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Figure 1.1. Gross world product (GWP) and sales volumes of the 
electronics, automobile, semiconductor, and steel industries from 1980 to 

2000 and projected to 2010.1,2
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Figure 2.1. Typical range of conductivities for insulators, 
semiconductors, and conductors.
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Figure 9.1. Chart of the electromagnetic spectrum from the ultraviolet 
region to the infrared region.
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ATOMIC ABSORPTION (HYDROGEN)
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Figure 9.5.
Optical absorption 

coefficients for various 
semiconductor 

materials.2. The value in 
the parenthesis is the 

cutoff wavelength.



Trieste 
13.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

11

Figure 9.3. Optical absorption: photon energy  Eg
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Figure 2.19. Schematic energy band representations of (a) a 
conductor with two possibilities (either the partially filled conduction 
band shown at the upper portion or the overlapping bands shown at the 
lower portion), (b) a semiconductor, and (c) an insulator.
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Fonte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 
1996

THERMAL EQUILIBRIUM; LOW TEMPERATURE

VALENCE  BAND: 4N STATES, 4N ELECTRONS
CONDUCTION BAND: 4N STATES, 0 ELECTRONS

LOWER LEVEL=VALENCE BAND

UPPER LEVEL=CONDUCTION BAND

SHOCKLEY  PARKING GARAGE MODEL

NO TRAFFIC POSSIBLE
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Excitation
VALENCE  BAND: 4N STATES, 4N-1 ELECTRONS
CONDUCTION BAND: 4N STATES, 1 ELECTRONS

SHOCKLEY  PARKING GARAGE MODEL

TRAFFIC POSSIBLE
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TRAFFIC POSSIBLE

SHOCKLEY  PARKING GARAGE MODEL

Excitation+Electric field
VALENCE  BAND: 4N STATES, 4N-1 ELECTRONS
CONDUCTION BAND: 4N STATES, 1 ELECTRONS
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Electric field
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Fonte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 1996

THERMAL EQUILIBRIUM

VALENCE  BAND: 4N STATES, 4N ELECTRONS
CONDUCTION BAND: 4N STATES, 0 ELECTRONS

SHOCKLEY  PARKING GARAGE MODEL

INTRINSIC SEMICONDUCTOR
THERMAL EXCITATION

In Si @ T=300 K
n=p1010 cm-3
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n-type Si with donor (phosphorous)
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p-type Si with acceptor (boron)
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Figure 2.1. Typical range of conductivities for insulators, 
semiconductors, and conductors.
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Figure 2.25. Schematic energy band representation of extrinsic 
semiconductors with (a) donor ions and (b) acceptor ions.

http://jas.eng.buffalo.edu/
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Figure 2.24. Measured ionization energies (in eV) for various impurities in Si and GaAs. The levels
below the gap center are measured from the top of the valence band and are acceptor levels unless
indicated by D for donor level. The levels above the gap center are measured from the bottom of the
conduction band and are donor levels unless indicated by A for acceptor level.8
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Figure 3.1. Schematic path of an electron in a semiconductor. 
(a) Random thermal motion. (b) Combined motion due to random 

thermal motion and an applied electric field.
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In Si @ 300 K:   

n  1350 cm2·V-1 · s-1 ; p  450 cm2·V-1 · s-1
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At low doping conc., 
mobility decreases
with temperature increases.

At a given temp., 
mobility decreases
with doping conc. increases.

At high doping conc., 
mobility is affected by both the impurity 
and the lattice scattering.

Figure 3.2.
Electron mobility in silicon versus 

temperature for various donor 
concentrations. Insert shows the 

theoretical temperature dependence of 
electron mobility.3
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Drift velocity versus electric field in Si.
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TRANSPORT PROPERTIES
Carrier drift:

Carrier diffusion:

FpqJ p
Drift
p FnqJ n

Drift
n 

nDqJ n
Diff
n  pDqJ p

Diff
p 

Einstein relationship: 



q

TkD B

In Si @ 300 K:   

Dn  35 cm2· s-1 ; p  10 cm2· s-1
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Figure 9.3. Optical absorption
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Figure 3.12.
Indirect generation-recombination processes

Applet
Recombination

Shockley-Read-Hall Model

Excess carrier lifetime

thtrap vN 


1

Trap density
Capture cross 
section Thermal velocity



Trieste 
13.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

38

Continuity equation

 

  pppp

nnnn

RGpDFp
t
p

RGnDFn
t
n









Poisson equation
 AD NNnpqF 




Electric potential Donor concentration

Acceptor 
concentration

Dielectric 
constant

Electrons

Holes

Generation Rate
Recombination rate



Trieste 
13.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

39

 











0

0 0
000

p)x(p
P)x(p

   pppD
p

p

  pppp RGpDFp
t
p





Steady state 
conditions

Steady-state carrier injection 
from one side. 
N-type semiconductor; Hole=minority carrier

No electric 
field

Generation at the 
surface

Hole 
concentration 
at equilibrium



Trieste 
13.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

40

Figure 3.16.  
Steady-state carrier injection 
from one side.   Semiinfinite 

sample.  
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Figure 1.1. Gross world product (GWP) and sales volumes of the 
electronics, automobile, semiconductor, and steel industries from 1980 to 

2000 and projected to 2010.1,2
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Figure 1.2.  Basic device building blocks. 

Semiconductor Devices, 2/E by S. M. Sze
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Figure 4.8.  
Space charge distribution in the 
depletion region at thermal 
equilibrium. 

Electric-field distribution. 
The shaded area corresponds to the 
built-in potential.
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Figure 4.9.  
One-sided abrupt junction (with NA

>> ND) in thermal equilibrium. 
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Ideal current-voltage characteristics. 
p-n junction diode Applet 1
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Figure 5-1. Perspective view of a silicon p-n-p bipolar transistor.

BIPOLAR JUNCTION TRANSISTOR (BJT)
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p-n-p transistor

Doping 
profile

Electric-field 
profile.

with all leads grounded 
(at thermal equilibrium).

under the active mode 
of operation

Forward 
bias

Reverse 
bias
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Figure 5.5. Various current components in a p-n-p transistor under 
active mode of operation. The electron flow is in the opposite direction 

to the electron current.

Hole current

Electron
current

Emitter-base junction: forward bias Hole injection 
from emitter to base

Hole diffusion in the base from emitter to collector

Base-collector junction: reverse bias Hole drift 
from base to collector

Electric 
field



Trieste 
13.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

15

Figure 5.6. Minority carrier distribution in various regions of a p-n-p
transistor under the active mode of operation.

Applet

Base width narrower than the diffusion length pB Lw 
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Figure 5-7.  Junction polarities and minority carrier distributions of a p-
n-p transistor under four modes of operation.

ICB
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Applet
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IV curves
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Metal-Oxide-Semiconductor (MOS)
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Threshold voltage depends upon
Substrate doping
Oxide thickness
Metal work function
Charge trapped

Radiation induced effects
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Applet
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