

2358-17

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation

6 - 17 August 2012

Experimental Nuclear Physics II

G. Mukherjee Variable Energy Cyclotron Centre Kolkata India

International Centre for Theoretical Physics

Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory and Evaluation

Experimental Nuclear Physics II

Gopal Mukherjee Variable Energy Cyclotron Centre Kolkata, India

Computer does << everything >>

!! Until Switching position **!!**

I am very happy to learn that the computer understands the problem, but I would like to understand it too. Eugene Wigner

Don't let your mouse to control your imagination

Some Useful Books

"Handbook of nuclear spectroscopy", J. Kantele, 1995

"Radiation detection and measurements", G.F. Knoll, 1989

"In-beam gamma-ray spectroscopy", H. Morinaga and T. Yamazaki, 1976

"Gamma-ray and electron spectroscopy in Nuclear Physics", H. Ejiri and M.J.A. de Voigt, 1989

"Techniques in Nuclear Structure Physics", J.B.A. England, 1964

"Techniques for Nuclear and Particle Physics Experiments", W.R. Leo, 1987

"Nuclear Spectroscopy and Reactions", Ed. J. Cerny, Vol. A-C

"Alpha-, Beta- and Gamma-ray Spectroscopy", Ed. K. Siegbahn, 1965

"The Electromagnetic Interaction in Nuclear Spectroscopy", Ed. W.D. Hamilton, 1975

Plenty of information on the Web

Courtesy: F.G. Kondev

If you want to "see" the structure of a nucleus look through the "window" of γ -ray spectroscopy

γ -ray spectroscopy and nuclear structure

Energy levels

Energy, Ang. Mom

How do nuclei respond when energy and angular momenta are increased ?

- What are different modes of excitations
- Are all the nuclei Spherical ? How can one experimentally determine ?
- Validity of Nuclear Model predictions

We can detect these gamma rays, measure their energies, intensities, angular distribution etc. and establish a level scheme

This gives information about the structure of a nucleus, modes of nuclear excitation and much more...

γ -ray spectroscopy and the structure of a nuclei

Modes of excitation in nuclei

Single particle excitation

(in spherical nuclei)

 209 Bi (Z = 83, N = 126) a spherical nucleus.

unpaired nucleons determine the spin and parity of a nuclear state.

M. Lipoglavsek et al, PLB 593 (2004) 61

Recent Trends in Nuclear Structure Studies:

- limits of stability
- shell structure far from stability
- halo nuclei
- exotic radioactivities
- exotic excitations
- nuclear astrophysics
- facility upgrades

Many of these need Radioactive Ion (Rare Isotope) Beams

RIB

Physics with Radioactive Ion Beams (RIB)

The future

Some of the Interesting aspects

Knowing the Limits

- Drip lines and superheavies
- P-rich and N-rich doubly magic nuclei e.g ¹⁰⁰Sn, ⁷⁸Ni, ¹³²Sn

Change in shell structure in nuclei

- Change (weakening) in the Spin-Orbit Interaction
- Change in magic numbers
- Structural change in nuclei.
 - Shape transition in isotopic chain.
- Astrophysical importance
 - R-process path
 - Waiting point nuclei

Shell gaps beyond Z=82 and N=126

(MeV

E²⁺

8

Excitation energy of 2^+ (E_{2+}) state in even-even nuclei is a measure of gap/ deformation Large E₂₊ : Large gap in SPE (spherical) Small E₂₊ : Small gap in SPE (deformed)

New Magic Numbers in light nuclei

Island of Inversion

For the heavier nuclei as well ...

Ways to reach the neutron rich nuclei

- Deep Inelastic Collision
- ► Fission
- Spontaneous fission: nuclei with large N Z
 Induced fission: nuclei with moderate N Z
 Multi-fragmentation
 Fusion with RIB.

Nuclear Reactions

Fusion Fission reaction

Deep Inelastic reaction in Inverse Kinematics

Higher N/Z + Lower N/Z \rightarrow Equilibration of N/Z

Formation of excited states of projectile like or target like nuclei Forward focused and high velocity Gamma rays are Doppler shifted

Identification of nuclei of interest Spectrometer + Focal plane detection system High efficiency gamma detector array with large granularity

VAMOS + EXOGAM at GANIL, France

VAMOS + EXOGAM at GANIL, France

VAMOS + EXOGAM at GANIL, France

Spectroscopy of n-rich fp shell nuclei

z	48Cr	49Cr	50Cr	51Cr	52Cr	53Cr	54Cr	55Cr	56Cr	57Cr	58Cr	59Cr	60Cr	61Cr	62Cr	63Cr	64Cr
	47V	487	497	507	51V	52V	53V	54V	55V	567	577	58V	59V	607	61V	627	637
22	46Ti	47Ti	48Ti	49Ti	50Ti	51Ti	52Ti	53Ti	54Ti	55Ti	56Ti	57Ti	58Ti	59Ti	60Ti	61Ti	62Ti
	45Sc	46Sc	47Sc	48Sc	49Sc	50Sc	⁵¹ Sc	⁵² Sc	⁵³ Sc	54Sc	55Sc	568c	578c	588c	59Sc	60Sc	61Sc
20	44Ca	45Ca	46Ca	47Ca	48Ca	49Ca	⁵⁰ Ca	⁵¹ Ca	⁵² Ca	53Ca	54Ca	55Ca	56Ca	57Ca	58Ca		
	43K	44K	45K	46K	47K	48K	⁴⁹ K	⁵⁰ K	51K	52K	53K	54K	55K	56K			
18	42Ar	43Ar	44Ar	45Ar	46Ar	⁴⁷ Ar	¹⁸ Ar	49Ar	50Ar	51Ar	52Ar	53Ar					
	41Cl	42C1	43C1	44Cl	45C1	46Cl	47C1	48C1	49Cl	50C1	51Cl						
16	40S	41\$	428	438	44\$	458	465	47\$	48\$	495							
	24		26		28		30		32		34		36		38		N

DIC around Fermi energy : MARS and BIGSOL @ TAMU

Study of projectile fragment distributions from peripheral to mid-peripheral collisions @ 15-25 MeV/ nucleon:

enhanced production of neutron-rich nuclei

⁸⁶Kr(25MeV/u) + ⁶⁴Ni, ¹²⁴Sn, ¹¹²Sn

G.A Souliotis et al., PLB 543 163 (2002), PRL 91 022701 (2003)

Ways to reach the neutron rich nuclei

Deep Inelastic Collision

► Fission

Spontaneous fission: nuclei with large N - Z
Induced fission: nuclei with moderate N - Z
Multi-fragmentation
Fusion with RIB.

Production of RIB

Spontaneous fission: nuclei with large N - Z
Induced fission: nuclei with moderate N - Z

Multi-fragmentation

Spallation

Argonne National Laboratory: CARIBU & Energy Upgrade & HELIOS: Unique Synergy

- Fission products of ²⁵²Cf spontaneous fission stopped in gas and accelerated
- CARIBU gives access to exotic beams not available elsewhere.
- Physics with beams from CARIBU (1 & 2 nucleon transfer reactions) needs the new energy regime opened by the Energy Upgrade (12 MeV/u).
- Solenoid Spectrometer greatly expands the effectiveness of both the fission fragment beams and the existing in-flight RIB program at these higher energies.

Courtesy: E. McCutchan

Production Mechanisms – High Energy

- Fragmentation (used at NSCL, GSI, RIKEN, GANIL, FRIB)
 - Projectile fragmentation of high energy (>50 MeV/A) heavy ions
 - Target fragmentation of a target with high energy massive ion. In the heavy ion reaction mechanism community this would include intermediate mass and target fragments.
- Spallation (ISOLDE, TRIUMF-ISAC, EURISOL, SPES, ...)
 - Name comes from spalling or cracking-off of target pieces.
 - Major ISOL mechanisms, e.g. ¹¹Li made from spallation of Uranium.
- Fission (HRIBF, ARIEL, ISAC, JYFL, ...)
 - There is a variety of ways to induce fission (photons, protons, neutrons (thermal, low, high energy)
 - The fissioning nuclei can be the target (HRIBF, ISAC) or the beam (GSI, NSCL, RIKEN, FAIR, FRIB).
- Coulomb Breakup (GSI) At beam velocities of > 200 MeV/u the equivalent photon flux is so high the GDR excitation cross section is many barns.
- Charge Exchange (GSI, NSCL, FRIB) a neutron or proton can change its charge with a proton or neutron; cross sections can be ≈mb at >100 MeV/u

Methods of Production of RIB

- Isotope separator Online (ISOL) collision, stopped products reaccelerated

- In flight high energy collision, fragments "fly" forward

Methods of Production of RIB

Production of Rare Isotopes in Flight

E > 50 MeV/nucleon

1. Accelerate heavy ion beam to high energy and pass through a thin target to achieve random removal of protons and neutrons in flight

Example: RIB facilities at GANIL

Example: In-Flight Production at NSCL

D.J. Morrissey, B.M. Sherrill, Philos. Trans. R. Soc. Lond. Ser. A Math Phys. Eng. Sci 356, 1985 (1998).

Courtesy: E. McCutchan

RIB Facility at VECC, Kolkata

Comparison of the two methods of RIB Production

ISOL Type:

- > Low medium energy
- > Nuclei having larger half-life (~ ms and higher)
- > pure beam

In Flight:

- > Higher energy
- \succ Nuclei having smaller half-life (~ μ s)
- > Cocktail beam

Experimental Challenges with RIB

What Challenges:

Low Intensity (typically 4 to 7 orders of magnitude less than SIB's)

- Short Half-life
- Beam Contaminants
- $\ensuremath{\mathbb{J}}$ High β and γ background : Beam is Radioactive !!

• *How to cope with those:*

 ¹ Maximize detection efficiency: Active Target
 ¹ Beam identification on event-by-event basis: △E-E. △E-ToF
 ¹ Correlated events only: Coincidence measurements with
 charged particles, beam particles, recoils, recoil decays etc...

Inverse kinematics and large velocity of recoiling Nucleus:

⇒ Kinematic focusing: Reaction products are forward peaked ⇒ High velocity of recoils: Large Doppler shift of γ -rays.

Detection Requirement

✓ Beam identification:

- ΔE -E, ΔE -ToF measurements: IC, MCP
- ✓ Recoil Separation and Identification:
 - Large Acceptance Spectrometer, Focal plane detector system (DC, IC, SeD, Si, Csl)

✓ Gamma Ray Detection:

- High efficiency, Good Doppler correction: Granular detectors: EXOGAM, AGATA, GRETA, INGA-II
- ✓ Correlated particle detection:
 - p, α, n detection: Auxiliary detectors

Example: Excited states in Nuclei in the Island of Inversion Experiment using cocktail beam at GANIL

Production of RIB around ³⁴Si and ³²Mg: (Fragmentation technique) Primary beam: ³⁶S (77 MeV/A) Primary Target: ~ 1gm/cm² Ta (SISSI) Selection: α- spectrometer Energy: ~ 30 MeV/A

Beam identification

15	P 27 0.26s	P 28 0.2703≤	P 29 4.14s	P 30 2.498m	P 31 100	P 32	P 33 25.34d	P 34 12.43≤	P 35 I
14	Si 26 2.234≤	Si 27 4.16s	Si 28 92.2297	Si 29 4.6832	Si 30 3.0872	Si 31	Si 32	Si 33 6.18≤	Si 34 (***********************************
13	Al 25 7.1835	Al 26 7.4e+05y	Al 27	Al 28 2.241m	Al 29 6.56m	Al 30 3.65	Al 31 0.644s	Al 32 0.0335	Al 33 1
12	Mg 24 78.99	Mg 25	Mg 26 11.01	Mg 27 9.458m	Mg 28 20.91h	Mg 29 1.3s	Mg 30 0.335s	Mg 31 0.235	Mg 32
11	Na 23	Na 24	Na 25 59.1s	Na 26 1.0725	Na 27 0.3015	Na 28 0.0305s	Na 29 0.04495	Na 30 0.0485	Na 31 0.0175
10	Ne 22	Ne 23 37.245	Ne 24 3.38m	Ne 25 0.6025	Ne 26 ø.23s	Ne 27 0.0325	Ne 28 ø.ø19s	Ne 29 0.0156s	Ne 3(
9	F 21 4.158s	F 22 4.235	F 23 2.235	F 24 0.345	F 25 0.05s	F 26 0.00965	F 27 0.0052s		F 29 m 0.00245
8	0 20 13.51s	0 21 3.425	0 22 2.25s	0 23 0.0825	0 24 0.065s		0 26 0.00568s		

Population of excited states: Target: CD_2 (30 mg/cm²) Mechanism: Reactions like (d,d'), (d,³He), (d,t) ...etc.

Discovery of ⁴⁰Mg and ⁴²Al @NSCL

In 2007, exotic neutron-rich nuclei (⁴⁰Mg and ⁴²Al) have been discovered at NSCL, in the ⁴⁸Ca + ⁹Be reaction (≈10days beam time).

Upcoming facilities for High Intensity RIB

FAIR at GSI http://www.fair-center.eu/

SPRIL-2 at GANIL http://www.ganil-spiral2.eu/spiral2

FRIB at NSCL http://www.frib.msu.edu/

End of lecture-1