

2359-13

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter

13 - 24 August 2012

Ion beam lithography - I

Paolo Olivero University of Turin Italy

Ion beam lithography - I

Paolo Olivero

Physics Department NIS Centre of Excellence University of Torino

INFN Section of Torino

CNISM Consortium

olivero@to.infn.it

ICTP-IAEA Workshop, Trieste, 13-24 August 2012

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - \rightarrow keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - \rightarrow other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

Outline

Introduction

Ion-matter interaction

 \rightarrow MeV ions

- \rightarrow keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

1 MeV H⁺ in Si

Longitudinal range

ION RANGES Ion Range = 16.5 um Skewness = -2.7748(AT0MS/cm2)Straggle = 4554 A = 25.4757Kurtosis 10000 8000 $\overline{}$ 6000 (ATOMS/cm3)4000 ¢ ò 2000 Silic 0 - Target Depth -20 um 0 A

Lateral range

1 MeV H⁺ in Si

Electronic energy loss

IONIZATION /Angstrom IONS RECOILS 10 8 eν \sim 6 ٥Q ٥0 0 1 4 \geq erg 2 Εn 0 - Target Depth -20 um 0 A **(***i***)** : SRIM Monte Carlo code

Nuclear energy loss

1 MeV H⁺ in Si

Sputtering yield: ~0 atoms / ion

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions

\rightarrow keV ions

- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

30 keV Ga⁺ in Si

Longitudinal range

Lateral range

200

160

120

80

40

30 keV Ga⁺ in Si

Sputtering yield: ~2.17 atoms / ion

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

Conventional lithography techniques

Lithography in positive and negative resists

Chain Scission

Cross linking

Conventional lithography techniques

Photolithography

mask aligner (λ=365 nm)

photoresists:PPMA, PMGI, SU-8, etc.very-large-scale integration (VLSI)minimum feature size: $ND = k_1 \cdot \frac{\lambda}{NA}$ depth of focus: $D_f = k_2 \cdot \frac{\lambda}{NA^2}$

Conventional lithography techniques

Electron-beam lithography

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

as for EBL:

- scanning focused/collimated beam
- mask-less direct writing
- typical EBL resists

Processes -	 ion implantation (doping, luminescent centers,)
	 change in chemical reactivity in a latent image
	 local modification of physical (electrical, optical, magnetic,) properties

Tools $-\begin{cases} \bullet \text{ electronic interaction: ionization} \rightarrow \text{chemical modification} \\ \bullet \text{ nuclear interaction: damage} \rightarrow \text{structural modification} \end{cases}$

Key issue: beam-target interaction

- ~nm beam focusing
- low lateral straggling
- low longitudinal straggling
- tunable penetration depth (ion energy & species)
- lower emission of high-energy secondary electrons (δ rays): no proximity effects

Beam-target interaction: particularly relevant in shallow regions

in PMMA

150

200

300

350

400

450

500

-50

0

Lateral distance (nm)

50

100

(mn) dpth (nm)

500 keV Protons

10-2

10-4

10-6

10-

10

10⁻¹²

10-14

10-16

10-18

10-20

DEEP Monte Carlo code

Unique capabilities offered by IBL

- High penetration depth \rightarrow High aspect-ratios
- Low lateral straggling
- Low longitudinal straggling
- Focusing, no proximity effects
- End-of-range peak
- **Structural modification**

- → Smoothness in lateral features
- → Multi-level structures
- \rightarrow High resolution
- → Depth resolution
- → Functionalization of physical properties

Proton beams: ideal in terms of:

focusing penetration profile

Proton Beam Writing (PBW)

P-LIGA (Proton – Lithographie, Galvanoformgung, Abformung: Proton – Lithography, Electroplating and Molding)

In several specific applications, other ions species (He, C, N, O, Si, Ar, Br, Au, ...) were employed

Scanning μ -beam system

@: CIBA – National University of Singapore

Programmable aperture system

@: University of Jyväskylä

Ion projection system

MICROELECTRONIC ENGINEERING

High Energy Implantation by Ion Projection

Microelectronic Engineering 41/42 (1998) 257-260

J. Meijer and A.Stephan

Physik mit Ionenstrahlen Ruhr-Universität Bochum, 44780 Bochum, Germany

Proximity mask system

NOM B Beam Interactions with Materials & Atoms

Nuclear Instruments and Methods in Physics Research B 132 (1997) 430-438

Deep light ion lithography in PMMA - A parameter study

F. Schrempel *, W. Witthuhn

Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

Received 3 March 1997; revised form received 4 June 1997

Contact mask system

@: CIBA – National University of Singapore

Scanning beams vs masks

Scanning beam systems	Mask-based systems
:-) Fast pattern definition	:-(Slow pattern definition
:-(Serial & slow irradiation	:-) Fast & parallel irradiation

:-) High resolution

:-(Mask scattering & heating

:-(Limited scan field

:-) Broad scan field

(Some of the many) MeV-IBL setups around the world

Outline

Introduction

- Ion-matter interaction
 - → MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - \rightarrow keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

Focused ion beam (FIB) direct milling

schematics

typical FIB setup

FIB column

Focused ion beam (FIB) direct milling

Dual beam systems

FIB: key issues

Range of ion sources

Wien filter setup

Sample coating and/or electron flooding

Sample charging

Material redeposition

Enhanced etching, limiting aspect ratio

35
Ion-beam lithography: keV ions

Other FIB processes

Gas-assisted FIB etching

Gas-assisted deposition

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - \rightarrow single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

Material	Туре	Fluence	Smallest	Reference
		(nC/mm^2)	structure (µm)	
PMMA	Pos.	80-150	0.03	$Singapore^1$
PMGI	Pos.	150	1.5	Singapore ²
SU-8	Neg.	30	0.06	Singapore ³
HSQ	Neg.	30	0.02	Singapore ⁴
TiO_2 (Sol-Gel)	Neg.	8000	5	Singapore ⁵
WL-7154	Neg.	4	0.8	Singapore ⁵
TADEP	Neg.	300	0.28	Singapore ⁶
DiaPlate 133	Neg.	10	10	CAFI ⁷
ADEPR	Neg.	125-238	5	Debecen ⁸
ma-N 440	Neg.	200	0.4	Leipzig ⁹

Positive process: polytetrafluoroethylene (PTFE)

Negative process: SU-8, DiaPlate 133

Negative process: SU-8, DiaPlate 133

@ : Ion Beam Analysis Center – CAFI

High-aspect-ratio structures

Three-dimensional structures

Three-dimensional structures

@ : Ion Beam Analysis Center – CAFI

Three-dimensional structures

@ : LIPSION – University of Leipzig

PMMA-on-PMMA microchannels

thermal bonding process

PMMA-on-PMMA microchannels

thermal bonding process

Low-loss optical waveguides in polymer

key fabrication issue: lateral smoothness

Metallic nano-electodes with lift-off method

@: CIBA – National University of Singapore

Metallic micro-grids

@: Lund Institute of Technology, Sandia National Laboratory

Metallic micro-grids

@: Lund Institute of Technology, Sandia National Laboratory

High-aspect-ratio microfluidic channels

fluence study

High-aspect-ratio microfluidic channels

final structures

Buried microfluidic channels

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists

\rightarrow silicon

- → other materials
- → single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

High defect region

@ : Physics Department – University of Torino, LIBI – Ruđer Bošković Institute 57

Micro-rod arrays

channeling implantation

@ : CIBA – National University of Singapore

Three-dimensional structures

@: CIBA – National University of Singapore

@ : CIBA – National University of Singapore

Free-standing waveguides

@: CIBA – National University of Singapore

Cantilever MEMS structures

single layer (2.1 MeV Au)

double layer (2.1 MeV Au, 1.5 MeV C)

@: Advanced Machinery Department – AIST

- electrochemical etching in HF at different currents → different porosity → different refractive index (1.2 – 3)
- electrochemical etching in HF at alternating currents → alternating layers of different refractive index
- Bragg law: $n \cdot \lambda = 2 \cdot d \cdot \sin(\theta)$

- electrochemical etching in HF at different currents → different porosity → different refractive index (1.2 – 3)
- electrochemical etching in HF at alternating currents → alternating layers of different refractive index
- Bragg law: $n \cdot \lambda = 2 \cdot d \cdot \sin(\theta)$
- different fluence \rightarrow different refractive index modulation
- @: CIBA National University of Singapore

- electrochemical etching in HF at variable current
- modulation of the refractive index (1.2 3)

Bragg-cladding bulk waveguide

- electrochemical etching in HF at variable current
- modulation of the refractive index (1.2 3)

Bragg-cladding bulk waveguide

- electrochemical etching in HF at variable current
- modulation of the refractive index (1.2 3)

Bragg-cladding bulk waveguide

@ : CIBA – National University of Singapore

Local modification of the refractive index \rightarrow Distributed Bragg reflector

@: CIBA – National University of Singapore

- 0.2 MeV H⁺, 0.35 MeV H⁺
 - electrochemical etching in HF

Four implantation energies, 2-D mask geometry → Pixel array

@ : CIBA – National University of Singapore

Refractive index modulation with a scanning microprobe

"The Red Armchair", Picasso (1931)

@: CIBA – National University of Singapore

Refractive index modulation with a scanning microprobe

"The Dance", Matisse (1910)

@: CIBA – National University of Singapore
MeV Ion-beam lithography: Silicon

Charge Collection Efficiency modulation with a scanning microprobe

P. Mondrian

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - \rightarrow other materials
 - → single ion tracks
- keV ion beam lithography
 - → FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

Gallium Arsenide

Negative process based on the modulation of the material sensitivity to reactive ion etching

@ : Department of Physics – University of Surrey

Indium Phosphide

Negative process based on the modulation of the material sensitivity to electrochemical etching (\rightarrow Si)

@: LIPSION – University of Leipzig

Agar gel

Positive process with 2.25 MeV H⁺ ions Agar-free regions: cell adhesion on underlying Petri dish

Modulation of the refractive index by H⁺-induced damage

Photo-sensitive glass (Foturan[™])

Modulation of the refractive index by 2 MeV H⁺-induced damage

LiNbO₃ (non-linear optics applications)

Modulation of the refractive index by 1.6-2.2 MeV O³⁺ induced damage

@: School of Physics and Microelectronics – Shandong University

Modulation of the refractive index by 6 MeV O³⁺ induced damage

Lift-off in sapphire based on He⁺ ion implantation

Positive process based on change in reactivity to wet chemical etching

@: Swiss Federal Institute of Technology

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials

\rightarrow single ion tracks

- keV ion beam lithography
 - → FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope

- Tool: single Swift Heavy Ions (SHI)
- Instantaneous & localized release of energy in the material thermal spike coulomb explosion
- Spike: $\varnothing \sim 10$ nm, L $\sim 10^1 10^2 \mu m \rightarrow high aspect ratio (up to 1:10⁴) nano-wires$
- Ideal samples: organic polymers high electrical & thermal resistivity → semiconductors, insulators crystals: transition to an amorphous phase
- Tracks: overlapping lumps of modified material: dE/dx → continuous/discontinuous tracks

- Current flowing through a 30-µm-thick polycarbonate membrane with 5 tracks
- Solution: ~2.5 M NaOH + 5% methanol
- Applied voltage: 0.5 V
- Quadratic increase after breakthrough
- @ : Gesellschaft für Schwerionenforschung mbH, Darmstadt

- Equivalent pore diameter vs.time
- Linear increase after breakthrough

Track etching

- Radial etch rate vs. time
- 5 peaks corresponding to the 5 tracks

Tip enhanced electric field

- Increasing etching rate as the residual thickness decreases
- Tracks develop in sequence

Porous membranes for counting and seizing cells, molecules and nanoparticles

Porous membranes for counting and seizing cells, molecules and nanoparticles

Porous membranes for counting and seizing cells, molecules and nanoparticles

Porous membranes for detection of DNA strands

Spike duration \rightarrow length of the DNA strand

@ : Kavli Institute of Technology – Delft University

Mica nano-masks for high-resolution single ion implantation

Mica nano-masks for high-resolution single ion implantation

Single 1 MeV N⁺ ion implantation

Ordered nanopores in TiO₂ by SHI implantation through a porous anodic alumina mask

Porous Anodic Alumina (PAA)

Ordered nanopores in TiO₂ by SHI implantation through a porous anodic alumina mask

Porous Anodic Alumina (PAA)

anodic oxidation of Al in presence of acidic electrolytes

- Broad implantation of 25 MeV Br⁷⁺ ions
- Wet chemical etching in HF

@: Material Science Institute of Madrid

Ordered nanopores in TiO₂ by SHI implantation through a porous anodic alumina mask

Porous Anodic Alumina (PAA)

in presence of acidic electrolytes

- Broad implantation of 25 MeV Br⁷⁺ ions
- Wet chemical etching in HF
- @: Material Science Institute of Madrid

Templates for nanowires growth

- Single ion tracks
- Electrochemical etching
- Metal deposition
- Metal electro-deposition
- @ : Gesellschaft für Schwerionenforschung, Darmstadt

1:100 Cu nanowire

Templates for nanowires growth

- Single ion tracks
- Electrochemical etching
- Metal deposition
- Metal electro-deposition
- @ : Gesellschaft für Schwerionenforschung, Darmstadt

Nanowire array

tip-enhanced electro-deposition

Templates for nanowires growth

- Single ion tracks
- Electrochemical etching
- Metal deposition

Compositionally modulated nanowire (→ magnetometry, spintronics, ...)

- Modulated electro-deposition in a mixed electrolyte
- @: Acreo Research Institute & Seagate Technology

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - → single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope 100

keV IBL: FIB milling

TEM sample preparation

Devices cross-sectioning

Nano-tips

Photonic crystals

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - → single ion tracks
- keV ion beam lithography
 - \rightarrow FIB milling
 - → FIB-assisted deposition
 - → Helium-ion microscope 102

keV IBL: FIB-assisted deposition

TEM sample preparation

Nano-contacting

Cross-section lift-out

Advertising stuff

103

keV IBL: FIB-assisted deposition

Nanoelectromechanical devices with DLC deposition

@ : School of Engineering – University of Tokio

Outline

Introduction

- Ion-matter interaction
 - \rightarrow MeV ions
 - → keV ions
- Ion-beam lithography
 - → conventional techniques
 - \rightarrow MeV ions
 - → keV ions

Case studies

- MeV ion beam lithography
 - \rightarrow resists
 - \rightarrow silicon
 - → other materials
 - → single ion tracks

• keV ion beam lithography

- \rightarrow FIB milling
- → FIB-assisted deposition
- → Helium-ion microscope 105

keV IBL: Helium Ion Microscope

- Smaller De Broglie wavelength
- Higher secondary emission yield \rightarrow lower current
- Higher resolution

@: Carl Zeiss SMT

106

Content sources

- www.pbeam.com
- www.srim.org
- www.wikipedia.org
- Acreo Research Institute & Seagate Technology
- Advanced Machinery Department AIST
- Centre de Recherche sur les Ions, le Matériaux et la Photonique
- Carl Zeiss SMT
- CIBA National University of Singapore
- Department of Physics University of Surrey
- Department of Nuclear Physics Lund Institute of Technology
- Gesellschaft für Schwerionenforschung, Darmstadt
- Ion Beam Analysis Center CAFI
- IONLAB Institut des Microtechnologies Appliquées
- Kavli Institute of Technology Delft University
- LIBI Ruđer Bošković Institute
- LIPSION University of Leipzig
- Louisiana Accelerator Center The University of Louisiana
- Materials Science Institute of Madrid
- RUBION Ruhr-Universität Bochum
- Sandia National Laboratory
- School of Physics and Microelectronics Shandong University
- School of Engineering University of Tokio
- Solid State Physics Group University of Torino
- Swiss Federal Institute of Technology
- University of Jyväskylä