Design and focused proton beam fabrication of transmission optical gratings of quasi-sinusoidal profile in glass

I. Bányász¹, I. Rajta², G.U.L. Nagy², V. Havranek³, V. Vosecek³, V. Lavrentiev³

¹Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary ²ATOMKI, Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary ³Nuclear Physics Institute AV CR, Řež near Prague, 250 68, Czech Republic

Previously:

Fine transmission optical gratings of high diffraction efficiency in glass via irradiation with MeV-energy He⁺ and N⁺ ions through thick photoresist mask [1] (Bányász *et al*).

Proton beam writing has been extensively used for producing gratings and other microoptical elements in organic and inorganic optical materials [2] (Bettiol *et al*).

The aim of this work:

Imitate interferometrically produced optical gratings by producing quasi-sinusoidal refractive index profiles making use of the lateral straggling of the microbeam and by modulating irradiation fluence across the grating lines.

- Quasi-sinusoidal profile is achieved by scanning a certain line multiple times.
- 8 lines were repeated by 0, 1, 4, 7, 8, 7, 4, 1 times.
- Due to the scan resolution and FWHM of the beam the resulted red line shows the calculated profile, nearly sinusoidal.
- Grating constants of the irradiated gratings ranged from $\Lambda=2~\mu m$ to $15~\mu m.$

5 MV Van de Graaff at Atomki, Debrecen, HU $2\mu m \times 2\mu m$ spot size, $2mm \times 2mm$ scan size; Scan resolution 2048 pixels; 2 MeV protons.

3 MV Tandetron at INP ASCR, Řež, CZ $1\mu m \times 1\mu m$ spot size, $1mm \times 1mm$ scan size; Scan resolution 1024 pixels; 6 MeV C³+ and 11 MeV C⁴+ ions.

Fluences: $3 \times 10^{14} - 1 \times 10^{16}$ ions/cm²

Characterization methods:

Compaction characterization by atomic force microscopy (AFM). Interference-, phase contrast- and interference phase contrast (INTERPHAKO) optical microscopy for measurement of integral optical path modulation. Diffraction efficiency of the gratings was also measured.

Results:

The AFM topography image corresponds to the surface relief grating due to target compaction (C^{3+} - written grating, $\Lambda=8~\mu m$).

Profile of the **AFM**. image

Phase contrast microphoto of a proton beam written grating, $\Lambda=15~\mu m.$

Profile of the phase contrast image

Diffraction
efficiency in
various orders of
a proton beam
written grating.

Conclusions:

Profiles of the gratings were quantitatively analysed by phase contrast - and interference phase contrast microscopies. Measured diffraction efficiency distributions in the various orders confirmed that obtained grating profiles were close to the sinusoidal.

References:

- L) I. Bányász, et al, Recording of transmission phase gratings in glass by ion implantation, APL 79 (2001) 3755.
- 2) A.A. Bettiol, et al, Embedded photonic structures fabricated in photosensitive glass using proton beam writing, NIMB 260 (2007) 357.