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An overview of the electronic properties of
semiconductor and insulator materials.

Conductors, semiconductors, insulators
Carrier transport phenomena
Fundamental equations

Examples

Major semiconductor devices
pn junction diodes & Schottky diodes
Bipolar Junction Transistor
Field Effect Transistors
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Figure 1.1. Gross world product (GWP) and sales volumes of the
electronics, automobile, semiconductor, and steel industries from 1980 to
2000 and projected to 2010.12
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Figure 2.1. Typical range of conductivities for insulators,
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semiconductors, and conductors.
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J = (Charge)- (Carrier density)- (Transport properties)
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Figure 9.1. Chart of the electromagnetic spectrum from the ultraviolet
region to the infrared region.
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ATOMIC ABSORPTION (HYDROGEN)
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Figure 9.5.

Ge(hc = 1.24/E, = 1.88 um)

Optical absorption /
coefficients for various
semiconductor
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the parenthesis is the
cutoff wavelength.
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Conduction band

Valence band

Figure 9.3. Optical absorption: photon energy > Eg

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
13.08.2012 Simulation for Non-Metallic Condensed Matter




Empty
conduction band

Partialloy filled Conduction band
conduction band o o0 i

Eg-1eV Eg-9eV

00 O
Conduction band
Valence band

Filled
valence band

Valence band

Figure 2.19. Schematic energy band representations of (a) a
conductor with two possibilities (either the partially filled conduction
band shown at the upper portion or the overlapping bands shown at the
lower portion), (b) a semiconductor, and (c) an insulator.
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THERMAL EQUILIBRIUM; LOW TEMPERATURE

VALENCE BAND: 4N STATES, 4N ELECTRONS
CONDUCTION BAND: 4N STATES, 0 ELECTRONS

UPPER LEVEL=CONDUCTION BAND

LOWER LEVEL=VALENCE BAND
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Excitation

VALENCE BAND: 4N STATES, 4N-1 ELECTRONS
CONDUCTION BAND: 4N STATES, 1 ELECTRONS

Conduction
electron
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Excitation+Electric field

VALENCE BAND: 4N STATES, 4N-1 ELECTRONS
CONDUCTION BAND: 4N STATES, 1 ELECTRONS
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J = (Charge)- (Carrier density )- (Transport properties)

11

TWO CARRIERS

'

ELECTRONS
IN CONDUCTION BAND
n
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onte: Dispense del corso di Dispositivi Elettronici, Prof. Carlo Naldi, Ed. CELID, 1996

THERMAL EQUILIBRIUM

VALENCE BAND: 4N STATES, 4N ELECTRONS
CONDUCTION BAND: 4N STATES, 0 ELECTRONS

INTRINSIC SEMICONDUCTOR
THERMAL EXCITATION
In Si @ T=300 K
n=p~101° cm-3
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n-type Si with donor (phosphorous)
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p-type Si with acceptor (boron)
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Figure 2.1. Typical range of conductivities for insulators,
semiconductors, and conductors.
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Figure 2.25. Schematic energy band representation of extrinsic
semiconductors with (a) donor ions and (b) acceptor ions.
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Figure 2.24. Measured ionization energies (in eV) for various impurities in Si and GaAs. The levels
below the gap center are measured from the top of the valence band and are acceptor levels unless
indicated by D for donor level. The levels above the gap center are measured from the bottom of the
conduction band and are donor levels unless indicated by A for acceptor level.®
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J = (Charge)- (Carrier density ){Transport properties)
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TWO CARRIERS
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ELECTRONS
IN CONDUCTION BAND
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Figure 3.1. Schematic path of an electron in a semiconductor.
(a) Random thermal motion. (b) Combined motion due to random
thermal motion and an applied electric field.
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Electric field

‘ Relaxation
Average drift velocity time

. . Effective mass
Carrier mobility

In S1 @ 300 K:

w, =~ 1350 cm?-V1 - st | p ~ 450 cm? Vvt - st
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Figure 3.2.
Electron mobility in silicon versus
temperature for various donor
concentrations. Insert shows the Ny = 10
theoretical temperature dependence of - m”j/\/\m—:w
electron mobility.3

At low doping conc.,
- Impurity Lattice
mobility decreases

scattering scattering

with temperature increases. LOG T

At a given temp.,
mobility decreases
with doping conc. increases.

At high doping conc.,
mobility is affected by both the impurity
and the lattice scattering.
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J=(Charge)- (Carrier density )- (Transport properties)

11

TWO CARRIERS

'

ELECTRONS
IN CONDUCTION BAND
n

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
13.08.2012 Simulation for Non-Metallic Condensed Matter




TRANSPORT PROPERTIES
Carrier drift:

Jr[])rift:q.n.“n.F JEriﬂZCI°p°Hp°F

Carrier diffusion:

1% —q.D_-vn|J;" =—q-D,-Vp

Einstein relationship: D— u
CI

In S1 @ 300 K:

D,~35cm? st ; p ~10 cm? st
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Diffusion

J=q-|u,-n-F+D,-Vn|+q-|u,-p-F-D,-Vp

ELECTRONS
IN CONDUCTION BAND
n
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Figure 9.3. Optical absorption
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Figure 3.12.
Indirect generation-recombination processes
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Continuity equation
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Steady-state carrier injection
from one side.
N-type semiconductor; Hole=minority carrier

Hole
concentration
at equilibrium

Steady state No electric Generation at the
conditions field surface

0=v-[0+D, -vpl+o-P=Po
Tp p(X_)OO):pO
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Figure 3.16.

Steady-state carrier injection
from one side. Semiinfinite

sample.

p(x=0)=P
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D, -7, = Hole Diffusion Length
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Fig. 12. Waveform observed in an N-doped Ge sample {p=1 {1 em) with
optical injection.

Fig. 1. Block diagram of the Haynes Shockley experiment: Dy and D are
the emitter and collector point probes.
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An overview of the electronics properties of
semiconductor and insulator materials.

Conductors, semiconductors, insulators
Carrier transport phenomena
Fundamental equations

Examples

Major semiconductor devices
pn junction diodes & Schottky diodes
Bipolar Junction Transistor
Field Effect Transistors
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Electronics
— — =< Automobiles
i

Semiconductors

» = - = Steel

Global sales ($ Billions)

Figure 1.1. Gross world product (GWP) and sales volumes of the
electronics, automobile, semiconductor, and steel industries from 1980 to
2000 and projected to 2010.12
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p-type n-type

Semiconductor ; _
Semiconductor Semiconductor

Metal-Junction interface p-n junction
(Schottky diode)

/— Oxide

Semiconductor Semiconductor

A B Metal Semiconductor

Heterojunction interface Metal insulator (oxide)
Semiconductor structure

Figure 1.2. Basic device building blocks.

Semiconductor Devices, 2/E by S. M. Sze
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p-n junction

Majority carriers: electrons K-,
Donor concentration Np+ S
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P-n junction

Electron Diffusion

S

lonized positive donors fixed
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P-n junction

Electron Diffusion

S

lonized positive donors fixed

Built in electric field
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Built i_p electric field

- .

Depletion
Neutral p <—<—— region ——7> Neutraln

|
|
|
N,-N, :
|
|

region region

Figure 4.8.

Space charge distribution in the
depletion region at thermal
equilibrium.

Electric-field distribution.
The shaded area corresponds to the
built-in potential.
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Figure 4.9.

! One-sided abrupt junction (with N,

Space charge
distribution

Electric field
distribution

Potential
distribution

>> Np) in thermal equilibrium.

Similar behaviour as

x =W Metal-semiconductor (Schottky)
N,>>Np | junction
|
I
| O0— Metal Semiconductor —O
€ I
W

Metal behaves as p+

Applet
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BIPOLAR JUNCTION TRANSISTOR (BJT)

Figure 5-1. Perspective view of a silicon p-n-p bipolar transistor.

Emitter

\

Collector
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P-N-p transistor

with all leads grounded
(at thermal equilibrium).
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under the active mode
of operation
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Figure 5.5. Various current components in a p-n-p transistor under
active mode of operation. The electron flow is in the opposite direction
to the electron current.
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}Isp Hole current }’c,o
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s s - curren

Electric
field

Hole injection

Emitter-base junction: forward bias — )t :
from emitter to base

Hole diffusion in the base from emitter to collector

Hole drift

from base to collector
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Figure 5.6. Minority carrier distribution in various regions of a p-n-p
transistor under the active mode of operation.

Emitter Collector
+

p * p

Base width narrower than the diffusion length WB < Lp
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Figure 5-7. Junction polarities and minority carrier distributions of a p-
n-p transistor under four modes of operation.
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Junction Field Effect Transistor : JFET

p-TYPE GATE

p-TYPE GATE

Shackley's model
of the JFET

The JFET had been predicted as early as
1925 by Julius Lilienfeld, and the theory of
operation of the device was sufficiently well
known by the mud 1930's for a patent to be
issued for 1t. However. technology at the
time was not sufficiently advanced to
produce doped crystals with enough
precision for the effect to be seen until many
years later. In 1947, researchers John
Bardeen, Walter Houser Brattain, and
William  Shockley were attempting to
construct a JFET when they discovered the
bipolar junction transistor. The first practical
JFETs were thus constructed many years
after the first bipolar junction transistors, in
spite of having been invented much earlier.
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Metal-Oxide-Semiconductor (MOS)

Figure 6.1. (a) Perspective view of a metal-oxide-semiconductor (MOS) diode.
(b) Cross-section of an MOS diode.

Insulator

Si

b\

Ohmic contact
(b)

Semuconductor Devices, 20 by 8. M. Sze; Copyright © 2002 John Wiley & Sons. Inc. All rights reserved.
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Vbias<0

Hole accumulation at the
Si/SIO, interface

No current across the oxide
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Vbias>0

Depletion under the
Si/SiO, interface

No current across the oxide
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Depletion

Vbias>>0 and -
induction of electrons

at the Si/SiO2 interface

2D highly conductive inversion layer
Depletion layer

Inversion occurs at the threshold voltage
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Threshold voltage depends upon
v'Substrate doping
v'Oxide thickness
v'Metal work function

Mobile ionic

Oxide trapped @ Charge (Q,,)
charge (Q,)

+ +

Fixed oxide

Radiation induced effects i i charge ()

N

N N N //\ N Y N

Interface trapped
charge (Q, )
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Figure 6.14. Perspective view of a metal-oxide-semiconductor ficld-effect
transistor (MOSFET).
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Figure 6.15.
Operations of the MOSFET and
output /I characteristics. ()
Low drain voltage.

(h) Onset of saturation. Point 7
indicates the pinch-off point. (¢)
Beyond saturation.
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