

2359-19

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter

13 - 24 August 2012

Fundamental aspects of radiation damage of nonmetallic materials: Microstructural evolution

Steve Zinkle

Oak Ridge National Laboratory United States of America

Fundamental aspects of radiation damage of nonmetallic materials: Microstructural evolution

Steve Zinkle

Oak Ridge National Laboratory

IAEA/ICTP School on Physics of Radiation Effects and its Simulation for Non-metallic Condensed Matter

Trieste, Italy August 13-24, 2012

1 Managed by UT-Battelle for the U.S. Department of Energy

Outline

- Temperature dependence of microstructural evolution
 - Important regimes include onset temperatures for interstitial and vacancy defects
- Dose dependence of microstructural evolution
- Effect of irradiation spectrum
 - Primary knock-on atom effects
 - Ionizing radiation effects
 - Swift heavy ion effects (brief introduction)

Electrical resistivity defect recovery stages in copper after electron irradiation at 4 K

3 Managed by UT-Battelle for the U.S. Department of Energy F. Agullo-Lopez, C.R.A. Catlow & P.D. Townsend, Point Defects in Materials (Academic Press, 1988) p. 445

Overview of Defect Microstructures in Irradiated Materials

Voids, precipitates, solute segregation

Grain boundary helium cavities

Microstructure of $MgAl_2O_4$ following 4 MeV Ar ion irradiation to 5 dpa at 200 K

S.J. Zinkle and G.P. Pells, J. Nucl. Mater. <u>253</u> (1998) 120

5 Managed by UT-Battelle for the U.S. Department of Energy

Quantification of dislocation loops in irradiated materials

Habit plane determination

for the U.S. Department of Energy

Displacement vector evaluation

Defect concentration at four depths in ZnO irradiated with 200 keV Ar ions at 15K (Rutherford Backscattering Spectrometry)

Note: defect saturation achieved for a dose <0.05 dpa at low T_{irr} (immobile defects)

7 Managed by UT-Battelle for the U.S. Department of Energy

E. Wendler, et al. Nucl. Instr. Meth. B 267 (2009) 2708

Overview of swelling regimes in AI_2O_3

- 3 distinct swelling regimes are observed in irradiated AI_2O_3

Activation Energies: Al vacancy; 1.8-2.1 eV O vacancy; 1.8-2 eV Al, O interstitial; 0.2-0.8 eV

9 Managed by UT-Battelle for the U.S. Department of Energy

Irradiation Temperature (°C)

Comparison of point defect swelling behavior in irradiated metals and ceramics

10 Managed by UT-Battelle

for the U.S. Department of Energy

- Large variation in magnitude of point defect swelling in materials
- Metals typically have point defect swelling values near 0.1% (AI, Cu, Ag, Au), compared to 1-5% for ceramics
 - Implies shorter point defect recombination radii or reduced barriers for recombination in metals versus ceramics

One strategy for radiation resistance: Immobile defects

- Defect accumulation is limited if one or more defect types are immobile
 - Utilize materials with negligible point defect mobility at desired operating temperatures
 - A key potential consequence (particularly in ordered alloys and ceramics) is amorphization, with accompanying significant volumetric and property changes

Regime with intrinsically high point defect recombination typically occurs at too low of temperatures for power generation applications (except SiC and possibly Al₂O₃, W, Re) K
 <sup>11 Managed by UT-Battelle for the U.S. Department of Energy after S.J. Zinkle, Chpt. 3 in Comprehensive Nuclear Materials (Elsevier, 2012)
</sup>

Effect of fission neutron irradiation near 75°C on the lattice parameters of BeO

B.S. Hickman, in Studies in Radiation Effects, G.J. Dienes, Ed. (Gordon & Breach, 1966) vol. 1 p. 72

Crystalline Oxides: Dose Dependence

W.J. Weber et al.

Direct-Impact Amorphization in Ceramics

Amorphization Along 800 keV Kr⁺ Ion Track in Ca₂La₈(SiO₄)₆O₂

W.J. Weber et al.

Calculated depth-dependent damage energy and implanted ion profiles for 2 MeV Al ion irradiated MgAl₂O₄

S.J. Zinkle, Nucl. Instr. Meth. B 91 (1994) 234

Colloidal metal nanoclusters can be created in MgAl₂O₄

PEELS spectrum for implanted MgAl₂O₄

Implanted ion stabilized amorphous band in Si_3N_4 after 3.6 MeV Fe ion irradiation at 300 K

0.22x10²⁰ Fe/m² 1.3 dpa, 0.1 at.% Fe at peak

1.1x10²⁰ Fe/m² 7 dpa, 0.4 at.% Fe at peak; 5 dpa at 1.5 μm

DEPTH (µm)

17 Managed by UT-Battelle for the U.S. Department of Energy

S.J. Zinkle & L.L. Snead, Nucl. Instr. Meth. B 116 (1996) 92

Defect clusters in AlN after 2 MeV Si ion irradiation to $4x10^{20}/m^2$ at 78 K

18 Managed by UT-Battelle for the U.S. Department of Energy S.J. Zinkle et al., MRS Symp. Proc. Vol. 540 (1999) p. 305

Defect-free zones are predicted next to sinks (e.g., grain boundaries) due reduced point defect concentration

Distance cf. R. Sizmann (1978), etc.

19 Managed by UT-Battelle for the U.S. Department of Energy

Depth dependent microstructure of $MgAl_2O_4$ irradiated with 2 MeV Al ions to a fluence of 4.6×10^{20} /m² at 650° C

Determination of interstitial migration energies in ceramics

Defect-free zones in ionirradiated MgAl₂O₄

- Solve steady state rate eqns: $D_i \frac{d^2 C_i}{dx^2} - \alpha C_i C_v - D_i C_i C_s + P = 0$ $D_v \frac{d^2 C_v}{dx^2} - \alpha C_i C_v - D_v C_v C_s + P = 0$
 - For sink-dominant conditions ($C_s > 10^{14}/m^2$), the defect-free zone width is related to the diffusivity (D_i) and damage rate (P) by:

 $D_i = \frac{L P}{C_i^{crit} \sqrt{C_s}}$

Defect-free grain boundary zones in ion-irradiated Al₂O₃

Depth (um)

Interstitial Diffusion Coefficient in Ion Irradia:ed Oxides

21 Managed by UT-Battelle for the U.S. Department of Energy Weighted average recoil atom energy for 1 MeV particles in copper as a function of recoil energy (T)

R.S. Averback, J. Nucl. Mater. 216 (1994) 49

Comparison of molecular dynamics simulations of 1-50 keV PKA displacement cascades in iron

23 Managed by UT-Battelle for the U.S. Department of Energy

R.E. Stoller, ORNL

Displacement cascades in ceramics such as SiC are much less compact than in medium-Z metals 50 key Si->SiC Fe

F Gao & WJ Weber Phys. Rev. B 63 (2000) 054101

R.E. Stoller J.Nucl. Mater. 276 (2000) 22

for the U.S. Department of Energy

Defects & Amorphous Atoms for 30 keV U in Zircon

Core is Si rich; periphery is Zr rich

26 Managed by UT-Battelle

for the U.S. Department of Energy

SiC Amorphization

Analysis of flux dependence shows recovery substages are not associated with long range point defect migration (F<0.5 up to 380 K)

Implies that both vacancies and interstitials are immobile in SiC up to 100°C (interstitials are mobile in many other ceramics at room temperature)

27 Managed by UT-Battelle for the U.S. Department of Energy

Effect of irradiating particle (PKA energy) on the temperature-dependent dose for amorphization

J. Koike et al., Appl. Phys. Lett. <u>59</u> (1991) 2515

Zinkle & Snead, Nucl. Instr. Meth. B <u>116</u> (1996) 92

Note: there are also numerous cases where PKA energy has a weak effect on amorphization dose (degree of sensitivity is linked to amorphization mechanisms) Managed by UT-Battelle for the U.S. Department of Energy

ZrSiO₄: Temperature Dependence

Good Agreement Between Heavy-Ion (Pb and Bi) Data and ²³⁸Pu Data

(T_c is Independent of Irradiating Ion Mass \rightarrow Thermal Recovery Process)

W.J. Weber et al.

Cross-section microstructure of Al_2O_3 irradiated with 2 MeV Al ions at 650 C to a fluence of $9x10^{20}/m^2$

30 Managed by UT-Battelle for the U.S. Department of Energy

S.J. Zinkle, J. Nucl. Mater. 219 (1995) 113

Cross-section microstructure of Al_2O_3 irradiated with 3 MeV C ions at 420 C to 18 dpa

31 Managed by UT-Battelle for the U.S. Department of Energy

R. Yamada, S.J. Zinkle & G.P. Pells, J. Nucl. Mater. 206 (1994) 191

Cross-section microstructure of Al_2O_3 irradiated with 1 MeV He ions at 650 C to a fluence of $1 \times 10^{22}/m^2$

S.J. Zinkle, Nucl. Instrum. Meth. B (2012) in press

32 Managed by UT-Battelle for the U.S. Department of Energy

Cross-section microstructure of Al_2O_3 irradiated with 1 MeV H ions at 650 C to a fluence of $1.7 \times 10^{22}/m^2$

33 Managed by UT-Battelle for the U.S. Department of Energy

S.J. Zinkle, J. Nucl. Mater. 219 (1995) 113

National Lebourtor

Cross-section TEM microstructure of 1 MeV He ion irradiated $MgAl_2O_4$ at 650°C (1x10²¹ He/m²)

Investigation of ionization-induced diffusion in ceramics

Large interstitial loops in MgAl₂O₄ ion-irradiated at 25 °C for regions with >100 eln.-hole pairs per dpa

Aligned cavities in Al₂O₃ ion-irradiated at 25[•]C (Al/O/He ion irradiation, >500 eln.-hole pairs per dpa)

35 Managed by UT-Battelle for the U.S. Department of Energy after S.J. Zinkle, J. Nucl. Mater. 219 (1995) 113 and Rad. Eff. Def. Solids, <u>148</u> (1999) 447

Ionizing Radiation can induce myriad effects in ceramics

- Defect annealing and coalescence (ionization-induced diffusion)
 - Athermal defect migration is possible in some materials
- Defect production
 - Radiolysis (SiO₂, alkali halides)
 - Ion track damage ("swift heavy ions")

Ionizing Radiation can induce recrystallization in amorphous ceramics

 120 keV electron (subthreshold displacement energy) illumination of MgAl₂O₄ (amorphized by swift heavy ion irradiation)

Max energy transfer = 11 eV (AI), 12 eV (Mg), 18 eV (O)

37 Managed by UT-Battelle for the U.S. Department of Energy Swift heavy ions (S_e >1-10 keV/nm) can introduce new physical phenomena in metals compared to conventional particle irradiations

Fig. 1. Electronic and nuclear stopping powers of xenon ions in an iron target as a function of the incident ion energy:

38 Managed by UT-Battelle for the U.S. Department of Energy

A. Dunlop et al. JNM 205 (1993) 426

Swift heavy ions (S_e >1-10 keV/nm) can introduce new radiation effects phenomena

ELECTRONIC STOPPING POWERS IN ALUMINA

39

The high electronic stopping powers associated with fission fragment recoil ions can produce pronounced effects

- MgAl₂O₄ irradiated with 72 MeV I⁺ ions experiences a crystalline phase change and then amorphization when dE/dx)_e>8 keV/nm
 - Volumetric expansion ∆V/V~35% due to amorphization will cause severe stresses and cracking
 72 MeV I[±]→ MgAl₂O₄, 1x10¹⁶/cm²

Zinkle, Matzke and Skuratov, MRS Symp. Proc. Vol. 540 (1999), pp. 299-304

40 Managed by UT-Battelle for the U.S. Department of Energy

41 Managed by UT-Battelle for the U.S. Department of Energy

Summary of threshold ionizing radiation levels for defect production in ceramics

Material	Thermal	Threshold dE/dx) _e for ion
	conductivity	track damage
	(W/m-K)	
MgAl ₂ O ₄	20	8 keV/nm
β -Si ₃ N ₄	29	15 keV/nm
Al_2O_3	32	~20 keV/nm
AIN	177	>34 keV/nm
SiC	350	>34 keV/nm
U ₃ Si		19 keV/nm [Hou 2003]
UO_2		22-29 keV/nm [Matzke 2000]

- Velocity effects also need to be considered (low velocity ions are more effective at inducing damage for a given dE/dx)_e)
- Threshold dE/dx)_e is higher than the ionizing radiation fields anticipated in fission or fusion reactors
- Studies on effect of radiation-induced thermal conductivity degradation on threshold dE/dx for track formation are in progress

42 <u>Managed by OT-Batterne</u> for the U.S. Department of Energy

Conclusions

- Irradiation temperature has a pronounced effect on microstructural evolution
 - Important regimes include onset temperatures for interstitial and vacancy defects
- Dose dependence of microstructural evolution is generally more complex at elevated temperatures
 - Saturation often occurs at 0.1-0.5 dpa at low temperatures
- Implanted ions can exert significant influence on the microstructural evolution (e.g., amorphization, precipitation)
- Effect of irradiation spectrum can be complex
 - Primary knock-on atom effects
 - Ionizing radiation effects
 - Swift heavy ion effects (brief introduction)

Radiation Damage can Produce Large Changes in Ceramic Materials

• Amorphization and disordering (<0.2 T_M, >0.1 dpa)

- Thermal conductivity degradation and defect cluster swelling (<0.35 T_M , >0.01 dpa)
- Phase instabilities from radiation-induced precipitation (0.3-0.6 T_M , >10 dpa)

• Irradiation creep (<0.45 T_M, >10 dpa)

• Volumetric swelling from void formation (0.3-0.6 T_M , >10 dpa)

44 Managed by UT-Battelle after S.H. Zinkle, Chpt. 3 in Comprehensive Nuclear Materials (Elsevier, 2012)

Depth dependent microstructure of $MgAl_2O_4$ irradiated with 2 MeV Al ions to a fluence of $3.7x10^{21}/m^2$ at $650^{\circ}C$

