Oak Ridge) 74 counters, Ø 1" and 2", 60 cm long, 10 atm <sup>3</sup>He

D.ABRIOLA ICTP, August 2012



### Interest of the comunity:

1. Nuclear physics (astrophysics/ structure) improvement of the accuracy of  $P_n$  values, which will help theoreticians to improve their models and, in turn, make extrapolations to more neutron-rich isotopes more reliable. New measurements in the heavier mass region A>150 (the so-called "terra incognita") are desired, and also more measurements of multiple neutron emitters will become possible in the next years.

2. Reactor physics and homeland security in the US, an accurate knowledge of decay properties of fissile nuclei is required, including a detailed knowledge of delayed neutron precursors and fission yields. Although the six-group-parameterization from Keepin 1957 still satisfies the requirements of commercial organizations, a higher accuracy of the delayed neutron yields and a better energy resolution in the delayed neutron spectra is desired.

Astrophysics & Nuclear Structure



Missing experimental information for r-process above A>150



D.ABRIOLA ICTP, August 2012

**Delayed fraction nuclear reactors** 

|       | 6-group       | 8-group       |
|-------|---------------|---------------|
| Group | Half-life (s) | Half-life (s) |
| 1     | 55.72         | 55.6          |
| 2     | 22.72         | 24.5          |
| 3     | 6.22          | 16.3          |
| 4     | 2.3           | 5.21          |
| 5     | 0.614         | 2.37          |
| 6     | 0.23          | 1.04          |
| 7     |               | 0.424         |
| 8     |               | 0.195         |
|       |               |               |

NDS 112,2887, December 2011 Special Issue on ENDF/B-VII.1 Library



A Journal Devoted to Compilations and Evaluations of Experimental and Theoretical Results in Nuclear Physics

J.K. Tuli, Editor National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA www.nndc.bnl.gov

> Special Issue on ENDF/B-VII.1 Library

Special Issue Editor: Pavel Obložinský

Contents

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product
 Yields and Decay Data
 2887
 M.B. Chadwick, M. Herman, P. Obložinský, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko,
 G. Arbanas, R. Areilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber,
 G.M. Hale, S. Hobbit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kin, S. Kunieda,
 N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes,
 C.M. Mattoon, R.D. McKnight, S.F. Mughabglab, G.P.A. Nobre, G. Palmiotti, A. Palumio, M.T. Figni,
 V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, IJ. Thompson, A. Trkov, R.L. Vogt,
 S. C. van der Marck, A. Wallner, M.C. White, D. Wiarda and P.G. Young
 ENDF/B-VIL1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor
 Experiments

Experiments A.C. Kahler, R.E. MacFarlane, R.D. Mosteller, B.C. Kiedrowski, S.C. Frankle, M.B. Chadwick, R.D. McKnight, R.M. Lell, G. Palmiotti, H. Hiruta, M. Herman, R. Areilla, S.F. Mughabghab, J.C. Sublet, A. Trkov, T.H. Trumbull and M. Dunn



NDS 112,2887, December 2011 Special Issue on ENDF/B-VII.1 Library

"Significant differences, on the order of a factor of two to four, have been observed in the decay constants for the short-lived delayed precursor groups between ENDF/B-VII and other published values (e.g., Keepin, ENDF/B-VI)..." Pg.2950

"...While a detailed analysis on delayed neutron precursors should be performed, present resources are such that the most favorable short-term solution is to revert to the ENDF/B-VI 6-group delayed data...." Pg.2951

Previous Compilations and evaluations:

1989 Evaluation M.C. Brady evaluation and simulation of neutron spectra and compilation of  $P_n$  values. Experimental neutron spectra for 34 delayed-neutron emitters Spectra for about 237 b-delayed neutron precursors were calculated based on statistical model. The values of  $P_n$  were compiled and evaluated for 89 fission fragments from <sup>75</sup>Cu to <sup>149</sup>La

**1993 Evaluation G. Rudstam**, *et al.* :evaluation and measurements for fission produced precursors. Data for 93 nuclides from <sup>75</sup>Cu to <sup>150</sup>La, including  $P_n$  values measured for 64 nuclei

2002 Compilation B. Pfeiffer, *et al.* 338 fission produced nuclides listed in this paper with experimental (compiled) values for 129 nuclides. Theoretical values from QRPA models and systematic values from Kratz-Herrmann formula for all the 338 nuclides



#### Assessment <sup>87</sup>Br data

| Reference | Half-life (s) | %P(n)    | Method               | Comments               |
|-----------|---------------|----------|----------------------|------------------------|
| 1993Ru01* | 55.6(3)       | 2.56(10) | n, β-                |                        |
| 1980Lu04  | 55.5(3)       | 2.57(15) | n, β-                | Same lab as 1993Ru01   |
| 1980ReZQ* |               | 2.1(3)   | ion counting         | Also 1977Re05          |
| 1978Kr15  | 55.9(6)       | 2.6(4)   | fission              | Also 1974Kr21          |
| 1974Gr29  | 55.96(34)     |          | n                    | Same group as 1993Ru01 |
| 1972Sc48  | -             | 2.3(4)   | fission              |                        |
| 1971De35* | 55.6(3)       | 2.3(3)   | Kr-87, γ             |                        |
| 1967Pa26  |               | 2.63(5)  | fission              |                        |
| 1967Ga19  |               | 3(1)     | Fission, time groups |                        |
| 1966Si09  | 55.8(3)       |          |                      |                        |
| 1964Ar24* | 56            | 3.1(6)   | n, β-                |                        |
| 1957Ke67  | 54.5(9)       |          |                      |                        |

\*: value used to calculate the weighted average Weighted Average = 2.43 (14) %, reduced  $\chi^2$ =1.0. Uncertainty of 0.10 in 1993Ru01 increased to 0.20 to limit weight to 50%. 1993Ru01, 2002Pf04: recommended value= 2.52 (7) %



## <sup>87</sup>Br neutron spectrum (1985)



Fig. 16. Normalized delayed neutron spectra for <sup>87</sup>Br.

#### Assessment <sup>138</sup>I data

| Reference | Half-life (s)      | %P(n)     | Method       | Comments                                           |
|-----------|--------------------|-----------|--------------|----------------------------------------------------|
| 2011GO37* |                    | 5.32(20)* |              | Penning Trap beam separator                        |
| 2010MaZS  |                    | ~5.4      | n            | Preliminary result                                 |
| 1993Ru01* | 6.233(31)          | 5.56(22)* | n, β-        | Also 1976Lu02                                      |
| 1980ReZQ  |                    | 5.1(30)   | ion counting | Also 1977Re05, P(n)=6.0(35)                        |
| 1980Lu04  | 6.5                | 5.5(4)    | n, β-        | Same group as 1993Ru01                             |
| 1978Kr15  | 6.21(20)           | 4.5(9)    | fission      | Also 1974Kr21                                      |
| 1975As03  | 6.5(2)             | 2.58(22)  | n, β-        |                                                    |
| 1974Gr29  | 6.44(26), 7.03(26) |           | n            | Same group as 1993Ru01                             |
| 1972Sc48  |                    | 4.5(10)   | fission      | Adjusted in 1993Ru01 from 3.0(8).<br>Also 1969ScZY |
| 1964Ar24  | 6.3                | 2.0(5)    | n, β-        |                                                    |
| 1959Pe28  | 6.3(7)             | 2.0(5)    | fission      | Adjusted in 1969De35                               |
|           |                    |           |              |                                                    |

### \*: value used to calculate the weighted average

The discrepant data: 2.58 (22) % in 1975As03 and 2.0(5) % in 1964Ar24 were not included in averaging.

LWM weighted average= 5.43 (20) % where the uncertainty of 0.15 given by the LWM was increased to the lowest value of the dataset: 0.20, reduced  $\chi^2$ =0.65

CAUTION IF USED AS STANDARD: ONLY TWO INDEPENDENT MEASUREMENTS

D.ABRIOLA ICTP, August 2012



#### Example of Pn values in ENSDF (from LiveChart):

| A<br>Z | Nuclide | N  | Energy (keV) | J <sup>π</sup> | T <sub>1/2</sub>  | De                 | ecays          |
|--------|---------|----|--------------|----------------|-------------------|--------------------|----------------|
| 8      | Ца      |    | 0            | 0.             | 110.1 mc 12       | β-                 | 100            |
| 2      | ne      | 6  | 0            | 0+             | 119.1 115 12      | β- n               | 16 <i>1</i>    |
| 9      | 11      |    | 0            | 2/2            | 178.2 ms /        | β-                 | 100            |
| 3      |         | 6  | 0            | 3/2-           | 178.5 113 4       | β- n               | 50.8 <i>2</i>  |
| 12     | Po      |    | 0            | 0.             | 21.2 mc 1         | β-                 | 100            |
| 4      | De      | 8  | 0            | 0+             | 21.5 115 1        | β- n               | ≤ 1            |
| 14     | Bo      |    |              |                |                   | β- 2n              | 5 <i>2</i>     |
| 4      | De      | 10 | 0            |                | 4.35 ms <i>17</i> | β-                 | 100            |
|        |         |    |              |                |                   | β- n               | 81 4           |
| 17     | в       |    |              |                |                   | β-                 | 100            |
| 5      |         | 12 |              |                |                   | β- n               | 63 <i>1</i>    |
|        |         |    | 0            | (3/2-)         | 5.08 ms <i>5</i>  | β- 2n              | 11 7           |
|        |         |    |              |                |                   | β- 3n              | 3.5 7          |
|        |         |    |              |                |                   | <mark>β- 4n</mark> | 0.4 3          |
| 16     | c       |    | 0            | 0+             | 0 747 s 8         | β-                 | 100            |
| 6      |         | 10 | Ŭ            |                | 0.1.1.00          | β- n               | 99.0 3         |
| 17     | c       |    | 0            |                | 193 ms 13         | β-                 | 100            |
| 6      |         | 11 | <u> </u>     |                | 155 115 15        | β- n               | 32 3           |
| 18     | · ·     |    | 0<br>12      | (0+)           | 92 ms 2           | β-                 | 100            |
| 6      |         | 12 |              |                |                   | β- n               | 31.5 <i>15</i> |
| 20     | с       |    | 0            |                | 14 ms +6-5        | β-                 | 100            |
| 6      |         | 14 | Ŭ            |                | 11110.000         | β- n               | 72 14          |
| 22     | c       |    |              |                |                   | β-                 | 100            |
| 6      |         | 16 | 0            | 0+             | 6.1 ms +14-12     | β- n               | 61 +14-13      |
|        |         |    |              |                |                   | β- 2n              | < 37           |
| 17     | N       |    | 0            | 1/2-           | 4.173 s 4         | β-                 | 100            |
| 7      |         | 10 | Ű            | _,_            |                   | β- n               | 95.1 7         |
| 18     | N       |    |              |                |                   | β-                 | 100            |
| 7      |         | 11 | 0            | 1-             | 624 ms <i>12</i>  | β-α                | 12.2 6         |
|        |         |    |              |                |                   | β- n               | 14.3 20        |
| 19     | N       |    | 0            |                | 271 ms 8          | β-                 | 100            |
| 7      |         | 12 |              |                |                   | β- n               | 54.6 14        |
| 20     | N       |    | 0            |                | 130 ms 7          | β-                 | 100            |
| 7      |         | 13 |              |                |                   | β- n               | 57.3           |
| 21     | N       | 0  | 0            | (1/2-)         | (1/2-) 85 ms 7    | β-                 | 100            |
| 7      |         | 14 |              |                |                   | β- n               | 81 7           |
| 21     | N       |    | 0            | (1/2-) 2       | 83 ms <i>8</i>    | β-                 | 100            |
| 7      |         | 14 |              |                |                   | β- n               | 90.5 42        |

D.ABRIOLA ICTP, August 2012



**Beta-delayed neutron emission evaluation** Inclusion of delayed neutron data – EXFOR, JEFF, ENDF/B, ENSDF

Neutron spectra (discrete or continous) – EXFOR Make available to JEFF, ENDF/B

*Pn* & T1/2 – ENSDF *Make available to JEFF, ENDF/B* 

D.ABRIOLA ICTP, August 2012



### **Possible participants in a CRP**

| USA         | – BNL, LANL, MSU/NSCL, ORNL                                       |
|-------------|-------------------------------------------------------------------|
| CANADA      | <ul> <li>McMaster U., Triumf, Univ. Guelph</li> </ul>             |
| GERMANY     | <ul> <li>– GSI Darmstadt/ Univ. Giessen</li> </ul>                |
| SPAIN       | <ul> <li>– IFIC Valencia, CIEMAT Madrid, UPC Barcelona</li> </ul> |
| FRANCE      | <ul> <li>Orsay, GANIL, LPC Caen, ILL Grenoble</li> </ul>          |
| CHINA       | <ul> <li>Chinese Acad of Sci, Lanzhou</li> </ul>                  |
| FINLAND     | – Jyvaskyla (JYFL)                                                |
| JAPAN       | – JAEA, RIKEN                                                     |
| RUSSIA      | – JINR Dubna, IPPE Obninsk                                        |
| SOUTH KOREA | - KAERI                                                           |
| ARGENTINA   | – CNEA                                                            |
| BRAZIL      | – U. Sao Paulo                                                    |
| INDIA       | – VECC, Kolkata                                                   |

**Suggested Objectives:** 

- To create a reference database of evaluated data for beta-delayed neutron emision
- The database should contain evaluated half-lives, emission probabilities and neutron spectra for individual precursors.
- The evaluation methodology should be described
- Agregate quantities like group values should be derived and stored in the database
- The CRP should produce a priority list for evaluations and new experiments and improvements in the theoretical predictions

### **Suggested Outputs:**

- Priority list for measurements
- Database of evaluated data (format should be defined)
- Old and New measurements compiled into database
- Agregate quantities like group values stored in the database
- Technical report

## Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions



1. Nuclear Reaction Data for Advanced Reactor Technologies, ICTP, Trieste, 3 April to 14 May 2010 JOINT ICTP-IAEA

NDS Workshop Director: R.Capote

#### **Objective:**

To provide training and information exchange for nuclear physicists, nuclear engineers, and other users of Nuclear Data for advanced technological applications





2. Nuclear Structure and Decay Data: Theory and Evaluation, ICTP, Trieste, 11-15 October 2010 HOSTED NDS Workshop Director: D.Abriola

Objective

- To familiarize students with new experimental data that characterize the nucleus
- Modern nuclear models



Production of evaluated nuclear structure and decay data (as ENSDF mass-chain evaluations)





 3. Nuclear Data for science and technology: Analytical Applications, ICTP, Trieste, 8-12 Nov. 2010
 NDS Workshop Directors: D.Abriola, M.A. Kellett
 JOINT ICTP-IAEA

- Experimental techniques in NAA and IBA (RBS and PIGE)
- Analysis software availability and use
- Nuclear data requirements for analytical science: NAA and IBA
- Available nuclear data for IBA analysis the IBANDL database
- On-line retrieval of nuclear data
- Nuclear data compilation and dissemination

Lectures + exercises, 23 participants







3. Nuclear Data for science and technology: Analytical Applications, ICTP, Trieste, 11-15 October 2010 JOINT ICTP-IAEA

NDS Workshop Directors: D.Abriola, M.A.Kellett

Activities

Lectures each morning and computer-based exercises each afternoon.



Hands-on introduction of participants to the  $k_0$ -IAEA software for neutron activation analysis, the SIMNRA software for NRA spectral analysis and the online services of the NDS, including EXFOR, ENDF and IBANDL databases.

23 participants







1. Monte Carlo radiation transport and associated data needs for medical applications. ICTP, Trieste, 17-28 October 2011 HOSTEP NDS Workshop Director: R.Capote

- Based on EGSnrc system, National Research Council of Canada for the coupled transport of electrons, photons and positrons.
- The BEAMnrc code was also covered allowing participants to learn how to model specific linear accelerators and other radiation sources employed in both diagnosis and radiotherapy.
  - IAEA phsp (phase-space) database with EGSnrc/BEAMnrc

110 applications 55 participants







2. IAEA Workshop on Development of Nuclear Data Libraries, IAEA, 28 November-2 December 2011

Experimental covariance information and EXFOR retrieval. Theory and hands-on training: GANDR system code for nuclear data evaluation. A total of 20 hours of lectures and 22 hours of computer exercises were provided



9 participants





1. Nuclear Structure and Decay Data: Theory and Evaluation, ICTP, Trieste, August 2012 NOW!

#### Topics

- ENSDF evaluation philosophy and analysis programs
- NSDD network, relevant IAEA activities, access to appropriate web pages and Nuclear Reactions
- Nuclear models
- Radioactive Decays
- Adopted Levels



Databases and Web resources



## Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

#### Videos Maps News Shopping Gmail more V

| Google                                           | nds iaea                                                                                                                                                                                                                                                                                | ×    |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 0                                                | About 672,000 result (0.19 seconds)                                                                                                                                                                                                                                                     | Adva |
| 🚼 Everything                                     | ► IAEA Nuclear Data Services                                                                                                                                                                                                                                                            |      |
| 💽 Images                                         | Provides access to databases, documents, programs and files. Maintained by the IAEA's<br>Nuclear Data Centre.                                                                                                                                                                           |      |
| 🚞 Videos                                         | www-nds.iaea.org/ - Cached - Similar                                                                                                                                                                                                                                                    |      |
| More                                             | RIPL-2 (Index)                                                                                                                                                                                                                                                                          |      |
| New York, NY <ul> <li>Change location</li> </ul> | Handbook for calculations of nuclear reaction data, RIPL-2. IAEA-TECDOC-1506 (IAEA, Vienna, 2006). Available online at http://www-nds.iaea.org/RIPL-2/<br>www-nds.iaea.org/ripl2/ - Cached                                                                                              |      |
| Show search tools                                | <u>Cross-Section database for medical radioisotope production: IAEA-CRP</u><br>A description of the formatting procedure is given in the report IAEA-NDS-210 (pdf, 68 KB).<br>Complete documentation is available, including evaluation<br>www-nds.iaea.org/medical/ - Cached - Similar |      |
|                                                  | IBANDL<br>Sep 27, 2010 This is the Ion Beam Analysis Nuclear Data Library produced according to the<br>recommendations of the IAEA Technical Meeting held at the IAEA<br>www-nds.iaea.org/ibandl/ - Cached - Similar                                                                    |      |
# **NDS Web page**







#### LiveChart: M.Verpeli & A.Vasaros

| Half life color<br>0 8.2E-4                                  | code, value i<br>1.4E-2 ■4.6E | n seconds:<br>·2 ∎1.E-1 ■2. | .3E-1 <b>=</b> 0.5 <b>=</b> 0 | .9 1.8 3.5              | Half life color code, value in seconds:  0 0 8.2E-4 1.4E-2 4.6E-2 4.6E-2 4.6E-2 1.2E-1 0.5 0.9 1.8 3.5 6.2 12 2.35 43 83.4 1.6E2 2.9E2 6E2 1.3E3 3.4E4 1.4E5 1.4E5 1.1E6 3.4E7 1.E14 2.E32 5tabl                    |                                                            |                                             |                              |                 |                 |                       |                 |                 |  |  |  |
|--------------------------------------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|------------------------------|-----------------|-----------------|-----------------------|-----------------|-----------------|--|--|--|
| Filter panel<br>Filter panel<br>Help & About Data<br>Nuclide |                               | Visible Nuclides: 2934      |                               | Fix info p<br>145<br>Tm | Fix info panel - Onery Teel<br>145 146 147<br>Tm Tm Tm                                                                                                                                                              |                                                            |                                             | 149<br>Tm                    | 150<br>Tm       | 151<br>Tm       | 152<br>Tm             | 153<br>Tm       |                 |  |  |  |
| 114Eu                                                        |                               | Tm                          |                               | 144<br>Er               | 145<br>Er                                                                                                                                                                                                           | 146<br>Er                                                  | 147<br>Er                                   | 69<br>148<br>Er              | 149<br>Er       | 150<br>Er       | 151<br>Er             | 152<br>Er       |                 |  |  |  |
| 140<br>Ho                                                    |                               | 140<br>Ho                   | Er<br>141<br>Ho               | 142<br>Ho               | 68<br>143<br>Ho                                                                                                                                                                                                     | 68<br>144<br>Ho                                            | 68<br>145<br>Ho                             | 68<br>146<br>Ho              | 68<br>147<br>Ho | 68<br>148<br>Ho | 68<br>149<br>Ho       | 68<br>150<br>Ho | 68<br>151<br>Ho |  |  |  |
| Ho 67<br>139<br>Dy                                           |                               | 07<br>139<br>Dy             | 07                            | 07<br>141<br>Dy         | 07<br>142<br>Dy                                                                                                                                                                                                     | 07<br>143<br>Dy                                            | 07<br>144<br>Dy                             | 67<br>145<br>Dy              | 07<br>146<br>Dy | 07<br>147<br>Dy | 07<br>148<br>Dy       | 07<br>149<br>Dy | 150<br>Dy       |  |  |  |
| Dy 66                                                        |                               | 138<br>Tb                   | 139<br>Tb<br>65               | 00<br>140<br>Tb<br>65   | OO         OO         144<br>e3         Eu Double dick for more           141         142         JP         1+           Tb         Tb         Delta (MeV)         -75.6216           65         65         U Vert |                                                            |                                             |                              | 5<br>b          | 146<br>Tb       | 00<br>147<br>Tb<br>65 | 148<br>Tb<br>65 | 149<br>Tb       |  |  |  |
| Gq                                                           | 136<br>Gd<br>64               | 137<br>Gd<br>64             | 138<br>Gd<br>64               | 139<br>Gd<br>64         | 140<br>Gd<br>64                                                                                                                                                                                                     | 141 Dec<br>G( Daug<br>64                                   | ay :<br>nt 144Gd<br>ghter 144Sm<br>Radiatio | 0.2 I S<br>LOO EC+ β+<br>DNS | 4<br>id         | 145<br>Gd<br>64 | 146<br>Gd<br>64       | 147<br>Gd<br>64 | 148<br>Gd<br>64 |  |  |  |
| 63 Eu                                                        | 135<br>Eu<br>63               | 136<br>Eu<br>63             | 137<br>Eu<br>63               | 138<br>Eu<br>63         | 139<br>Eu<br>63                                                                                                                                                                                                     | 140 <sup>Τγρι</sup><br>Ει <sup>ε+</sup><br>63 <sup>γ</sup> | e keV<br>5293<br>1660.3                     | %<br>79.7<br>10 9.6          | 3<br>iu         | 144<br>Eu<br>63 | 145<br>Eu<br>63       | 146<br>Eu<br>63 | 147<br>Eu<br>63 |  |  |  |
| Sm                                                           | 134<br>Sm<br>62               | 135<br>Sm<br>62             | 136<br>Sm<br>62               | 137<br>Sm<br>62         | 138<br>Sm<br>62                                                                                                                                                                                                     | 139<br>Sm<br>62                                            | 140<br>Sm<br>62                             | 141<br>Sm<br>62              | 142<br>Sm<br>62 | 143<br>Sm<br>62 | 144<br>Sm<br>62       | 145<br>Sm<br>62 | 146<br>Sm<br>62 |  |  |  |
| Pm                                                           | 133<br>Pm<br>61               | 134<br>Pm<br>61             | 135<br>Pm<br>61               | 136<br>Pm<br>61         | 137<br>Pm<br>61                                                                                                                                                                                                     | 138<br>Pm<br>61                                            | 139<br>Pm<br>61                             | 140<br>Pm<br>61              | 141<br>Pm<br>61 | 142<br>Pm<br>61 | 143<br>Pm<br>61       | 144<br>Pm<br>61 | 145<br>Pm<br>61 |  |  |  |
| Nd                                                           | 132<br>Nd<br>60               | 133<br>Nd<br>60             | 134<br>Nd<br>60               | 135<br>Nd<br>60         | 136<br>Nd<br>60                                                                                                                                                                                                     | 137<br>Nd<br>60                                            | 138<br>Nd<br>60                             | 139<br>Nd<br>60              | 140<br>Nd<br>60 | 141<br>Nd<br>60 | 142<br>Nd<br>60       | 143<br>Nd<br>60 | 144<br>Nd<br>60 |  |  |  |
|                                                              | 131<br>Dr                     | 132<br>Dr                   | 133<br>Dr                     | 134<br>Dr               | 135<br>Pr                                                                                                                                                                                                           | 136<br>Dr                                                  | 137<br>Dr                                   | 138<br>Dr                    | 139<br>Pr       | 140<br>Pr       | 141<br>Pr             | 142<br>Pr       | 143<br>Dr       |  |  |  |

#### Query tool

| NUCLIDES                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide Symbol Z N A Z range N range A range Z N A Z N A                                                                                                                                                |
|                                                                                                                                                                                                         |
| $\square Q(\beta) -26300 \le keV \le 29100 \qquad \square Q(EC) -30079 \le keV \le 25461 \qquad \square Q(\alpha) -91000 \le keV \le 12300$                                                             |
| □ Q(β- n) -39623 ≤ keV ≤ 30093 □ S(n) -10662 ≤ keV ≤ 107000 □ S(p) -5400 ≤ keV ≤ 23370 Angeli and                                                                                                       |
| ■ R0.1149 ≤ fm ≤ 5.9045                                                                                                                                                                                 |
| LEVELS - Bands - Decay Radiations                                                                                                                                                                       |
| $\square \text{ Energy } 0 \le \text{ keV} \le 47,300$                                                                                                                                                  |
| ■ Half Life 3.68E-8 fs $\leq$ T <sub>1/2</sub> $\leq$ 7.7E24 y Stable U stable weak order π any                                                                                                         |
| Magn. dipole $\mu$ -20 $\leq \mu_N \leq$ 38 Electr. quadrupole Q -219 $\leq$ barn $\leq$ 64 decay radiation                                                                                             |
| $\boxed{ \text{Decay radiation}} \text{ Energy } 0 \le \text{keV} \le 19,636 \text{ Intensity } 0 \le \% \le 100 \text{ type}_{\text{any}} \text{ process}_{-} \frac{\text{snew}_{-}}{\text{snew}_{-}}$ |
| β mean energy $0 \le \text{keV} \le 8,723$ Intensity $0 \le \% \le 100$                                                                                                                                 |
| Band: Head $0 \le \text{keV} \le 19,946$ J order $\pi$ any K $\pi$ any Alpha $\pi$ any K                                                                                                                |
| Ground state yrast Super Deformed Octupole Dipole Vibrational bands                                                                                                                                     |
| GAMMAS end level details                                                                                                                                                                                |
| $\square Energy  0.008 \le keV \le 18,128 \qquad \blacksquare End Level  U \le keV \le 40,000  J  order  \pi \text{ any}$                                                                               |
| Conv. Coef. $0E00 \le \alpha \le 1.3E12$ Total                                                                                                                                                          |
| $\square Multipolarity E0 \square weak NO mix \square Trans. Probab. W.u. 0E00 B(E0) 2.4E09 \square Mixing Ratio -180 \le \delta \le 4000$                                                              |
| Order by : Z, A                                                                                                                                                                                         |
| $\boxed{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                         |
|                                                                                                                                                                                                         |
| X axis: None Y axis: None I nlotting                                                                                                                                                                    |
| D.ABRIOLA ICTP. August 2012                                                                                                                                                                             |
|                                                                                                                                                                                                         |

#### Output example : Filter all nuclides with superdeformed bands



International Atomic Energy Agency



#### Plot example:

mass number versus mixing of E2 mixed gamma transactions from a level J 2` to a level J 2 in even-even nuclides – use log on Y axis

| NUCLIDES                                                                                                                                    | even - even              |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Nuclide Symbol Z N A Z range N range A range Z N A                                                                                          | ZNA                      |
|                                                                                                                                             |                          |
| $\square Q(\beta) -26300 \le Q_{\beta} \le 28500 \qquad \square S(n) -14800 \le S_n \le 233700 \qquad \square S(p) -10662 \le S_p \le 1187$ | 00                       |
| $Q(\alpha)$ -116192 ≤ Q <sub>α</sub> ≤ 12300 $R$ -0.1149 ≤ R ≤ 5.045                                                                        |                          |
| LEVELS                                                                                                                                      |                          |
| Energy $0 \le \text{keV} \le 47,300$                                                                                                        |                          |
| Decays ≤ % ≤                                                                                                                                | legenin                  |
| Half Life 3.68E-8 fs $\leq$ 1 <sub>1/2</sub> $\leq$ 7.7E24 y Stable                                                                         | starting level J         |
| $\square Magnetic Moment -20 \le \mu \le 31 \qquad \square Electric Moment -219 \le 0 \le 355$                                              | 2'                       |
| ■ Band: Head 0 ≤ keV ≤ 42,007 J order πany K πany Alpha πany                                                                                |                          |
| Ground state yrast Super Deformed Octupole Dipole Vibrational                                                                               |                          |
| GAMMAS end level 12                                                                                                                         |                          |
| □ Energy 0 ≤ keV ≤ 18,128                                                                                                                   |                          |
| Tend Level $0 \le \text{keV} \le 18,616$ J 2 order $\pi$ any $\square$ Rel. Intensity $0 \le I \le 7,456$                                   |                          |
| Conv. Coef. $1.94E-09 \le \alpha \le 1.23E10$ Shell any Tot. Conv. Coef. $0E00 \le \alpha \le 1.3E1$                                        | 2                        |
| Multipolarity E2 weak Yes mix Trans. Probab. W.u. 0E00 B(E2) 2.5E09 Mixing Ratio -18                                                        | $30 \le \delta \le 4000$ |
|                                                                                                                                             |                          |
|                                                                                                                                             |                          |
|                                                                                                                                             |                          |
| axis:Α Y axis:δ                                                                                                                             |                          |
| plot                                                                                                                                        |                          |
|                                                                                                                                             | nal Atomic Energy Agency |

#### Plot mass number versus mixing of E2 mixed gamma transactions from a level J 2` to a level J 2 in even-even nuclides – use log on Y axis



#### even-even



D.ABRIOLA ICTP, August 2012

International Atomic Energy Agency

# Outline

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools
- Conclusions

# Conclusions

- IAEA Nuclear Data Section (NDS)
- Coordination of the NSDD network
- NSDD-related activities
  - ENSDF evaluations / NSR compilations
  - Financial support for ENSDF evaluators and horizontal evaluation/compilation activities
- CRPs
  - Beta-delayed neutron emission
- Workshops
- Dissemination, new tools

# Conclusions

- There is a continued need of new ENSDF evaluators
- Would you be interested...?
- At the end of the Workshop talk to:



# Prof. Jag. K. Tuli

# Thank you







## **Data sources**: ENSDF + Radlist, AMDC

#### **Color code examples**

## Fission Yields



# Decay Mode



## Mass excess



# Half Life





# **Query tool**

| NUCLIDES                                                                                                                                                                                                                                                                                |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Nuclide         Symbol         Z         N         A         Z range         N range         A range         Z         N         A         Z         N         A                                                                                                                        |                 |
|                                                                                                                                                                                                                                                                                         | ]               |
| $\square Q(\beta) -26300 \le keV \le 29100 \qquad \square Q(EC) -30079 \le keV \le 25461 \qquad \square Q(\alpha) -91000 \le keV \le 123661$                                                                                                                                            | 00              |
| $\square Q(\beta - n) -39623 \le keV \le 30093 \qquad \square S(n) -10662 \le keV \le 107000 \qquad \square S(p) -5400 \le keV \le 23370$                                                                                                                                               | Angeli          |
| $\square R -0.1149 \le \text{fm} \le 5.9045 \qquad \square \text{ Atomic mass AM} \qquad \boxed{ -26300} \le \mu \text{ AMU} \le 29100 $                                                                                                                                                | 7 ligen         |
| LEVELS - Bands - Decay Radiations                                                                                                                                                                                                                                                       | and Audi        |
| $\square \text{ Energy } 0 \le \text{keV} \le 47,300$                                                                                                                                                                                                                                   |                 |
| $\Box \text{ Decays} = \frac{5}{2} = \frac{5}{2}$                                                                                                                                                                                                                                       | data            |
|                                                                                                                                                                                                                                                                                         |                 |
| ■ Magn. dipole µ -zu ≤ µN ≤ 56 Elecu: quadrupole Q -z19 ≤ barn ≤ 64                                                                                                                                                                                                                     | decay           |
| $\boxed{ \text{Decay radiation}}  \text{Energy}  0 \leq \text{keV} \leq \boxed{19,636}  \text{Intensity}  0 \leq \% \leq \boxed{100}  \text{type}_{\text{any}}  \text{process}  .$                                                                                                      | uoouy           |
| β mean energy 0 ≤ keV ≤ 8,723 Intensity 0 ≤ % ≤ 100                                                                                                                                                                                                                                     | radiation       |
| Band: Head $0 \le \text{keV} \le 19,946$ Jorder $\pi$ anyK $\pi$ anyAlpha $\pi$ any                                                                                                                                                                                                     |                 |
| Ground state vrast Super Deformed Octupole Dipole Vibrational                                                                                                                                                                                                                           | hande           |
| GAMMAS end level                                                                                                                                                                                                                                                                        | Danus           |
| $\square \text{ Energy } 0.008 \le \text{keV} \le 18,128 \qquad \qquad \blacksquare \text{ End L} \qquad \qquad \blacksquare \text{ of for for VOI } \text{rder } \pi \text{ any}$                                                                                                      |                 |
| Conv. Coef. $0E00 \le \alpha \le 1.3E12$ Total <b>Cetais</b>                                                                                                                                                                                                                            |                 |
| Multipolarity       E0       weak       No       mix       Trans. Probab. W.o.       0       0       -180 ≤ δ                                                                                                                                                                           | ≤ <b>4</b> 000  |
|                                                                                                                                                                                                                                                                                         |                 |
| $\mathbb{Z}$ $\mathbb{Z}$ $\mathbb{A}$ $\mathbb{N}$ $\mathbb{Q}(\beta)$ $\mathbb{Q}(\alpha)$ $\mathbb{Q}(\mathbb{E}\mathbb{C})$ $\mathbb{Q}(\beta-n)$ $\mathbb{S}n$ $\mathbb{S}p$ $\mathbb{R}$ $\mathbb{A}M$ $\mathbb{E}$ $\mathbb{T}1/2$ $\mathbb{U}$ $\mathbb{Q}$ $\mathbb{E}_{Fact}$ | d 🔲 Irad 🔲 Εβ   |
|                                                                                                                                                                                                                                                                                         |                 |
| Plot with ZVView                                                                                                                                                                                                                                                                        |                 |
| x axis: None < DIOTTING                                                                                                                                                                                                                                                                 | FAN             |
| D.ABRIOLA ICTP, August 2012 International Atomi                                                                                                                                                                                                                                         | c Energy Agency |

#### Output example : Filter all nuclides with superdeformed bands



## Tab-panel with details

| Nuclide | Levels | Gammas | Bands | Decay Radiation | Magn. Mom. | El. Mom. | Ther. Neutrons Capture | Cum. Fission Yields |
|---------|--------|--------|-------|-----------------|------------|----------|------------------------|---------------------|
|---------|--------|--------|-------|-----------------|------------|----------|------------------------|---------------------|

| Chick on his                | click on noclide symbol to show the rever schema |                         |                          |                            |                         |                         |                  |                      |                   |                        |  |
|-----------------------------|--------------------------------------------------|-------------------------|--------------------------|----------------------------|-------------------------|-------------------------|------------------|----------------------|-------------------|------------------------|--|
| Nuclide                     | Q <sub>β</sub> .<br>[keV]                        | Q <sub>a</sub><br>[keV] | Q <sub>EC</sub><br>[keV] | Q <sub>β- n</sub><br>[keV] | S <sub>n</sub><br>[keV] | S <sub>p</sub><br>[keV] | R<br>[fm]        | Mass Excess<br>[keV] | Binding<br>[keV]  | Atomic Mass<br>[µ u]   |  |
| 35 <b>Ar</b><br>18 18       | -12814.207 <i>345</i>                            | -6640.92 <i>3</i>       | -709.546 <i>46</i>       | -27129.95 <i>51</i>        | 15255.47 <i>75</i>      | 8506.99 <i>5</i>        | 3.3905 <i>23</i> | -30231.538 <i>27</i> | 8519.909 <i>1</i> | 35967545.107 <i>29</i> |  |
| 40 <mark>Ca</mark><br>20 20 | -14323.049 <i>2828</i>                           | -7039.76 <i>3</i>       | -1310.895 <i>60</i>      | -28745.01 <i>2400</i>      | 15635.00 <i>60</i>      | 8328.17 <i>2</i>        | 3.4776 <i>19</i> | -34846.387 <i>21</i> | 8551.304 <i>1</i> | 39962590.863 <i>22</i> |  |

# Visual map of filtered nuclides

Click on publide symbol to show the level sch







#### Plot example:

# mass number versus mixing of E2 mixed gamma transactions from a level J 2` to a level J 2 in even-even nuclides – use log on Y axis

| NUCLIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide Symbol Z N A Z range N range A range Z N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\square Q(\beta) -26300 \le Q_{\beta} \le 28500 \qquad \square S(n) -14800 \le S_n \le 233700 \qquad \square S(p) -10662 \le S_p \le 118700$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\square$ Q( $\alpha$ ) -116192 $\leq$ Q <sub><math>\alpha</math></sub> $\leq$ 12300 $\square$ R -0.1149 $\leq$ R $\leq$ 5.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\boxed{\qquad \text{Energy}} \qquad 0 \le \text{keV} \le 47,300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| □ Decays ≤ % ≤ □ Isospin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\square \text{ Half Life } 3.68E-8  \text{fs} \leq T_{1/2} \leq 7.7E24  \text{y}  \square \text{ Stable}  \boxed{V} \ J^{\text{T}} 2  \boxed{W}_{\text{weak order } 2}  \pi \text{ any}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\square Magnetic Moment -20 \le \mu \le 31 \qquad \square Electric Moment -219 \le Q \le 35.5 \qquad etarting lovel$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ■ Band: Head 0 ≤ keV ≤ 42,007 J order πany K πany Alpha πany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GAMMAS end level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Energy $0 \le \text{keV} \le 18,128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The set of |
| Conv. Coef.1.94E-09 $\leq \alpha \leq 1.23E10$ Shell anyTot. Conv. Coef.0E00 $\leq \alpha \leq 1.3E12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Multipolarity E2 weak Yes mix Trans. Probab. W.u. 0E00 B(E2) 2.5E09 Mixing Ratio $-180 \le \delta \le 4000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Order by: 7 A E2 mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Plot with ZVView                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| X axis:Α Y axis:δ<br>plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Plot mass number versus mixing of E2 mixed gamma transactions from a level J 2` to a level J 2 in even-even nuclides – use log on Y axis



Select β- n decay and plot A vs Branching Ration in log scale

| NUCLIDES                                             |                 |                 |                 |                 |                  |                  |                  |                  |                  |    |
|------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|----|
| Nucl                                                 | ide             | Syr             | nbol            | ZN              | Z N A            |                  |                  | Z range N range  |                  |    |
|                                                      |                 |                 |                 |                 |                  |                  |                  |                  |                  |    |
| □ Q(β) -26300 ≤ keV ≤ 29100 □ Q(EC) -30079 ≤ keV     |                 |                 |                 |                 |                  |                  |                  |                  |                  | V≤ |
| □ Q(β- n) -39623 ≤ keV ≤ 30093 □ S(n) -10662 ≤ keV ≤ |                 |                 |                 |                 |                  |                  |                  |                  | ′≤               |    |
| 🗖 R                                                  | -0.1            | 149 ≤ f         | m ≤ 5           | .9045           |                  | Atom             | ic mass          | S AM             |                  | •  |
| LEVELS - Bands - Decay Radiations                    |                 |                 |                 |                 |                  |                  |                  |                  |                  |    |
| 🔳 Ei                                                 | nergy           |                 | 0 ≤             | keV≤4           | 47,300           |                  |                  |                  |                  |    |
| V D                                                  | ecays           | B.R.            |                 | ≤ % ≤           | £                |                  |                  |                  |                  |    |
| β-                                                   | β- n            | β- 2n           | 2β-             | β- 3n           | β- 4n            | β- α             | β- F             | β- p             |                  |    |
| β+                                                   | 2β+             | β+ 2p           | β+ α            | β+ p            | β fission        |                  |                  |                  |                  |    |
| ec                                                   | 2ec             | ec β+           | ес р            | ec 2p           | ec 3p            | ec α             | ecαp             | ec F             | ec SF            |    |
| α                                                    | α?              | IT              | IT?             | SF              | SF β-            |                  |                  |                  |                  |    |
| з <sub>Н</sub>                                       | <sup>3</sup> He | <sup>8</sup> Be | <sup>12</sup> C | <sup>20</sup> O | <sup>20</sup> Ne | <sup>22</sup> Ne | <sup>24</sup> Ne | <sup>28</sup> Mg | <sup>34</sup> Si |    |
| р                                                    | n               | D               | G               | 2p              | Mg               | Ne               |                  |                  |                  |    |





D.ABRIOLA ICTP, August 2012

International Atomic Energy Agency

#### **NSDD** activities in the IAEA



Last Updated: 22-Otober-2010

International Atomic Energy Agency