

2359-8

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter

13 - 24 August 2012

INTRODUCTORY: Part I and Part II

Ettore Vittone University of Turin Italy

ETTORE VITTONE

Dipartimento di Fisica, Università di Torino

www.dfs.unito.it/solid

An overview of the electronic properties of semiconductor and insulator materials.

Trieste 13.08.2012

Bibliography

Books:

S.M. Sze, "Semiconductor Devices", 2nd edition, John Wiley and Sons, 2002

Links:

http://britneyspears.ac/lasers.htm http://ece-www.colorado.edu/~bart/book/contents.htm (http://jas2.eng.buffalo.edu/applets/index.html)

Trieste 13.08.2012

An overview of the electronic properties of semiconductor and insulator materials.

Part I

- Conductors, semiconductors, insulators
- Carrier transport phenomena
- Fundamental equations
- Examples

Part II

Major semiconductor devices
pn junction diodes & Schottky diodes
Bipolar Junction Transistor
Field Effect Transistors

Trieste 13.08.2012

Figure 1.1. Gross world product (GWP) and sales volumes of the electronics, automobile, semiconductor, and steel industries from 1980 to 2000 and projected to 2010.^{1,2}

Trieste 13.08.2012

Figure 2.1. Typical range of conductivities for insulators, semiconductors, and conductors.

Trieste 13.08.2012

$J = (Ch arg e) \cdot (Carrier density) \cdot (Transport properties)$

Trieste 13.08.2012 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter

6

Reflection

Absorption

Transmission

Trieste 13.08.2012

$$\lambda[nm] \cong \frac{1240}{E[eV]} \Longrightarrow E[eV] \cong \frac{1240}{\lambda[nm]}$$

Figure 9.1. Chart of the electromagnetic spectrum from the ultraviolet region to the infrared region.

Trieste 13.08.2012

ATOMIC ABSORPTION (HYDROGEN)

Figure 9.5. Optical absorption coefficients for various semiconductor materials.². The value in the parenthesis is the cutoff wavelength.

Trieste 13.08.2012

Figure 9.3. Optical absorption: photon energy \geq Eg

Trieste 13.08.2012

Figure 2.19. Schematic energy band representations of (*a*) a conductor with two possibilities (either the partially filled conduction band shown at the upper portion or the overlapping bands shown at the lower portion), (*b*) a semiconductor, and (*c*) an insulator.

Trieste 13.08.2012

THERMAL EQUILIBRIUM; LOW TEMPERATURE

VALENCE BAND: 4N STATES, 4N ELECTRONS CONDUCTION BAND: 4N STATES, 0 ELECTRONS

SHOCKLEY PARKING GARAGE MODEL

LOWER LEVEL=VALENCE BAND

NO TRAFFIC POSSIBLE

Trieste 13.08.2012

Excitation

VALENCE BAND: 4N STATES, 4N-1 ELECTRONS CONDUCTION BAND: 4N STATES, 1 ELECTRONS

SHOCKLEY PARKING GARAGE MODEL

TRAFFIC POSSIBLE

Trieste 13.08.2012

Excitation+Electric field

VALENCE BAND: 4N STATES, 4N-1 ELECTRONS CONDUCTION BAND: 4N STATES, 1 ELECTRONS

SHOCKLEY PARKING GARAGE MODEL

Trieste 13.08.2012

Trieste 13.08.2012

$J = (Ch arg e) \cdot (Carrier density) \cdot (Transport properties)$

Trieste 13.08.2012

Fonte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 1996

THERMAL EQUILIBRIUM

VALENCE BAND: 4N STATES, 4N ELECTRONS CONDUCTION BAND: 4N STATES, 0 ELECTRONS

SHOCKLEY PARKING GARAGE MODEL

INTRINSIC SEMICONDUCTOR THERMAL EXCITATION In Si @ T=300 K $n=p\approx 10^{10}$ cm⁻³

Trieste 13.08.2012

13.08.2012

Simulation for Non-Metallic Condensed Matter

H 1 Hydrogen	Periodic Table of the Elements										He 2 Helium						
1.00794 1s ¹												Metalloids			Nonmetals		4.00260 1s ²
Li 3 Lithium 6.941	Be 4 Beryllium 9.012182		<i>S</i>)	Vmbol	< 19 Potassium 39.0983	— Atomic ne - Atomic ma: (averaged a)	umber ss					B 5 Boron 10.81	C 6 Carbon 12.011	N 7 Nitrogen 14.0067	O 8 Oxygen 15.9994	F 9 Fluorine 18.9984	Ne 10 Neon 20.179
23 Na 11 Sodium 22.989768 3s ¹	28 Mg 12 Magnesium 24.3050 3e ²	Electron 4s ⁻ (accurrence on earth) 2p ⁻ 2p											Ar 18 Argon 39.948 3p ⁶				
K 19 Potassium 39.0983 4s ¹	Ca 20 Calcium 40.078 4s ²	Sc 21 Scandium 44.955910 3d ¹ 4s ²	Ti 22 Titan ium 47.88 3d ² 4s ²	V 23 Vanadium 50.9415 3d ³ 4s ²	Cr 24 Chromium 51.9961 3d ⁵ 4s ¹	Mn 25 Manganese 54.93805 3d ⁵ 4s ²	Fe 26 Iron 55.847 3d ⁶ 4s ²	Co 27 Cobalt 58.93320 3d ⁷ 4s ²	Ni 28 Nickel 58.69 3d ⁸ 4s ²	Cu 29 Copper 63.546 3d ¹⁰ 4s ¹	Zn 30 Zinc 65.39 3d ¹⁰ 4s ²	Ga 31 Gallium 69.723 4p ¹	Germanium 72.61 4p ²	As Arsenic 74.92159 4p ³	59 34 Selenium 78.96 4p ⁴	Br 35 Bromine 79.904 4p ⁵	Kr 36 Krypton 83.80 4p ⁶
Rb 37 Rubidium 85.4678 5s ¹	Sr 38 Strontium 87.62 5s ²	Y 39 Yttrium 88.90585 4d ¹ 5s ²	Zr 40 Zirconium 91.224 40 ² 5s ²	Nb 41 Niobium 92.90638 4d ⁴ 5s ¹	Mo 42 Molybdenum 95.94 4d ⁵ 5s ¹	Tc 43 Technetium (98) 4d ⁶ 5s ²	Ru 44 Ruthenium 101.07 4d ⁷ 5s ¹	Rh 45 Rhodium 102.90550 4d ⁸ 5s ¹	Pd 46 Palladium 106.42 4d ¹⁰ 5s ⁰	Ag 47 Silver 107.8682 4d ¹⁰ 5s ¹	Cd 48 Cadmium 112.411 4d ¹⁰ 5s ²	In 49 Indium 114.82 5p1	Sn 50 Tin 118.710 5p ²	Sb 51 Antimony 121.75 5p ³	Te 52 Tellurium 127.60 5p ⁴	l 53 lodine 126.905 5p ⁵	Xe 54 Xenon 131.30 5p ⁶
Cs 55 Cesium 132.90543 sp1	Ba 56 Barium 137.327	57 - 71 Lanthanide series	Hf 72 Hafnium 178.49	Ta 73 Tantalum 180.9479 5d ³ 60 ²	W 74 Tungsten 183.85 5d ⁴ 6p ²	Re 75 Rhenium 186.207	Os 76 Osmium 190.2	lr 77 Iridium 192.22	Pt 78 Platinum 195.08	Au 79 Gold 196.96654	Hg 80 Mercury 200.59	TI 81 Thallium 204.3833	Pb 82 Lead 207.2	Bi 83 Bismuth 208.98037 So ³	Po 84 Polonium (209)	At 85 Astatine (210)	Rn 86 Radon (222)
Fr 87 Francium (223) 7s ¹	Ba 88 Radium (226) 7s ²	69 - 103 Actinide series	30 55 Unq 104 Unnilquadium (261) 6d ² 7s ²	Unp 105 Unnilpentium (262) 6d ³ 7s ²	Unh 106 Unnilhexium (263) 6d ⁴ 7s ²	Unis 107 Unilseptum (262)	30 bs 108	109	JUDS	JU DS		<u>р</u> р	Грр	<u>р</u>	Гр	р	р
			La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Ть 65	Dy 66	Но 67	Er 68	Tm 69	Үр 70	Lu 71
		Lanthanide series	Lantha.num 138.9055 5d ¹ 6s ²	Cerium 140.115 4f ¹ 5d ¹ 6s ²	Prasecolymium 140.90765 4f ³ 6s ²	Neodymium 144.24 4f ⁴ 6s ²	Promethium (145) 4f ² 6s ²	Samarium 150.36 4f ⁶ 6s ²	Europium 151.965 4f ⁷ 6s ²	Gadolinium 157.25 4f ⁷ 5d ¹ 6s ²	Terbium 158.92534 4f ² 6s ²	Dysprosium 162.50 4f ¹⁰ 6s ²	Holmium 164.93032 4f ¹¹ 6s ²	Erbium 167.26 4f ¹² 6s ²	Thulium 168.93421 4f ¹³ 6s ²	Ytterbium 173.04 4f ¹⁴ 6s ²	Lutetium 174.967 4f ¹⁴ 5d ¹ 6s ²
			4- 00	TL 63						<u> </u>						N- 100	
		Actinide series	AC 89 Actinium (227) 6d ¹ 7s ²	1n 90 Thorium 232.0381 6d ² 7s ²	Pa 91 Protactinium 231.03588 5f ² 6d ¹ 7s ²	U 92 Uranium 238.0289 5f ³ 6d ¹ 7s ²	NP 93 Neptunium (237) 5f ⁴ 6d ¹ 7s ²	Pu 94 Plutonium (244) 5f ⁶ 6d ⁰ 7s ²	Am 95 Americium (243) 5f ⁷ 6d ⁰ 7s ²	Cm 96 Curium (247) 5f ⁷ 6d ¹ 7s ²	ык 97 Berkelium (247) 5f ⁹ 6d ⁰ 7s ²	Cf 98 Californium (251) 5f ¹⁰ 6d ⁰ 7s ²	Es 99 Einsteinium (252) 5f ¹¹ 6d ⁰ 7s ²	Fm 100 Fermium (257) 5f ¹² 6d ⁰ 7s ²	Mendelevium (258) 5f ¹³ 6d ⁰ 7s ²	NO 102 Nobelium (259) 6d ⁰ 7s ²	Lr 103 Lawrencium (260) 6d ¹ 7s ²
Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 3 08 2012 Simulation for Non-Metallic Condensed Matter																	

n-type Si with donor (phosphorous)

H 1 Hydrogen 1.00794	Periodic Table of the Elements										He 2 Helium 4.00260						
Li 3 Lithium 6.941 2s ¹	Be 4 Beryllium 9.012182 2s ²		Sj	Vmbol — F	< 19 Potassium 39.0983 - 4s ¹	— Atomic no - Atomic ma: (averaged a)	umber ss ccording to				(B 5 Boron 10.81 2p ¹	C 6 C rbon 1 .011 o ²	N 7 Nitrogen 14.0067 2p ³	O 8 Oxygen 15.9994 2p ⁴	F 9 Fluorine 18.9984 2p ⁵	Ne 10 Neon 20.179 2p ⁶
Na 11 Sodium 22.989768 3s ¹	Mg 12 Magnesium 24.3050 3s ²		6 גינים	figuration /**		olebreniee (Meta	is				Al Alumicum 26.9 15 3p ¹	Si 14 Silicon 28.0855 3p ²	P psphorus D.9738 ρ ³	S 16 Sulfur 32.06 3p ⁴	CI 17 Chlorine 35.453 3p ⁵	Ar 18 Argon 39.948 3p ⁶
K 19 Potassium 39.0983 4s ¹	Ca 20 Calcium 40.078 4s ²	Sc 21 Scandium 44.955910 3d ¹ 4s ²	Ti 22 Titanium 47.88 3d ² 4s ²	V 23 Vanadium 50.9415 3d ³ 4s ²	Cr 24 Chromium 51.9961 3d ⁵ 4s ¹	Mn 25 Manganese 54.93805 3d ⁵ 4s ²	Fe 26 Iron 55.847 3d ⁶ 4s ²	Co 27 Cobalt 58.93320 3d ⁷ 4s ²	Ni 28 Nickel 58.69 3d ⁸ 4s ²	Cu 29 Copper 63.546 3d ¹⁰ 4s ¹	Zn 30 Zinc 65.39 3d ¹⁰ 4s ²	Ga 31 Gallium 69.723 4p ¹	Germanium 72.61 4p ²	As 33 Arsenic 74.92159 4p ³	Se 34 Selenium 78.96 4p ⁴	Br 35 Bromine 79.904 4p ⁵	Kr 36 Krypton 83.80 4p ⁶
Rb 37 Rubidium 85.4678 5s ¹	Sr 38 Strontium 87.62 5s ²	Y 39 Yttrium 88.90585 4d ¹ 5s ²	Zr 40 Zirconium 91.224 40 ² 5s ²	Nb 41 Niobium 92.90638 4d ⁴ 5s ¹	Mo 42 Molybdenum 95.94 4d ⁵ 5s ¹	Tc 43 Technetium (98) 4d ⁶ 5s ²	Ru 44 Ruthenium 101.07 4d ⁷ 5s ¹	Rh 45 Rhodium 102.90550 4d ⁸ 5s ¹	Pd 46 Palladium 106.42 4d ¹⁰ 5s ⁰	Ag 47 Silver 107.8682 4d ¹⁰ 5s ¹	Cd 48 Cadmium 112.411 4d ¹⁰ 5s ²	In 49 Indium 114.82 5p1	Sn 50 Tin 118.710 5p ²	Sb 51 Antimony 121.75 5p ³	Te 52 Tellurium 127.60 5p ⁴	l 53 lodine 126.905 5p ⁵	Xe 54 Xenon 131.30 5p ⁶
Cs 55 Cesium 132.90543 co ¹	Ba 56 Barium 137.327	67 - 71 Lanthanide series	Hf 72 Hafnium 178.49 Ect ² ec ²	Ta 73 Tantalum 180.9479 5d ³ 5c ²	W 74 Tungsten 183.85 Ed ⁴ sp ²	Re 75 Rhenium 186.207	Os 76 Osmium 190.2	lr 77 Iridium 192.22	Pt 78 Platinum 195.08	Au 79 Gold 196.96654	Hg 80 Mercury 200.59	TI 81 Thallium 204.3833	Pb 82 Lead 207.2	Bi 83 Bismuth 208.98037 6 c ³	Po 84 Polonium (209)	At 85 Astatine (210)	Rn 86 Radon (222)
Fr 87 Francium (223) 7s ¹	Ra 88 Radium (226) 7s ²	69 - 103 Actinide series	Unq 104 Unnilquadium (261) 6d ² 7s ²	Unp 105 Unnilpentium (262) 6d ³ 7s ²	Unh 106 Unnilhexium (263) 6d ⁴ 7s ²	Unis 107 Unilseptum (262)	108	109	30.08	30.08	30 58	<u>г</u> рр	<u> h</u>	<u> 6</u>	р	Бр	р
			La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Но 67	Er 68	Tm 69	Үb 70	Lu 71
		Lanthanide series	Lantha.num 138.9055 5d ¹ 6s ²	Cerium 140.115 4f ¹ 5d ¹ 6s ²	Prasecotymium 140.90765 4f ³ 6s ²	Neodymium 144.24 4f ⁴ 6s ²	Promethium (145) 4f ² 6s ²	Samarium 150.36 4f ⁶ 6s ²	Europium 151.965 4f ⁷ 6s ²	Gadolinium 157.25 4f ⁷ 5d ¹ 6s ²	Terbium 158.92534 4f ² 6s ²	Dysprosium 162.50 4f ¹⁰ 6s ²	Holmium 164.93032 4f ¹¹ 6s ²	Erbium 167.26 4f ¹² 6s ²	Thulium 168.93421 4f ¹³ 6s ²	Ytterbium 173.04 4f ¹⁴ 6s ²	Lutetium 174.967 4f ¹⁴ 5d ¹ 6s ²
			Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103
		Actinide series	Actinium (227) 6d ¹ 7 s ²	Thorium 232.0381 60 ² 7s ²	Protactinium 231.03588 5f ² 6d ¹ 7 s ²	Uranium 238.0289 5f ³ 6d ¹ 7s ²	Neptunium (237) 5f ⁴ 6d ¹ 7s ²	Plutonium (244) 5f ⁶ 6d ⁰ 7s ²	Americium (243) 5f ⁷ 6d ⁶ 7s ²	Curium (247) 5f ⁷ 6d ¹ 7s ²	Berkelium (247) 5f ⁸ 6d ⁰ 7s ²	Californium (251) 5f ¹⁰ 6d ⁰ 7s ²	Einsteinium (252) 5f ¹¹ 6d ⁰ 7s ²	Fermium (257) 5f ¹² 6d ⁰ 7s ²	Mendelevium (258) 5f ¹³ 6d ⁰ 7s ²	Nobelium (259) 6d ⁰ 7 s ²	Lawrencium (260) 6d ¹ 7s ²
													•		•		J

Trieste 13.08.2012

p-type Si with acceptor (boron)

Trieste 13.08.2012

Figure 2.25. Schematic energy band representation of extrinsic semiconductors with (*a*) donor ions and (*b*) acceptor ions.

http://jas.eng.buffalo.edu/

Trieste 13.08.2012

Figure 2.24. Measured ionization energies (in eV) for various impurities in Si and GaAs. The levels below the gap center are measured from the top of the valence band and are acceptor levels unless indicated by D for donor level. The levels above the gap center are measured from the bottom of the conduction band and are donor levels unless indicated by A for acceptor level.⁸

Trieste 13.08.2012

Trieste 13.08.2012

Figure 3.1. Schematic path of an electron in a semiconductor.(a) Random thermal motion. (b) Combined motion due to random thermal motion and an applied electric field.

Trieste 13.08.2012

Figure 3.2.

Electron mobility in silicon versus temperature for various donor concentrations. Insert shows the theoretical temperature dependence of electron mobility.³

At low doping conc., mobility decreases with temperature increases.

At a given temp., mobility decreases with doping conc. increases.

At high doping conc., mobility is affected by both the impurity and the lattice scattering.

	Germanium	Silicon	Gallium Arsenide
Electron mobility	∝ T ^{-1.7}	∝ T ^{-2.4}	∝ T ^{-1.0}
Hole mobility	∝ T ^{-2.3}	∝ T ^{-2.2}	∝ T ^{-2.1}

Trieste 13.08.2012

Drift velocity versus electric field in Si.

$$v(\boldsymbol{\mathcal{E}}) = \frac{\mu \boldsymbol{\mathcal{E}}}{1 + \frac{\mu \boldsymbol{\mathcal{E}}}{v_{sat}}}$$

Trieste 13.08.2012

$J = (Ch arg e) \cdot (Carrier density) \cdot (Transport properties)$

In Si @ 300 K:

 $D_n \approx 35 \text{ cm}^2 \cdot \text{s}^{-1}$; $\mu_p \approx 10 \text{ cm}^2 \cdot \text{s}^{-1}$

Trieste 13.08.2012

Trieste 13.08.2012

Trieste 13.08.2012

Steady-state carrier injection from one side. N-type semiconductor; Hole=minority carrier

$$\begin{split} & \frac{\partial p}{\partial t} = \nabla \cdot \left[-\mu_{p} \cdot p \cdot F + D_{p} \cdot \nabla p \right] + G_{p} - R_{p} \\ & \text{Steady state} \\ & \text{conditions} \\ & \text{No electric} \\ & \text{field} \\ & \text{Generation at the} \\ & \text{surface} \\ & \text{surface} \\ & \text{field concentration} \\ & \text{at equilibrium} \\ & 0 = \nabla \cdot \left[0 + D_{p} \cdot \nabla p \right] + 0 - \frac{p - p_{0}}{\tau_{p}} \\ & \left\{ \begin{array}{c} p(x = 0) = P \\ p(x \to \infty) = p_{0} \end{array} \right. \end{split}$$

Trieste 13.08.2012

J.R. Haynes, W. Shockley,

"The mobility and life of injecting holes and electrons in germanium,

Phys. Rev. 81, (1951), 835-843.

$$\frac{\partial p}{\partial t} = \nabla \cdot \left[-\mu_{p} \cdot p \cdot F + D_{p} \cdot \nabla p \right] + G_{p} - R_{p}$$

Fig. 1. Block diagram of the Haynes Shockley experiment: D_E and D_C are the emitter and collector point probes.

Fig. 12. Waveform observed in an N-doped Ge sample ($\rho = 1 \ \Omega \ cm$) with optical injection.

Trieste 13.08.2012

ETTORE VITTONE

Dipartimento di Fisica, Università di Torino

www.dfs.unito.it/solid

An overview of the electronic properties of semiconductor and insulator materials.

Trieste 13.08.2012

Bibliography

Books:

S.M. Sze, "Semiconductor Devices", 2nd edition, John Wiley and Sons, 2002

Links:

http://britneyspears.ac/lasers.htm http://ece-www.colorado.edu/~bart/book/contents.htm (http://jas2.eng.buffalo.edu/applets/index.html)

Trieste 13.08.2012

An overview of the electronics properties of semiconductor and insulator materials.

Part I

- Conductors, semiconductors, insulators
- Carrier transport phenomena
- Fundamental equations
- Examples

Part I

Major semiconductor devices
pn junction diodes & Schottky diodes
Bipolar Junction Transistor
Field Effect Transistors

Trieste 13.08.2012

Figure 1.1. Gross world product (GWP) and sales volumes of the electronics, automobile, semiconductor, and steel industries from 1980 to 2000 and projected to 2010.^{1,2}

Trieste 13.08.2012

_

p-n junction

p-type

Majority carriers: holes Acceptor concentration N_A n-type

Majority carriers: electrons Donor concentration N_D+

Trieste 13.08.2012

Trieste 13.08.2012

Figure 4.8. Space charge distribution in the depletion region at thermal equilibrium.

Electric-field distribution. The shaded area corresponds to the built-in potential.

Trieste 13.08.2012

A solid state ionization chamber

Trieste 13.08.2012

BIPOLAR JUNCTION TRANSISTOR (BJT)

Figure 5-1. Perspective view of a silicon *p-n-p* bipolar transistor.

Trieste 13.08.2012

p-n-p transistor

under the active mode

of operation

with all leads grounded (at thermal equilibrium).

Base Collector Collector Emitter Emitter Base I_E p^{\dagger} п р п п р 777 777 ≷ Output $|I_B|$ \overline{T} V_{EB} V_{BC} (a) -|1|1|+ TT - $N_D^+ - N_A^-$ **Forward** $N_{D}^{+} - N_{A}^{-}$ W_E bias NR Doping \oplus profile Ð X_C $-X_{E}$ W (b) **Reverse** 3 bias **Electric-field** profile. **Trieste** Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 13 Simulation for Non-Metallic Condensed Matter 13.08.2012

Figure 5.5. Various current components in a *p-n-p* transistor under active mode of operation. The electron flow is in the opposite direction to the electron current.

Figure 5.6. Minority carrier distribution in various regions of a *p-n-p* transistor under the active mode of operation.

Base width narrower than the diffusion length

Trieste 13.08.2012

Figure 5-7. Junction polarities and minority carrier distributions of a *p*-*n-p* transistor under four modes of operation.

Junction Field Effect Transistor : JFET

The JFET had been predicted as early as 1925 by Julius Lilienfeld, and the theory of operation of the device was sufficiently well known by the mid 1930's for a patent to be issued for it. However, technology at the time was not sufficiently advanced to produce doped crystals with enough precision for the effect to be seen until many years later. In 1947, researchers John Bardeen, Walter Houser Brattain, and William Shockley were attempting to construct a JFET when they discovered the bipolar junction transistor. The first practical JFETs were thus constructed many years after the first bipolar junction transistors, in spite of having been invented much earlier.

Applet

Trieste 13.08.2012

IV curves

Trieste 13.08.2012

Trieste 13.08.2012

Hole accumulation at the Si/SiO₂ interface

No current across the oxide

20

Depletion under the Si/SiO₂ interface

No current across the oxide

21

Threshold voltage depends upon

- ✓ Substrate doping
- ✓ Oxide thickness
- ✓ Metal work function
- ✓ Charge trapped

Radiation induced effects

Trieste 13.08.2012

Figure 6.14. Perspective view of a metal-oxide-semiconductor field-effect transistor (MOSFET).

Applet

Trieste 13.08.2012

Trieste 13.08.2012

Thanks for your kind attention

Trieste 13.08.2012