Optical Spectroscopy Study of Material Modification Induced by Ion Irradiation

K. Vijayarangamuthu

Department of Physics and Astrophysics University of Delhi INDIA

Raman spectroscopy

Photoluminescence spectroscopy

Spectroscopic Ellipsometry

UV-VIS optical absorption

✤ Advantages:

- Contactless technique
- ✤ High spatial resolution
- Minimal sample preparation
- Compositional inhomogenities
- Rapid measurement
- Microscopic sample dimensions can be measured

lattice		Microstructure		Impurity and defect		Free carrier		Wafer quality	
alloy composition	•	layer thickness	?	Presence and type		concentration	•	Homogenity mapping	•
orientation	•	Surface behaviour		concentration	•	mobility	•	Optical bandgap refractiveindex)
crystallinity	•	interface	•			scattering time	•		
stress	•	Layer-by- layer anlaysis	•			resistivity			

Spectroscopic Ellipsometric study of GeO₂ Thin Films

- Ellipsometry is non-destructive and very fast
- ✤ Well applied for real time analysis of growing films.

Ion beam : Ag^{7+}

- Ellipsometry is a model-based technique
- * Best fit model must be evaluated to fit error and be physical meaningful.

Pelletron facility at IUAC, New Delhi

- FTIR spectra confirm the presence of Ge-O-Ge and calculated stoichiometry was 1.2 for pristine.
- RBS also shows the presence of Ge and O and irradiation leads to the more stoichiometry (x=1.2 for pristine and 2 for 1x10¹⁴ ions-cm⁻² irradiated sample).
- In spectroscopic ellipsometry measurement double Tauc Lorentz oscillator model is used to fit the experimental psi and delta curve.
- Refractive Index is decreasing from 1.860 to 1.823 at 633 nm with increasing fluence because oxygen content is increasing as confirmed by FTIR and RBS measurement.
- Thickness also decreasing from 126 nm to 90 nm in higher fluence due to sputtering effect while ion beam irradiation.
- The hump around 290 nm in refractive index spectra is getting shifted to higher energy side for film after irradiated at a fluence of 1x10¹⁴ ions-cm⁻². This is because after irradiation GeO_x (x=1.2) is changing to GeO_y (y=2) and GeO₂

Sample	Thickness Change f	Sputtered thickness		
	Spectroscopic Ellipsometry	RBS	from TRIM (nm)	
3x10 ¹² ions/cm ²	3	10	2.2	
1x10 ¹³ ions/cm ²	7	6	7.5	
3x10 ¹³ ions/cm ²	15	26	22	
1x10 ¹⁴ ions/cm ²	37	34	75	

Spectroscopic Ellipsometric study of SiC Thin Films

Wohner et al - Thin Solid Films 364 (2000) 28-32

- growth and morphological defects during ✤ Film carbonization can be monitored and controlled by in-situ SE study
- In-situ monitoring of SiC during ion irradiation or * implantation can help as to understand defect formation due the process.

Lohner et al., Phys. stat. sol. (c) 5, No. 5, 1374–1377 (2008)

Ion beam : Ni and Ar Energy : 860 keV and 40 keVFluence : 1×10^{16} and 3×10^{15} ions/cm²

The change in the refractive index and absorption coefficient with ion and fluence is attributed to a stoichiometric change and structural transformation.

Raman study of Ge nanocrystals embedded in silica

- ✤ 500 nm thermally grown SiO² on Si substrate
- Multi-energy implantation
- ✤ 50 keV 1.1016 cm⁻²
- ✤ 80 keV 1.2x10¹⁶
- ✤ 120 Kev 2.10¹⁶
- Thermal annealing in Ar atmosphere at 900 °C followed by quenching
- Raman spectra recorded with 488 nm line of Ar laser using 150 mW power.
- Post-growth annealing smaller Raman shifts reduces compressive stress
- Stress generated during growth of Ge nanocrystals in a silica matrix can be controlled by post-growth thermal annealing
- The stress can be estimated by RS.
- Compressive stress :achieve self-organisation and control over size distribution

I.D. Sharp et al Appl.Phys. Lett. **86** 063107 (2005)

Bulk Ge

As grown Ge NC embedded in SiO2 After post-growth thermal annealing

Raman spectra of indium oxide: disorder induced by SHI

Raman shift (cm⁻¹)

1e12 ions-cm

(sample D)

ann 600°C

(sample C)

180

3e12 ions-cm

1e12 ions-cn

ann 600 sample C

1375

200

Defects study in SiC by Raman

- SiC wafers contain dislocations, planar defects (triangular or polygonal), round pits, micropipes and so on.
- The first-order Raman spectrum of SiC is sensitive to defects, so it is very reliable to use Raman to study defect
- The intensity of the first-order Raman peaks is comparable between the defects

Raman spectra for n-type 4H-SiC taken at room temperature with excitation at $514.5\,\mathrm{nm}.$

PL study of In₂O₃ Thin Films

- ✤ A strong and broad PL peak centered at 680 nm is observed.
- Suggesting the incorporation of larger number of structural defects with the increasing ion fluence from 1×10^{11} to 1×10^{12} ions-cm⁻².
- Annealing in oxygen atmosphere results the suppression of both the PL band whereas, annealing in argon atmosphere shows the persistence of 653 nm PL band.
- SHI irradiation creates oxygen vacancies and other stable defects such as point defects, vacancies, interstitials, trapping centers etc., which can not be annealed out even after annealing at 600°C.