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Uses of Clustering: Image Segmentation

• [Shi and Malik 2000]



Uses of Clustering: Face Recognition



Uses of Clustering: Cancer Typing

• Leukemia subtypes:

• Acute lymphoblastic leukemia

• Acute myeloid leukemia

• [Golub 1999]



Uses of Clustering: Marketing and Sales



K-means

• Data items: x1, x2, ...., xn

• Prototypes: θ1, θ2, ..., θK

• Alternating updates:

• For i = 1, 2, ..., n:

• For k = 1, 2, ..., K:
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zi = argmin
k

∥∥xi − θ∗k
∥∥

θ∗k =

∑
i:zi=k xi∑
i:zi=k 1



Generative Models

• Generative model for clustering:

• For i = 1, 2, ..., n:

• Pick a cluster zi = k from a family of clusters

• Data is xi = θk* + observation noise

• Latent process: cluster identities 

• World: cluster prototypes, noise process, 
distribution over clusters

World Latent
Process

Observed
Data
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Clustering as Learning a Generative Model

• Learning: Inferring or reconstructing likely latent processes and worlds.

• Likely cluster identities:

• Likely cluster prototypes:

World Latent
Process

Observed
Data
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zi = argmin
k

∥∥xi − θ∗k
∥∥

θ∗k =

∑
i:zi=k xi∑
i:zi=k 1



Dealing with Uncertainties
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Dealing with Uncertainties

• Two types of uncertainties:

• Inherent stochasticity in the world

• Limits to our knowledge

• Bayesian view: theory of probability allows for coherent reasoning about 
both types of uncertainties.

• [E.T. Jaynes 2003: Probability Theory: The Logic of Science]

World Latent
Process

Observed
Data



Bayesian Reasoning with Uncertainty

• Generative process gives us:

• Since we do not know the parameters of the world either, specific a prior:

• Posterior distribution captures the full extent of our world knowledge:

World Latent
Process

Observed
Data



Specifying a Generative Model

• For i = 1, 2, ..., n:

• Pick a cluster zi from a family of K clusters

• Data is xi = θci + observation noise

• Joint distribution:

• World parameters: K, {πk, θk*}, σ2 

• Finite mixture model.
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p(zi = k) = πk

p(xi = x|zi = k) =
1√
2πσ2

exp

(
− (x− θ∗k)

2

2σ2

)



Inference in the Generative Model

• Posterior distribution gives likely states of latent process:
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p(z|x,π,θ∗, σ2) =
p(x, z|π,θ∗, σ2)

p(x|π,θ∗, σ2)

=

n∏
i=1

p(zi|xi,π,θ
∗, σ2)

p(zi = k|xi,π,θ
∗, σ2) =

πk exp(−‖xi−θ∗
k‖2
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� π� exp(−‖xi−θ∗
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= rik



• Likely specification of parameters:

• Maximum likelihood.

• Expectation-Maximization algorithm yields:

• Asymmetric handling of uncertainties for                                         
“parameters” and “latent variables”.

Learning the Generative Model
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Bayesian Learning for the Generative Model

• Bayesian approach treats both equally:

• Give prior to parameters p(π,θ*,σ2).

• Joint distribution:

• Posterior distribution:

• What about K? −8 −6 −4 −2 0 2 4 6 8
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p(x, z|π,θ∗, σ2)p(π,θ∗, σ2)

p(z,π,θ∗, σ2|x) = p(x, z,π,θ∗, σ2)

p(z,π,θ∗, σ2|x)



What Number of Clusters?

• Can we be Bayesian about K as well?

• Place prior over K:

• Compute posterior distribution over K:

• Computationally intractable.

• K is not just a parameter, it determines the number of other parameters.

• Related to computing the partition function in statistical physics.



An Alternative Generative Model

• An alternative generative model:

• First item assigned to first cluster; z1=1.

• For i = 2 ... n:

• Chinese restaurant process. −8 −6 −4 −2 0 2 4 6 8
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p(zi = k) =
nk

i− 1 + α

p(zi = new) =
α

i− 1 + α



Chinese Restaurant Process

• Rich gets richer.

• K is random.

• K increases without bound as n increases.
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CRP Mixture Model

• Generate assignment of data items to clusters according to CRP scheme:

• For each cluster k:

• Generate parameter θk* which describes the characteristics of the cluster:

• Generate each data item i assigned to k:

p(zi = k) =
nk

i− 1 + α

p(zi = new) =
α

i− 1 + α

θ∗k ∼ H

xi|θ∗k ∼ F (θ∗k)



Exchangeability

• CRP generative process assumes a particular order of data items.

• Exchangeable --- distribution over partitions is invariant to order.

9
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p123456789(new, 1, new, 1, 2, new, new, 4, new)

=
α · 1 · α · 2 · 1 · α · α · 1 · α
α · (1 + α) · · · (8 + α)

=
α52

α(9)

p987654321(new, new, 2, new, new, new, 4, 5, 5)

=
α · α · 1 · α · α · α · 1 · 1 · 2
α · (1 + α) · · · (8 + α)

=
α52

α(9)



Inference in the CRP Mixture Model

• Initialize data items to random clusters.

• Initialize cluster parameters randomly.

• Iterative updates:

• For i = 1, ..., n :

• For each cluster k :

• Demo
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p(zi = k|rest)

=

{
n¬i
k

n−1+αp(xi|θ∗k) for existing cluster k;
α

n−1+αp(xi|θ∗new) for new cluster.

p(θ∗k|rest) ∝ p(θ∗k)
∏

i:zi=k

p(xi|θ∗k)



Probability Theory



Probability Theory

• An event E is a set of values that a random variable X can take on.

• Axioms of probability:

• 0 ≤ p( X ∈ E ) ≤ 1

• p( X ∈ ∅ ) = 0, p( X ∈ Δ ) = 1 (Δ is set of all possible values)

• p( X ∈ Ec ) = 1 - p( X ∈ E )

• p( X ∈ ∪ Ei ) = Σ p( X ∈ Ei ) for disjoint events

• Other important formulas:

• Chain rule: p( X ∈ E , Y ∈ F ) = p( X ∈ E | Y ∈ F ) * p( Y ∈ F )

• Bayes’ rule: p( X ∈ E | Y ∈ F ) = p( X ∈ E , Y ∈ F ) / p( Y ∈ F ) 



Probability Theory

• A σ-algebra Σ is a family of subsets of a set Θ such that

• Σ is not empty;

• if A ∈ Σ then Θ\A ∈ Σ;

• if A1,A2,... ∈ Σ then ∪iAi ∈ Σ.

• (Θ, Σ) is a measure space and A ∈ Σ are the measurable sets.

• A measure μ over (Θ, Σ) is a function μ : Σ→[0,∞] such that

• μ(∅) = 0;

• if A1, A2,... ∈ Σ are disjoint then μ(∪iAi) = Σi μ(Ai);

• A probability measure is one where μ(Θ) = 1.



Probability Theory

• Everything we consider here will be measurable. 

• Given two measure spaces (Θ, Σ) and (Δ, Φ) a function f : Θ→ Δ is 
measurable if f -1(A) ∈ Σ for every A ∈ Φ.

• An event is a measurable subset A ∈ Φ.

• If P is a probability measure on (Θ, Σ), a random variable X taking values in 
Δ is simply a measurable function X : Θ→ Δ.

• The probability of an event A ∈ Φ is P(X ∈ A) = P(X-1(A)).

• A stochastic process is simply a collection of random variables {Xi}i ∈ I over 
the same measure space (Θ, Σ), where I is an index set.

• I can be an infinite (even uncountably infinite) set.

Θ
source of 

randomness

X

values



Dirichlet Processes and 
Random Partitions



Finite Mixture Models

• Generative model for clustering data.

• Data item i:

• Mixing proportions:

• Cluster k:

zi|π ∼ Discrete(π)

xi|zi, θ∗k ∼ F (θ∗zi)

θ∗k|H ∼ H

π = (π1, . . . , πK)|α ∼ Dirichlet(α/K, . . . , α/K)

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Finite Mixture Models

• Dirichlet distribution on the K-dimensional 
probability simplex { π | Σk πk = 1 }:

• with                                      .

• Standard distribution on probability vectors, due to 
conjugacy with multinomial. 

Γ(a) =
∫∞
0

xa−1exdx zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K

P (π|α) = Γ(α)∏
k Γ(α/K)

K∏
k=1

π
α/K−1
k



Dirichlet Distribution
(1, 1, 1) (2, 2, 2)

(2, 2, 5)

(5, 5, 5)

(2, 5, 5) (0.7, 0.7, 0.7)

P (π|α) = Γ(
∑

k αk)∏
k Γ(αk)

K∏
k=1

παk−1
k



Dirichlet-Multinomial Conjugacy

• Joint distribution over zi and π:

• where nc = #{ zi = c }.

• Posterior distribution:

• Marginal distribution:

P (π|α)×
n∏

i=1

P (zi|π) = Γ(α)∏K
k=1 Γ(α/K)

K∏
k=1

π
α/K−1
k ×

K∏
k=1

πnk

k

P (π|z, α) = Γ(n+ α)∏K
k=1 Γ(nk + α/K)

K∏
k=1

π
nk+α/K−1
k

P (z|α) = Γ(α)∏K
k=1 Γ(α/K)

∏K
k=1 Γ(nk + α/K)

Γ(n+ α)



Ferguson’s Definition



Ferguson’s Definition of Dirichlet Processes

• A Dirichlet process (DP) is a random probability measure G over (Θ, Σ) 
such that for any finite set of disjoint measurable sets A1,...AK ∈ Σ with

• we have

• where α and H are parameters of the DP.

A1∪̇ · · · ∪̇AK = Θ

(G(A1), . . . , G(AK)) ∼ Dirichlet(αH(A1), . . . , αH(AK))

6

A

A1

A A

A

A

2

3

4

5

[Ferguson 1973]



Parameters of the Dirichlet Process

• α is called the strength, mass or concentration parameter.

• H is called the base distribution.

• Mean and variance:

• where A is a measurable subset of Θ.

• H is the mean of G, and α is an inverse variance.

E[G(A)] = H(A)

V[G(A)] =
H(A)(1−H(A))

α+ 1



Posterior Dirichlet Process

• Suppose

• We can define random variables that are G distributed:

• The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

G ∼ DP(α,H)

θi|G ∼ G for i = 1, . . . , n



Pólya Urn Scheme

• Marginalizing out G, we get:

• This is called the Pólya, Hoppé or Blackwell-MacQueen urn scheme.

• Start with an urn with α balls of a special colour.

• Pick a ball randomly from urn:

• If it is a special colour, make a new ball with colour sampled from H, 
note the colour, and return both balls to urn.

• If not, note its colour and return two balls of that colour to urn.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

• The n variables θ1,θ2,...,θn can take on K ≤ n distinct values.

• Let the distinct values be θ1*,...,θK*.  This defines a partition of {1,...,n} such 
that i is in cluster k if and only if θi = θk*.

• The induced distribution over partitions is the Chinese restaurant process.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .

[Blackwell & MacQueen 1973, Aldous 1985, Pitman 2006]



Clustering Property

• The same values can be repeated among the variables  θ1,θ2,...,θn.

• This can only be the case if G is an atomic distribution.

G ∼ DP(α,H)

θi|G ∼ G for i = 1, 2, . . .

G =

∞∑
k=1

πkδθ∗
k



A draw from a Dirichlet Process 
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Atomic Distributions

• Draws from Dirichlet processes will always be atomic:

• where Σk πk = 1 and θk* ∈ Θ. 

• A number of ways to specify the joint distribution of {πk, θk*}.

• Stick-breaking construction;

• Poisson-Dirichlet distribution.

G =

∞∑
k=1

πkδθ∗
k



Stick-breaking Construction

• Stick-breaking construction for the joint distribution:

• πk’s are decreasing on average but not strictly.

• Distribution of {πk} is called Griffiths-Engen-McCloskey (GEM).

• Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing 
ordering (but is not computationally tractable). 



Historical Perspectives



Dirichlet Process

• Cornerstone of modern Bayesian nonparametrics.

• Rediscovered many times in past.

• Formally defined by [Ferguson 1973] as a distribution over measures.

• Can be derived in different ways, and as special cases of different processes.

• the Chinese restaurant process

• the stick-breaking construction

• the infinite limit of a Gibbs sampler for finite mixture models



Chinese Restaurant Process

• An important representation of the Dirichlet process

• An important object of study in its own right.

• Predates the Dirichlet process and originated in genetics (related to Ewen’s 
sampling formula there).

• Large number of MCMC samplers using CRP representation.

• Random partitions are useful concepts for clustering problems in machine 
learning

• CRP mixture models for nonparametric model-based clustering.

• hierarchical clustering using concepts of fragmentations and coagulations.

• clustering nodes in graphs, e.g. for community discovery in social nets.

• Other combinatorial structures can be built from partitions.



 Stick-breaking Construction

• Easy to generalize stick-breaking construction:

• to other random measures;

• to random measures that depend on covariates or vary spatially.

• Easy to work with different algorithms:

•  MCMC samplers;

• variational inference;

• parallelized algorithms.

[Ishwaran & James 2001, Dunson 2010 and many others]



Random Partitions, 
Random Measures,
and Exchangeability



Random Measures and Random Partitions

Dirichlet
Process

Chinese 
Restaurant 

Process

1
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Random
Probability 
Measures

Random
Exchangeable

Partitions

[De Finetti 1931, Kingman 1975, Kallenberg 2005]



Random Partitions

• A partition ϱ of a set S is:

• A disjoint family of non-empty subsets of S whose union in S.

• S = {Alice, Bob, Charles, David, Emma, Florence}.

• ϱ = { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

• Denote the set of all partitions of S as S.

• Random partitions are random variables taking values in S.

• Clustering: partitions of S = [n] = {1,2,...n}.

Alice
David

Bob
Charles
Emma

Florence



Exchangeable Random Partitions
• A distribution over S is exchangeable if it is invariant to permutations of S:

• The probability function is a symmetric function only of K and {n1,...,nK}, 
called the exchangeable partition probability function (EPPF):

• We also need self-consistency too.  If p[1],p[2],... a sequence of distributions on 
partitions of [1],[2],..., we want:

• The EPPF has the property:

•

[Pitman 2006]



Examples

• Chinese restaurant process:

• Finite number of clusters:

• Dust:

p(sit at table c) =
nc

α+
∑

c∈� nc

p(sit at new table) =
α

α+
∑

c∈� nc



Random Measure  Random Partition

• Random measure G.

• Draw iid sequence 

• Assign i, j same cluster if θi = θj.



Pitman-Yor Process



Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Multiplying conditional probabilities together, we get the probability of ϱ:
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p(sit at table c) =
nc

α+
∑

c∈� nc

p(sit at new table) =
α

α+
∑

c∈� nc



Two-Parameter Chinese Restaurant Process

• Each customer comes into restaurant and sits at a table:

• Additional parameter d.

• Multiplying conditional probabilities together, we get the probability of ϱ:
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9

[Perman et al 1992, Pitman & Yor 1997, Ishwaran & James 2001]

• The corresponding random probability measure is the Pitman-Yor process.



Power-laws in Pitman-Yor Processes

• Power-laws are commonly observed in nature and in human generated data.

• Pitman-Yor processes exhibit power-law properties and can be used to model 
data with such properties.

• With more occupied tables, chance of even more tables becomes higher.

• Tables with small occupancy numbers tend to have lower chance of 
getting new customers.

P (sit at table c) =
nc − d

α+
∑

c∈� nc
P (sit at new table) =

α+ d|�|
α+

∑
c∈� nc

[Pitman 2006, Goldwater et al 2006, Teh 2006]



Power-Laws in Pitman-Yor Processes
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Power-Laws in Pitman-Yor Processes
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Power-law of English Word Frequencies
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[Goldwater et al 2006, Teh 2006, Wood et al 2011]



Power-law of Image Segmentations

[Sudderth & Jordan 2009]



Pitman-Yor Process

• Pitman-Yor processes have been applied in domains with power-laws:

• computational linguistics;

• computer vision.

• They also have stick-breaking constructions and are the next simplest 
generalization of Dirichlet processes.  



Gibbs Type Random Partitions

• EPPF of random partition:

• Simple sensible parameterization:

• Exchangeable and Gibbs type ⇒

• d can take on values 0<d<1, d=0, d<0.

• If further assume V(n,k)=V(n)U(K), ⇒ Pitman-Yor process.

[Gnedin & Pitman 2006]



Families of Random Probability Measures

Pitman-Yor

Dirichlet Normalized
Stable

Normalized
Generalized

Gamma

Normalized
Random
Measure

Gibbs
Type

Poisson
Kingman

Normalized
Inverse

Gaussian

Mixtures of
Finite Dirichlets

P(π) =

V (n, |π|)
∏
c∈π

W (|c|)

T ∼ γ

ν|T ∼ CRM(ρ|ν(Φ) = T )

θ = ν/T

ν ∼ CRM(ρ)

θ = ν/ν(Φ)



Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Γ(α/2) Γ(α/2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

G(A) ⊥⊥ G(B) whenever A ∩B = ∅.



Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Γ(α/4) Γ(α/4) Γ(α/4) Γ(α/4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

G(A) ⊥⊥ G(B) whenever A ∩B = ∅.



Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Γ(α/4) Γ(α/4) Γ(α/4) Γ(α/4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

G(A) ⊥⊥ G(B) whenever A ∩B = ∅.



Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

Γ(α/4) Γ(α/4) Γ(α/4) Γ(α/4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

G(A) ⊥⊥ G(B) whenever A ∩B = ∅.



Completely Random Measures
• A random (unnormalized) measure G’ with the property:

• Infinitely divisible random variable X if for every n there exists n iid 
variables X1...Xn with X = X1 +...+Xn.

• Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

• CRM can always be decomposed 
into 3 independent components:

• G0 a measure that is not random.

• Locations {yl*} are fixed, masses 
{wl} are random and mutually 
independent.

• Locations and masses {πk,θk*} are 
random, and drawn from a Poisson 
process on Θ × R+.
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Exchangeability



Exchangeable Sequence of Variables

• Let                         be an exchangeable sequence of random variables:

• for all n and permutations σ of [n].

• Generalization of i.i.d. variables, and can be constructed as mixtures of such:

• de Finetti’s Theorem: exchangeable sequences can always be represented as 
mixtures of i.i.d. variables.  Further the latent parameter G is unique, called 
the de Finetti measure.

x1, x2, x3, . . .



Why Exchangeable Sequence?

• A model for a dataset x1,x2,...,xn is a joint distribution p(x1,x2,...,xn).

• An exchangeable model means:

• The way data items are ordered or indexed does not matter.

• Model is unaffected by existence of additional unobserved data items, e.g. 
test items.

• To predict m additional test items, we would need 

• P(x1,...,xn, xn+1,...,xn+m)

• If model is not exchangeable, predictive probabilities will be different 
for different values of m.

• There are scenarios where exchangeability is suitable or unsuitable.



Dirichlet Process

• The CRP mixture model is exchangeable:

• Sample z ~ CRP(N,α).

• For c ∈ ϱ :

• sample θc* ~ H.

• For i = 1,2,...:

• sample xi ~ F(θc*) where i ∈ c.

• The resulting de Finetti measure is the DP with parameters α and H.

θ1 θ2 θ3 θ4

x1

x3
x6

x2
x7

x4

x5

x8

x9

[Ferguson 1973, Blackwell & MacQueen 1973]



• Fundamental role of de Finetti’s Theorem in Bayesian statistics:

• From an assumption of exchangeability, we get a representation as a 
Bayesian model with a prior over the latent parameter.

• Generalizing infinitely exchangeable sequences lead to Bayesian models for 
richly structured data.  E.g.,

• exchangeability in network and relational data.

• hierarchical exchangeability in hierarchical Bayesian models.

• Markov exchangeability in sequence data.

Exchangeability in Bayesian Statistics



Exchangeable Graphs and Networks
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[Aldous 1981, Hoover 1979, Kallenberg 2005]

Exchangeable 
directed graph:



Bayesian Nonparametrics

[Hjort et al 2010]



Bayesian Nonparametric Modelling

• What is a nonparametric model?

• A really large Bayesian parametric model;

• A parametric model where the number of parameters increases with data;

• A parametric model where the number of parameters is infinite; 

• A family of distributions that is dense in some large space relevant to the 
problem at hand.



Model Selection and Averaging

• Model selection/averaging typically very expensive computationally.

• Used to prevent overfitting and underfitting.

• But a well-specified Bayesian model should not overfit anyway.

• By using a very large Bayesian model or one that grows with amount of data, 
we will not underfit either.



Large Coverage

• Large function spaces.

• More straightforward to infer the 
infinite-dimensional objects themselves.
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Large Coverage
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Novel and Useful Properties

• Many interesting Bayesian nonparametric models with interesting and useful 
properties:

• Projectivity, exchangeability.

• Zipf, Heap and other power laws 

• (Pitman-Yor, 3-parameter IBP).

• Flexible ways of building complex models 

• (Hierarchical nonparametric models, dependent Dirichlet processes).



Structural Learning

• Learning structures.

• Bayesian prior over 
combinatorial structures.

• Nonparametric priors 
sometimes end up simpler 
than parametric priors.

duck
chicken

seal
dolphin
mouse

rat
squirrel

cat
cow

sheep
pig

deer
horse

tiger
lion

lettuce
cucumber

carrot
potato
radish
onions

tangerine
orange

grapefruit
lemon
apple
grape

strawberry
nectarine
pineapple

drill
clamp
pliers

scissors
chisel
axe

tomahawk
crowbar

screwdriver
wrench
hammer

sledgehammer

shovel
hoe
rake

yacht
ship

submarine
helicopter

train
jet
car
van
truck
bus

motorcycle
bike

wheelbarrow
tricycle
jeep[Adams et al 2010, Blundell et al 2010]



Are Nonparametric Models Nonparametric?

• Nonparametric just means not parametric: cannot be described by a fixed set 
of parameters.

• Nonparametric models still have parameters, they just have an infinite 
number of them.

• No free lunch: cannot learn from data unless you make assumptions.

• Nonparametric models still make modelling assumptions, they are just 
less constrained than the typical parametric models.

• Models can be nonparametric in one sense and parametric in another: 
semiparametric models.



Sequential and 
Time Series Models



Infinite Hidden Markov Model



Hidden Markov Models

πk ∼ Dirichlet(α/K, . . . , α/K)

θ∗k ∼ H

zt|zt−1 ∼ πzt−1

xt|zt ∼ H(θ∗zt)

• Can we take K→∞? Not easily....

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
K



Infinite Hidden Markov Model

• Use an oracle to allow any state to 
transition to any other state.

• Can also allow to an additional factor for 
self-transitions.

• Complicated, but can be interpreted as a 
Chinese restaurant process representation 
for a hierarchical Dirichlet process.

i

jnij

Oracle

n0jα

new

β

[Beal et al 2002, Teh et al 2006]



Word Segmentation

• 山花貞夫・新民連会長は十六日の記者会見で、村山富市首相
ら社会党執行部とさきがけが連携強化をめざした問題について
「私たちの行動が新しい政界の動きを作ったといえる。統一
会派を超えて将来の日本の ...

• 今后一段 期 , 不但居民会更多地 国  , 而且一些金融机
在准 金利率 低后 , 出于安全性方面的考  , 也会将部分 金
用来 国 。

• yuwanttusiD6bUk?



iHMM Word Segmentation

• Number of word types is unknown (and part of the output of learning).

• We can use the infinite HMM coupled with a model to generate strings of 
characters for each word.

you want to see the book

yuwanttusiD6bUk

y u w a n t t u s i D 6 b U k

[Goldwater et al 2006, Mochihashi et al 2009]



iHMM Word Segmentation

P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 52.9 51.3 52.0
MBDP-1 67.0 69.4 68.2 80.3 84.3 82.3 53.6 51.3 52.4
DP 61.9 47.6 53.8 92.4 62.2 74.3 57.0 57.5 57.2
NGS-b 68.1 68.6 68.3 81.7 82.5 82.1 54.5 57.0 55.7
HDP 79.4 74.0 76.6 92.4 83.5 87.7 67.9 58.9 63.1



Infinite Reversible Markov Chain

[Bacallado 2012, Bacallado et al 2012]



High Order Markov Models

[Goldwater et al 2006, Teh 2006]



Sequence Models for Language and Text

• Probabilistic models for sequences of words and characters, e.g.

south, parks, road

s, o, u, t, h, _, p, a, r, k, s, _, r, o, a, d

• n-gram language models are high order Markov models of such discrete 
sequence:

P (sentence) =
∏

i

P (wordi|wordi−N+1 . . .wordi−1)



•Context of conditional probabilities naturally organized 
using a tree.

• Smoothing makes conditional probabilities                                
of neighbouring contexts more similar.

• Later words in context more important                                        
in predicting next word.

∅

Context Tree

along south parks

south parks

parks

to parks university parks

at south parks



• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.
G∅

Hierarchical Bayes on Context Tree

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks



Hierarchical Dirichlet Language Models
• What is                       ? Obvious choice is the standard Dirichlet 

distribution over probability vectors.

• We will use Pitman-Yor processes instead.

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2 × 106 2 148.8 144.1 191.2
4 × 106 2 137.1 132.7 172.7
6 × 106 2 130.6 126.7 162.3
8 × 106 2 125.9 122.3 154.7

10 × 106 2 122.0 118.6 148.7
12 × 106 2 119.0 115.8 144.0
14 × 106 2 116.7 113.6 140.5
14 × 106 1 169.9 169.2 180.6
14 × 106 3 106.1 102.4 136.6

[MacKay and Peto 1994]



Hierarchical Pitman-Yor Language Models
• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Place Pitman-Yor process prior on each Gu.

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

[Goldwater et al 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models
• Significantly improved on the hierarchical Dirichlet language model.

• Results better Kneser-Ney smoothing, state-of-the-art language models.

• Similarity of perplexities not a surprise---Kneser-Ney can be derived as a 
particular approximate inference method.

T N-1 IKN MKN HDLM HPYLM

2 × 106 2 148.8 144.1 191.2 144.3
4 × 106 2 137.1 132.7 172.7 132.7
6 × 106 2 130.6 126.7 162.3 126.4
8 × 106 2 125.9 122.3 154.7 121.9

10 × 106 2 122.0 118.6 148.7 118.2
12 × 106 2 119.0 115.8 144.0 115.4
14 × 106 2 116.7 113.6 140.5 113.2
14 × 106 1 169.9 169.2 180.6 169.3
14 × 106 3 106.1 102.4 136.6 101.9



Markov Models for Language and Text

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).

• How do we determine the order of our Markov models?

• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | south parks)



Non-Markov Models for Language and Text
• Model the conditional probabilities of each possible word occurring after 

each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share                  
information across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.

...
.

...
.

...
.

...
.

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

Gmeet at south parks
[Wood et al 2011]



Comparison to Finite Order HPYLM



Compression Results

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



Coagulations, 
Fragmentations, and 

Trees
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Bayesian Inference for Trees

• Computational and statistical methods for constructing trees:

• Algorithmic, not model-based.

• Maximum likelihood

• Maximum parsimony

• Bayesian inference: introduce prior over trees and compute posterior.

• Bayesian nonparametric priors for P(T).

• Exchangeable and projective models.

• Models for trees has to be nonparametric.

P (T |x) ∝ P (T )P (x|T )



Fragmenting Partitions

• Sequence of finer and finer partitions.

• Each cluster fragments until all clusters 
contain only 1 data item.

• Can define a distribution over trees 
using a Markov chain of fragmenting 
partitions, with absorbing state 0S
(partition where all data items are in 
their own clusters).

�1

�2

�4

�5

�3

1 2 3 4 5 6 7 8 9

1 2

1 2 5 6 3 7 8 9 4

5 6 7 8 93 4

43 7 8 91 2 5 6

1 2 5 6 3 7 8 9 4



Coagulating Partitions

• Sequence of coarser and coarser 
partitions.

• Each cluster formed by coagulating 
smaller clusters until only 1 left.

• Can define a distribution over trees by 
using a Markov chain of coagulating 
partitions, with absorbing state 1S
(partition where all data items are in one 
cluster). 
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Coagulation and Fragmentation Operators
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Random Fragmentations
• Let C ∈ [n] and for each c ∈ C let Fc ∈ c.

• Denote fragmentation of C by {Fc} as frag(C,{Fc}).

• Write ϱ1 | C ~ FRAG(C,d,α) if ϱ1 = frag(C,{Fc}) with 

• Fc ~ CRP(c,d,α) independently.
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Random Coagulations
• Let ϱ1 ∈ [n] and ϱ2 ∈ ϱ1.

• Denote coagulation of ϱ1 by ϱ2 as coag(ϱ1, ϱ2).

• Write C | ϱ1 ~ COAG(ϱ1,d,α) if C = coag(ϱ1, ϱ2) with 

• ϱ2 | ϱ1 ~ CRP(ϱ1,d,α).

•
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Nested Chinese Restaurant Process

• Start with the null partition ϱ0 = {[n]}.

• For each level l = 1,2,...,L:

• ϱl = FRAG(ϱl-1,0,αl)

• Fragmentations in different clusters (branches of the 
hierarchical partition) operate independently.

• Nested Chinese restaurant processes (nCRP) define a 
Markov chain of partitions, each of which is exchangeable.

• Can be used to define an infinitely exchangeable sequence, 
with de Finetti measure being the nested Dirichlet process
(nDP).

�1

�0

�2

�L

[Blei et al 2004, 2010, Rodriguez et al JASA 2008]



Nested Topic Model



Nested Topic Model



Chinese Restaurant Franchise

• For a simple linear hierarchy of DPs (restaurants linearly 
chained together), the Chinese restaurant franchise
(CRF) is a sequence of coagulations:

• At the lowest level L+1, we start with the trivial 
partition ϱL+1 = {{1},{2},...,{n}}.

• For each level l = L,L-1,...,1:

• ϱl = COAG(ϱl+1,0,αl)

• This is also Markov chain of partitions.
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Hierarchical Dirichlet/Pitman-Yor Processes

• Each partition in the Chinese restaurant franchise is again 
exchangeable.

• The corresponding de Finetti measure is a Hierarchical 
Dirichlet process (HDP).

• The CRF has been rarely used as a model of hierarchical 
partitions.  Typically it is only used as a convenient 
representation for inference in the HDP   and HPYP.

�1

�2

�L

�L+1

G1
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Gl|Gl−1 ∼ DP(αl, Gl−1)



Continuum Limit of 
Partition-valued Markov Chains



Trees with Infinitely Many Levels

• Random trees described so far all consist of a finite number of 
levels L.

• We can be “nonparametric” about the number of levels of 
random trees.

• Allow a finite amount of change even with an infinite number of 
levels, by decreasing the change per level.
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Δ/L

Δ/L

Δ/L



Dirichlet Diffusion Trees

[Neal 2003]



Dirichlet Diffusion Trees

• The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can be 
derived from the continuum limit of a nCRP:

• Start with the null partition ϱ0 = {[n]}.

• For each time t, define

• ϱt+dt = FRAG(ϱt,0,a(t)dt)

• The continuum limit of the Markov chain of partitions becomes a continuous 
time partition-valued Markov process: a fragmentation process.

• Generalization to Pitman-Yor diffusion trees.

[Neal 2003, Knowles & Ghahramani 2011]



Kingman’s Coalescent

• Taking the continuum limit of the one-parameter (Markov chain) CRF leads 
to another partition-valued Markov process: Kingman’s coalescent.

• Start with the trivial partition ϱ0 = {{1},{2},...,{n}}.

• For each time t < 0:

• ϱt-dt = COAG(ϱt,0,a(t)/dt)

• This is the simplest example of a coalescence or coagulation process.

• A standard genealogical process in genetics.

• A generalization called Λ-coalescent.

[Kingman 1982a,b, Pitman 1999]  



Kingman’s Coalescent



A Few Final Words



Summary

• Introduction to Bayesian learning and Bayesian nonparametrics.

• Dirichlet processes: 

• Chinese restaurant processes, stick-breaking construction.

• Ferguson’s Definition.

• Pitman-Yor processes:

• Two-parameter Chinese restaurant processes.

• Power-law properties.

• Hierarchical Bayesian nonparametric models.

• Infinite hidden Markov models and high order Markov models.

• Random partitions, coagulations, fragmentations, trees.

• Important models that did not cover: Gaussian processes, Indian buffet 
processes.



Current Issues

• Developing classes of nonparametric priors suitable for modelling data.

• Developing algorithms that can efficiently compute the posterior is important.

• Developing theory of asymptotics in nonparametric models.

• More applications in machine learning and beyond.



Other Tutorials and Reviews

• Mike Jordan’s tutorial at NIPS 2005.

• Zoubin Ghahramani’s tutorial at UAI 2005.

• Peter Orbanz’ tutorial at MLSS 2009 (videolectures)

• My own tutorials at MLSS 2007, 2009 (videolectures), 2011 (Singapore, 
France), NIPS 2011 (with Peter Orbanz) and elsewhere.

• Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz & 
Teh 2010, Gershman & Blei 2011], hierarchical Bayesian nonparametric 
models [Teh & Jordan 2010].

• Bayesian nonparametrics book [Hjort et al 2010].



Probabilistic Modelling

• Machine learning is all about data.

• Stochastic, chaotic and/or complex process

• Noisily observed

• Partially observed

• Probability theory is a rich language to express these uncertainties.

• Probabilistic models 

• Graphical tool to visualize complex models for complex problems.

• Complex models can be built from simpler parts.

• Well-understood ways to derive algorithmic solutions.

• Separation of modelling questions from algorithmic questions.



Supplementary Material



DP Mixture Model: 
Representations and Inference



DP Mixture Model

• A DP mixture model: 

• Different representations:

• θ1,θ2,...,θn are clustered according to Pólya urn 
scheme, with induced partition given by a CRP.

• G is atomic with weights and atoms described 
by stick-breaking construction.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

G|α,H ∼ DP(α,H)

θi|G ∼ G

xi|θi ∼ F (θi)



CRP Representation

• Representing the partition structure explicitly with 
a CRP:

• Makes explicit that this is a clustering model.

• Using a CRP prior for ϱ obviates need to limit 
number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]

ρ|α ∼ CRP([n], α)

θ∗c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i



Marginal Sampler
• “Marginal” MCMC sampler.

• Marginalize out G, and Gibbs sample partition.

• Conditional probability of cluster of data item i:

• A variety of methods to deal with new clusters.

• Difficulty lies in dealing with new clusters, 
especially when prior h is not conjugate to f.

[Neal 2000]

ρ|α ∼ CRP([n], α)

θ∗c |H ∼ H for c ∈ ρ

xi|θ∗c ∼ F (θ∗c ) for c � i

P (ρi|ρ\i,x,θ) =P (ρi|ρ\i)P (xi|ρi,x\i,θ)

P (ρi|ρ\i) =
{ |c|

n−1+α if ρi = c ∈ ρ\i
α

n−1+α if ρi = new

P (xi|ρi,x\i,θ) =

{
f(xi|θρi) if ρi = c ∈ ρ\i∫
f(xi|θ)h(θ)dθ if ρi = new



Induced Prior on the Number of Clusters
• The prior expectation and variance of |ϱ| are:
E[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) ≈ α log

(
1 + n

α

)
V[|ρ||α, n] = α(ψ(α+ n)− ψ(α)) + α2(ψ′(α+ n)− ψ′(α)) ≈ α log

(
1 + n

α

)
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Marginal Gibbs Sampler Pseudocode
• Initialize: randomly assign each data item to some cluster.
• K := the number of clusters used.
• For each cluster k = 1...K:

• Compute sufficient statistics sk := Σ { s(xi) : zi = k }.
• Compute cluster sizes nk := # { i : zi = k }.

• Iterate until convergence:
• For each data item i = 1...n:

• Let k := zi be the current cluster data item is assigned to.
• Remove data item: sk −= s(xi), nk −= 1.
• If nk = 0 then remove cluster k (K −= 1 and relabel rest of clusters).
• Compute conditional probabilities p(zi=c|others)                        

for c = 1...K, kempty := K+1.
• Sample new cluster for data item from conditional probabilities.
• If c = kempty then create new cluster: K+=1, sc := 0, nc = 0. 
• Add data item: zi  := c, sc += s(xi), nc += 1.



Stick-breaking Representation
• Dissecting stick-breaking representation for G: 

• Makes explicit that this is a mixture model with an 
infinite number of components.

• Conditional sampler:

• Standard Gibbs sampler, except need to truncate the 
number of clusters.

• Easy to work with non-conjugate priors.

• For sampler to mix well need to introduce moves 
for permuting the order of clusters.

π∗|α ∼ GEM(α)

θ∗k|H ∼ H

zi|π∗ ∼ Discrete(π∗)
xi|zi, θ∗zi ∼ F (θ∗zi)

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler
• Represent G explicitly, alternately sampling {θi}|G 

(simple) and G|{θi}:.

• Use a stick-breaking representation for G’ and 
truncate as before.

• No explicit ordering of the non-empty clusters 
makes for better mixing.

• Explicit representation of G allows for posterior 
estimates of functionals of G.

G|α,H ∼ DP(α,H)

θi|G ∼ G

xi|θi ∼ F (θi)

G|θ1, . . . , θn ∼ DP(α+ n,
αH+

∑n
i=1 δθi

α+n )

G = π∗
0G

′ +
K∑

k=1

π∗
kδθ∗

k

(π∗
0 , π

∗
1 , . . . , π

∗
K) ∼ Dirichlet(α, n1, . . . , nK)

G′ ∼ DP(α,H)



Other Inference Algorithms

• Split-merge algorithms [Jain & Neal 2004].

• Close in spirit to reversible-jump MCMC methods [Green & richardson 
2001].

• Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003, 
Fearnhead 2004, Mansingkha et al 2007].

• Variational algorithms [Blei & Jordan 2006, Kurihara et al 2007, Teh et al 
2008].

• Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008]. 



Fragmentation-Coagulation:  
Duality and Processes

[Berestycki 2004, Teh et al 2011]



Duality of Coagulation and Fragmentation
• The following statements are equivalent:
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(II) C ∼ CRP([n], d1d2, αd2) and Fc|C ∼ CRP(c, d2,−d1d2) ∀c ∈ C

[Pitman 1999]



Markov Chain over Partitions
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• Defines a Markov chain over partitions.

• Each transition is a fragmentation followed by coagulation.
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Stationary Distribution

• Stationary distribution is a CRP with parameters μ and 0.
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Exchangeability and Projectivity

• Each πt is exchangeable, so that the whole Markov chain is an exchangeable 
process.

• Projectivity of the Chinese restaurant process extends to the Markov chain as 
well.
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Reversibility of Markov Chain

• The Markov chain is reversible.

• Coagulation and fragmentation are duals of each other.
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Continuum Limit

• Taking ε→0 obtains a continuous time Markov process over partitions, an 
exchangeable fragmentation-coalescence process (Berestycki 2004).

• At each time, at most one coagulation (involving two blocks) or one 
fragmentation (splitting into two blocks) will occur.
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Conditional Distribution of a Trajectory 
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• This process is reversible.



Coagulation and Fragmentation Rates

• Describe Markov process in terms of rates of fragmentation and coagulation 
events:

• Rate of fragmentation of a ∈ Π[n],t into b and c: 

• Rate of coagulation of a,b ∈ Π[n],t into into a∪b: 
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Dirichlet Diffusion Trees and Coalescents

• Rate of fragmentation is same as for Dirichlet diffusion trees with constant 
fragmentation rate (Neal 2003).

• Rate of coagulation is same as for the coalescent (with time rescaled) 
(Kingman 1982).

• Reversibility means that the Dirichlet diffusion tree is the “reverse” of 
Kingman’s coalescent.

• Class of exchangeable fragmentation-coalescence processes (Berestycki 
2004) includes more general processes.

• This process seems to be a canonical example of exchangeable 
fragmentation-coalescence processes, but cannot find a reference in 
literature?



Relationship with Hidden Markov Models

• Both can be interpreted as models of sequence data with a latent partition 
structure at each time point.

• Hidden Markov models have explicit labels of hidden states, fragmentation-
coagulation processes do not.

• Hidden Markov models need to specify the number of states, fragmentation-
coagulation processes do not.

• HMM labels allow generalization across times, but lead to label switching 
problems.



Comparison with Bayesian HMMs
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Hierarchical Dirichlet Processes

[Teh et al 2006, Teh & Jordan 2010]



Topic Modelling

[Blei et al 2003, Griffiths & Steyvers 2004]
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Latent Dirichlet Allocation

• Model a topic as a distribution over words that 
tend to co-occur together among documents.

• Model words in documents as exchangeable and 
documents as mixtures of topics.

• How many topics can we find in a corpus?
topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θ∗k

πj ∼ Dirichlet(α/K, . . . , α/K)

θ∗k ∼ Dirichlet(β/W, . . . , β/W )

zji|πj ∼ Discrete(πj)

xji|zji, θ∗zji ∼ Discrete(θ∗zji)

[Blei et al 2003, Griffiths & Steyvers 2004]
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x1i

θ1i
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x2i

θ2i

Nonparametric Latent Dirichlet Allocation?

• Use a DP for each document.

• There is no sharing of topics across different 
documents, because H is smooth.

• Solution: make H discrete.

• Put a DP prior on H.
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G0

Hierarchical Dirichlet Process

• A hierarchy of Dirichlet processes:

• Extension to larger hierarchies straightforward:

• Hierarchical modelling are a widespread technique 
to share statistical strength.

G0 ∼ DP(α0, H)

G1|G0 ∼ DP(α1, G0)

G2|G0 ∼ DP(α2, G0)

Gj ∼ DP(αj , Gpa(j))

[Teh et al 2006]



Hierarchical Dirichlet Process
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Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.
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• G0 can also be represented using a CRP.
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Chinese Restaurant Franchise

• G1 and G2 can both be represented using CRPs.
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• G0 can also be represented using a CRP.
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Hierarchical Bayesian Modelling

• An important overarching theme in modern statistics.

• In machine learning, have been used for multitask learning, transfer learning, 
learning-to-learn and domain adaptation.
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φ0
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x2i
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φ1

x1i

[Gelman et al, 1995, James & Stein 1961]



Hierarchical Bayesian Nonparametrics

• Bayesian nonparametric models are increasingly used as building blocks by 
modellers to build complex probabilistic models.

• Hierarchical modelling are a natural technique for combining building blocks.

• Applications span computational linguistics, time series and sequential 
models, vision, genetics etc.

• Dependent random measures:

• techniques for introducing dependencies among random measures indexed 
by spatial or temporal covariates.

• Nested processes:

• technique for modelling heterogeneity in data.



Dependent Random Measures

• A measure-valued stochastic process {Gϕ} indexed by a covariate space Φ.

• Gϕ is the random measure at location ϕ ∈ Φ.

• If each Gϕ is marginally DP, we have a dependent Dirichlet process.

• Density regression: estimating density over output space conditional on ϕ.

• Applications include image segmentation, topic models through time, 
dictionary learning, spatial models, and many others in biostatistics, signal 
processing etc.

[MacEachern 1999, Dunson 2010]


