

2358-6

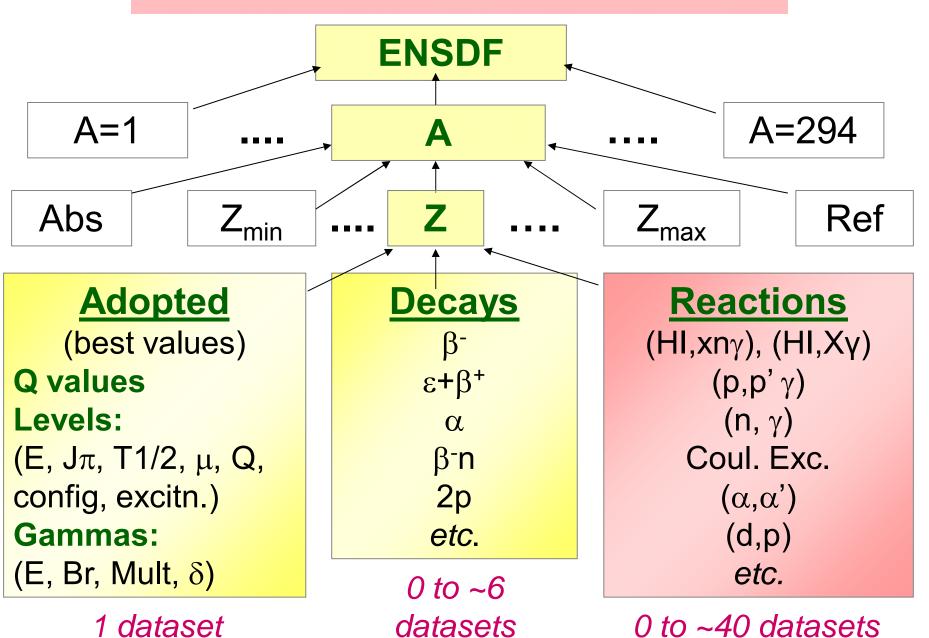
Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

Reaction Data Sets

C.M. Baglin

Lawrence Berkeley National Laboratory
U.S.A.


ENSDF – Reaction Data

Coral Baglin

Workshop on *Nuclear Structure and Decay Data: Theory and Evaluation* ICTP, Trieste, 6-17 August 2012

LAWRENCE BERKELEY NATIONAL LABORATORY

ENSDF Database Structure

Summary

Principal Categories of Reactions.

Reactions in which gammas are not detected:

Stripping and Pickup Reactions

Multi-particle Transfer Reactions

Charge-Exchange Reactions

Inelastic Scattering

Coulomb Excitation (particles detected)

Resonance Reactions ...

Reactions in which gammas <u>are</u> detected:

Summary of information available from γ -ray measurements

Inelastic Scattering

Nuclear Resonance Fluorescence

(light ion,xnyp γ)

(heavy ion,xnypγ)

Particle Capture

Coulomb Excitation (γ 's detected)

Gammas not detected

Measured Quantities of Interest:

- E(level) from particle energy spectrum or excitation function.
- L angular momentum transfer
- S, C²S spectroscopic factors
- β_{2,} β₄ deformation parameters (if model independent)
- Γ, Γ_i total or partial widths for level
- $B(E\lambda)$, $B(M \lambda)$ transition probabilities
- Jπ, T spin, parity, isospin

Stripping and Pickup

Examples:

Stripping: (d,p), (α ,³He), (pol d,p), (³He,d), etc.

Pickup: (p,d), (3 He, α), (t, α), etc.

Quantities to Record:

- E(level), deduced by authors from charged particle spectrum.
- L and S or C²S from authors' DWBA analysis:

```
(d\sigma/d\omega(\theta))_{exp}= (d\sigma/d\omega(\theta))_{DWBA} x N x C<sup>2</sup>S'
where S'=S (pickup) or
S'=S x (2J_f+1)/(2J_i+1) (stripping)
```

(dσ/dω for one angle should be given in suitably relabeled S field when spectroscopic-factor information is not provided by authors.)

• J from L±1/2 for polarised beam if vector analysing power shows clear preference between L+1/2 and L-1/2.

Relevant Documentation:

Target $J\pi$ (unless 0^+)

Spectrum resolution (FWHM, keV)

Normalisation factor for DWBA analysis

Range of angles measured, lab or c.m. (but specify which).

Stripping and Pickup, ctd.

Deformed Nuclides; α and lighter beams:

 $\frac{(d\sigma/d\omega(\theta))_{exp} / [(d\sigma/d\omega(\theta))_{DWBA} \times 2N] = c^{2}(jl) V^{2},}{(d\sigma/d\omega(\theta))_{exp} / [(d\sigma/d\omega(\theta))_{DWBA} \times 2N]} = c^{2}(jl) V^{2},$

where c is amplitude of Nilsson state wavefunction for transferred nucleon, V is fullness factor describing partial filling of target nucleus orbitals.

- The pattern of cross sections among rotational-band members may provide a characteristic fingerprint for a specific Nilsson configuration, enabling a set of levels to be assigned as specific J members of a band with that configuration if:
 - (i) the experimental fingerprint agrees well with that predicted by Nilsson-model wave functions, and
 - (ii) the fingerprint differs distinctly from those for other plausible configurations.

Example: $(d\sigma/d\omega(60^{\circ}))$ calculated (1997Bu03) for ²²⁶Ra(t, α) ²²⁵Fr:

Orbital:	1/2[400]	1/2[530]	1/2[541]	3/2[402]	3/2[651]	3/2[532]	Expt.	Mixed
J=3/2	23	14	1.5	103	0.0	0.7	~1.5	0.9
J=5/2	7.6	0.2	13	4.6	0.03	6.2	14	10
J=7/2	0.4	39	2.0	1.2	0.0	3.3	20	4.1
J=9/2	0.05	0.4	33	0.05	2.0	26	~45	49

Reality (not so simple!): 3/2[532] Coriolis mixed with 1/2[541] fits σ , energy.

Multi-particle Transfer

Examples:

$$(p,t), (\alpha,d), (t,p), (\alpha,p), (^{6}Li,d) \dots$$

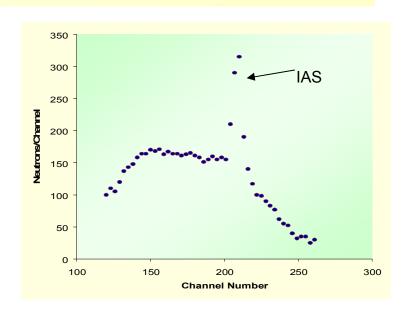
Quantities to Record:

- E(level)
- L if angular distribution can be fitted by a unique value

Deduced Quantities:

J π - from J(target)+L (vector sum) and $\pi_i\pi_f$ =(-1)^{Jf}, for strong groups only in two-neutron, two-proton or α -particle transfer.

(*i.e.*, pairs of identical particles can be assumed to be transferred in relative s state for **strong** groups).


Charge-Exchange Reactions

Examples:

 $(p,n), (^{3}He,t)$

Quantities of interest:

- E(level)
- Isobaric analog state information.

Inelastic Scattering

Examples:

(e,e'), (p,p'), (d,d'), (α , α ') (at projectile energies **above** the Coulomb barrier).

Quantities to Record:

- E(level)
- L if angular distribution is fitted by unique L value
- β 2, β 4 ... deformation parameters (if model independent); specify whether 'charge' or 'nuclear', if relevant (typically from (α , α ') or (e,e')).
- B(E λ), B(M λ) transition probabilities (typically from (e,e')).

Coulomb Excitation (particles detected)

Examples:

(p,p'), (d,d'), (α , α ') with projectile energy **below** Coulomb barrier.

Quantities to Record:

- E(level)
- B(Eλ) for excitation (i.e., B(Eλ)↑)
- Jπ:
 - determined if the excitation probability agrees with that calculated by Alder (1960Al23).
 - low energy Coulomb excitation is predominantly E2

Resonance Reactions

Examples:

(p,p), (p,X), (γ,n) ... (excitation function data, $\sigma(E)$, $d\sigma/d\omega(\theta,E)$)

Quantities of interest:

- E(level) calculate from SP+E(p)(c.m.) or give as 'SP+976.3', etc., where 976.3 is E(p)(lab) for resonance; don't use both notations within the same dataset.
- Ep at resonance can be given in relabeled 'S' or 'L' field.
- Partial widths can be given in comments or relabeled 'S' field.
- Is this an isobaric analog state? (If so, specify state of which it is the analog).
- Is this a giant resonance? (If so, which one?)
- Any $J\pi$ information that can be deduced.

Note: ENSDF is primarily concerned with bound levels, but...

includes all isobaric analog states, giant resonances, and unbound levels which overlap or give information on bound levels. We now show n resonance properties also (e.g., from 2006MuZX or recent nTOFwork).

Reactions with Gammas Detected

Measured Quantities of Interest:

- E_γ photon energy
- lγ relative intensity (or photon branching)
- α , α_{K} , ... electron conversion coefficients, usually from I(ce)/I γ ; sometimes from intensity balance (note: this gives α_{exp}).
- K/L, L1/ L3 ... ce subshell ratios
- A₂, A₄ ... Legendre polynomial coefficients characterizing angular distribution (γ(θ)) or angular correlation (γγ(θ)).
- DCO ratio directional correlation of gammas from oriented nuclei.
- Asymmetry ratio e.g., $I\gamma(\theta_1)/I\gamma(\theta_2)$
- Linear polarization
- Level T_{1/2} from γ(t), DSAM, RDM, centroid-shift, delayed coincidence, etc., if measured in that reaction (state method used).
- g-factor include if measured in that reaction

Reactions with Gammas Detected - ctd.

Deduced Quantities of Interest:

- E(level) from least-squares adjustment of E γ (GTOL), avoiding E γ for lines that have uncertain or multiple placements whenever possible. Note serious misfits.
- Band structure indicate via band flags for levels. (Note: life will be easier if a given band has the same band-flag character in each dataset in the nuclide!).
- Band configurations justify when possible; band parameters may be informative, especially for K=1/2 bands.
- $J\pi$ it may be desirable to indicate authors' values in the reaction dataset and add parentheses in *Adopted Levels* if insufficient (or <u>no</u>!) supporting arguments are available (but note major discrepancies).
- •Transition quadrupole moment (if authors give it; include on level comment record or in band description).
- M transition multipolarity
- δ mixing ratio ($\sqrt{(L+1)}$ -pole/(L-pole)), Krane-Steffen sign convention.

Gamma-ray Energies

- Give measured energy and uncertainty (i.e., do not correct for recoil energy loss).
- Specify source of data (unless obvious, e.g., if only one keynumber)
- Uncertainties: if authors give uncertainty as:
- (i) "0.3 keV for strong lines, 1 keV for weak or poorly resolved lines"; assign 0.3 to those which could be reasonably considered 'strong' and 1 to all others, but give authors' statement in general comment on E_{γ} and define the I_{γ} that you consider 'strong' (or assign 1 keV to all).
- (ii) "do not exceed 0.5 keV"; 0.5 could be assigned for all lines.
- (iii) If no uncertainty is stated, point that out in a general comment [for the purpose of deducing E(level) using GTOL, a default of 1 keV (adjustable by user via control record at head of dataset) will be used and this should be noted in a comment on level energy]
- If measured E_{γ} not available but G record is needed in order to give other information, deduce it from level energy difference and remove recoil energy loss; give no ΔE_{γ} and say where E_{γ} came from.

Gamma-ray Intensities

- Give relative intensities, if available (don't renormalise so strongest is 100).
- Don't mix data from different reactions, or data from same reaction at different energies, when entering RI on G records (use different datasets instead, or include in comments or tabulation).
- If branching ratios are measured independently (e.g., from $\gamma\gamma$ coincidences), quote these also (e.g., in a comment); one set of data may be more precise than the other.
- Give uncertainties whenever authors state them; if authors give both statistical and systematic uncertainties, show statistical on G record but state systematic in comment (so uncertainty in I_{γ} ratios is not distorted).
- If both prompt and delayed I_{γ} are given, use separate datasets for them or give one set under comments.
- For multiply-placed lines, specify whether quoted I_{γ} has been suitably divided between placements (& (undivided) or @ (divided) in column 77).

Conversion Coefficients

- Give measured α_K , α_L , etc., and subshell ratios (in comments or on continuation of G record); state how photon and ce intensity scales were normalised.
- Quote any experimental coefficients (usually α) obtained using intensity balance arguments (these are frequently buried in the text of a paper); specify as "from intensity balance at xxxx level", where relevant.
- Include α (theory) on G record (from BrIcc) when needed for calculation or argument (α (theory)+ α (pair) if E γ > 1022 keV).

y Linear Polarisation

 γ linear polarisation data may be available from Compton polarimeter measurements of relative $I\gamma$ in planes perpendicular and parallel to reaction plane.

Such data may distinguish between electric and magnetic radiations.

Angular Distributions

In as a function of angle θ with respect to beam direction: $\mathbf{W}(\theta) = \mathbf{1} + \mathbf{A}_2 \mathbf{P}_2(\cos \theta) + \mathbf{A}_4 \mathbf{P}_4(\cos \theta) + \dots$

- Include A₂, A₄ ...; these data are very important to evaluators and readers alike, as they provide information vital to transition multipolarity assignments.
- Remember that these are signed quantities.
- A₂, A₄ ... depend on ΔJ, mixing ratio and degree of alignment σ/J, where σ is half-width of Gaussian describing the magnetic substate population.
- σ/J is usually determined from measurements of W(θ) for known ΔJ=2 transitions. However, many authors assume σ/J=0.3, for practical purposes.
- σ/J affects only the magnitudes of A₂, A₄.
- For high-spin states, W(θ) is largely independent of J.
- Alignment is reduced if level lifetime is not small.
- W(θ) can determine ΔJ but not $\Delta \pi$.

Angular Distributions - ctd.

Typical values of A_2 , A_4 for θ relative to beam direction if $\sigma/J=0.3$ (from B. Singh, McMaster University)

ΔJ	Multipolarity	Sign of A ₂	Sign of A ₄	Typical A ₂	Typical A ₄
2	Q	+	-	+0.3	-0.1
1	D	-		-0.2	0.0
1	Q	-	+	-0.1	+0.2
1	D+Q	+ or -	+	+0.5 to -0.8	0.0 to +0.2
0	D	+		+0.35	0.0
0	Q	-	-	-0.25	-0.25
0	D+Q	+ or -	-	+0.35 to - 0.25	0.0 to -0.25

DCO Ratios

Directional Correlations of γ-rays from Oriented states of Nuclei

• If γ_K (known multipolarity) and γ_U (unknown multipolarity) are measured in coincidence using detectors at angles θ_1 and θ_2 to the beam:

DCO= $I(\gamma_U(at \theta_1))$ gated by $\gamma_K(at \theta_2))/I(\gamma_U(at \theta_2))$ gated by $\gamma_K(at \theta_1))$.

- Sensitive to ΔJ, multipolarity and mixing ratio; independent of Δπ.
- Gating transitions are frequently stretched Q, but stretched D may also be emplyed, so specify which was used.
- Authors frequently indicate expected DCO values for stretched Q and stretched D transitions for the geometry used. It is helpful to state these.
- Remember that identical values are expected for stretched Q and for D,
 ΔJ=0 transitions (although the latter are less common).

DCO Ratios - ctd.

Typical DCO values for θ_1 =37°, θ_2 =79°, σ /J=0.3 (B. Singh, McMaster U.)

ΔJ _γ ^{gate} , Mult	ΔJ_{γ}	Mult	Typical DCO
2, Q	2	Q	1.0
2, Q	1	D	0.56
2, Q	1	D+Q	0.2 to 1.3
2, Q	0	D	1.0
2, Q	0	D+Q	0.6 to 1.0
1, D	2	Q	1/0.56
1, D	1	D	1.0
1, D	0	D	1/0.56

Multipolarity

- L <u>and</u> $\Delta\pi$ may be determined from measured subshell ratios or conversion coefficients.
- L alone can be determined by angular distributions or DCO ratios or γ asymmetry ratios.
- $\Delta\pi$ may be determined by γ linear polarisation measurements.
- When transition strengths are calculable (T_{1/2} and branching known), **R**ecommended **U**pper **L**imits (RUL) can be used to rule out some multipolarities (*e.g.*, a stretched Q transition for which B(M2)_W exceeds 1 can be assigned as E2). Similarly, for a D+Q transition with large mixing, RUL may enable the rejection of E1+M2.
- Assign Mult when measured information indicates a clear preference for that assignment; otherwise, let $\gamma(\theta)$ or DCO data speak for themselves. (Exception: if no measurement exists but mult. is needed for some reason, use the [M1+E2], *etc.*, type of entry.)
- Mult determined for a doublet will be not reliable; it can be given in comment (with disclaimer), but <u>not</u> on G record.

Mixing Ratios

- Include on G record whenever available.
- Calculate from conversion electron data or $\gamma\gamma(\theta)$ using the program DELTA, or from subshell ratios.
- Rely on authors' deductions from $\gamma(\theta)$, DCO or nuclear orientation data.
- Note: In (HI,xn γ) studies, model-dependent values of δ are sometimes deduced from in-band cascade to crossover transition intensity ratios; these could be given in comments (stating relevant K) if considered really important, but should not be entered on G record.
- Check that correct sign convention was used by authors. Convert to Krane-Steffen if not, and take special care if uncertainties are asymmetric (-2.3 +4-2 becomes +2.3 +2-4 upon sign reversal).

Inelastic Scattering

 $(p,p'\gamma)$, $(n,n'\gamma)$, etc.; beam energies > Coulomb barrier.

Separate these datasets from those for (p,p'), (n,n') ... and from that for Coulomb excitation.

Information of interest: typically E_{γ} , I_{γ} , $\gamma(\theta)$; maybe γ linear polarisation.

Nuclear Resonance Fluorescence

 (γ,γ) and (γ,γ') measurements with Bremsstrahlung spectrum; low momentum transfer so excite low-spin states (mainly E1 and M1, but some E2 excitation).

- γ spectrum measured; areas of γ peaks at Ex₀ and Ex₁, combined with knowledge of N γ (Ex₀), yields scattering cross sections from which width and branching information may be obtained.
- γ asymmetry differentiates D and Q excitation
- γ linear polarization differentiates M and E

Nuclear Resonance Fluorescence - ctd.

(Integrated) scattering cross section I_s (eV b) is often given:

$$I_s = ((2J+1)/(2J_0+1)) (\Gamma \gamma_0 \Gamma \gamma_f / \Gamma \gamma) (\pi \hbar c / E \gamma)^2 W(\theta) / 4\pi$$

where J_0 is g.s. spin, J is spin of excited level, $\Gamma\gamma\cong\Gamma$ is its total width and $\Gamma\gamma_0$, $\Gamma\gamma_f$ its decay widths for γ decay to the g.s. and the final state f (for elastic scattering, $\Gamma\gamma_0=\Gamma\gamma_f$); W(θ) represents the normalised angular distribution. Data are often taken at 127° where W=1 for D transitions.

- Give Γ_{γ0}²/Γ values (extract if necessary) on L record (col. 65 (value),
 75 (uncertainty)); relabel field.
- If $\Gamma \gamma_f / \Gamma \gamma_0$ is measured, include relative branching on G records.

 Γ is calculable from:

$$(\Gamma \gamma_0^2 / \Gamma) / (\Gamma \gamma_0 / \Gamma)^2$$

using known branching, or under the assumption $\Gamma = \Gamma \gamma_0 + \Gamma \gamma_f$ (which needs to be stated).

• Then: $T_{1/2}$ (ps)= 0.456 / Γ (meV); include on L record.

Propagate uncertainties with care!

(Light Ion, xnypy)

(p,xnγ), (3 He, xnγ), (α ,pγ), etc.

- Separate from (HI,xnγ) studies, whenever practical.
- Separate from datasets in which gammas are not measured (e.g., do not combine (d,pγ) and (d,p)).

(Heavy Ion, xnypy)

- Relative intensities will be different for different reactions and also for a given reaction measured at different beam energies; in general, it will be simplest to use separate datasets for each study that provides significant lγ or branching data.
- (HI,xnγ) reactions tend to populate yrast (lowest energy for given J) levels or near-yrast levels; populated states tend to have spins that increase as the excitation energy increases.
- Use band flags to delineate deduced band structure. If authors give configuration for band, include this in band description.

(Heavy Ion, xnypy) - ctd.

- Note inconsistencies in γ order, postulated J π , configuration, etc., compared with other studies and especially with that in Adopted Levels, Gammas.
- Beware of multipolarity and $J\pi$ assignments for which <u>no</u> supporting measurements exist. Sometimes, unmeasured values inserted in order to generate a RADWARE band drawing, live on in the published table of data; these do <u>not</u> qualify as 'measured data'!
- Multipolarities determined as D, Q, D+Q, etc, by $\gamma(\theta)$ or DCO are best left this way in the reaction dataset unless definite arguments exist (e.g., from RUL) to establish $\Delta\pi$; otherwise 'D' (strong J π argument) and '(D)' (weak J π argument) become indistinguishable when written as, say, (M1).
- Watch for and report statements of coincidence resolving time (or equivalent) since this might place a limit on level lifetime, thereby enabling RUL to be used to reject $\Delta \pi$ =yes for a transition multipolarity.
- For K=1/2 rotational bands, the decoupling parameter may give a clear indication of the Nilsson orbital involved in the band configuration.

(Heavy Ion, xnypy) - ctd.

- For a deformed nucleus: if a cascade including $\Delta J=2$ and/or $\Delta J=1$ transitions is observed at high spin with regular energy progression, they can be assigned to a band with definite $J\pi$ assignments if at least one level $J\pi$ and one in-band transition multipolarity (E2 or M1(+E2)) can be assigned independently.
- For near-spherical nuclei: if a cascade of ΔJ =1 transitions is observed at high spin with regular energy progression, those transitions may be assigned as (M1) transitions within a common band. Exception: in rare cases, nuclei can have alternating parity bands (reflection asymmetry); for these, ΔJ =1, $\Delta \pi$ =yes cascades occur.
- Note, however, that octupole-deformed nuclei may exhibit an apparent band structure which is really two ΔJ=2 rotational sequences of opposite parity, connected by cascading E1 transitions.

Special Case:

Superdeformed band data are updated continuously in ENSDF by Balraj Singh (McMaster University). One should check ENSDF as one finishes one's mass chain evaluation to be sure no SD-band data were added since the chain was downloaded for revision.

Capture Reactions

 (p,γ) , (n,γ) E=thermal, (n,γ) E=res, etc.

- Use separate datasets for thermal and resonance n-capture data.
- Primary and secondary transitions usually appear in the same dataset (even if their intensities require different normalisations).
- The $J\pi$ of the thermal neutron capture state(s) is $J\pi$ (target)±1/2 (i.e., s-wave capture is assumed).
- In thermal neutron capture, the multipolarity of a primary γ is E1, M1, M1+E2 or E2.
- For resonance capture, ENSDF now includes the resonances and their <u>properties</u>, in addition to the bound states fed, the interconnecting gammas and any conclusions concerning level $J\pi$.
- In average resonance n capture, inclusion of primary gammas and their reduced intensities (which carry information on final state $J\pi$) is recommended.

Coulomb Excitation

• If authors determine matrix element values, give them in comments and calculate $B(E\lambda)$ using

$$B(E\lambda;i\rightarrow f) = |\langle M(E\lambda)\rangle|^2 / (2J_i+1)$$
 where J_i is g.s. spin.

- If authors give B(Eλ)↓, convert it to B(Eλ)↑ for inclusion with level information. (B(Eλ; i→f)) = B(Eλ: f→i) x (2J_f+1)/(2J_i+1)).
- In the strongly-deformed region, a cascade of E2 transitions with enhanced transition probabilities (B(E2)_W > 10) provides definitive evidence for a rotational band and for the sequence of J π values, provided the J π of one level is known independently.
- Calculate level $T_{1/2}$ from $B(E\lambda)$ and adopted γ -ray properties when possible.
- Occasionally, mixing ratio or nuclear moment information can be extracted from matrix elements.
- •Clearly indicate the direction for any B(E λ) values given.