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Clustering




Uses of Clustering: Image Segmentation

(d)

 [Shi and Malik 2000]
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Uses of Clustering: Face Recognition




Uses of Clustering: Cancer Typing
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Uses of Clustering: Marketing and Sales
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K-means
8F
* Data items: X1, X2, ...., Xn
ol
 Prototypes: 01, 0, ..., Ok
J
 Alternating updates:
ol
e For1=1, 2, ..., n:
ol
Z; = arg mljn HZEZ — 0, Sl
4}
e Fork=1,2, ..., K:
6t
9* . Zzzzzk '/EZ 8




Generative Models

Latent Observed

World |—— —

Process Data

 Generative model for clustering: or
e For1=1,2, ... n:
 Pick a cluster zi = k from a family of clusters - -

* Data is xj = 0k™ + observation noise

 Latent process: cluster identities !

« World: cluster prototypes, noise process, B
distribution over clusters B R e BRI




Clustering as Learning a Generative Model

Latent Observed

World |—— —

Process Data

e Learning: Inferring or reconstructing likely latent processes and worlds.

 Likely cluster identities:

Z; = arg mkin sz — 0,

* Likely cluster prototypes: I
1. g °l
(9;: _ Zz.zz—k Ll

Zi:zi:k 1 Ll




Dealing with Uncertainties




Dealing with Uncertainties




Dealing with Uncertainties

8F
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Dealing with Uncertainties

Latent Observed

World |—— —

Process Data

* Two types of uncertainties:
* Inherent stochasticity in the world
e Limits to our knowledge

» Bayesian view: theory of probability allows for coherent reasoning about
both types of uncertainties.

 [E.T. Jaynes 2003: Probability Theory: The Logic of Science]



Bayesian Reasoning with Uncertainty

Latent Observed
World |—— —
Process Data
« (Generative process gives us:
p(z,x[0)

 Since we do not know the parameters of the world either, specific a prior:
p(0)
 Posterior distribution captures the full extent of our world knowledge:

p(z,x[0)p(0)
p(x)

p(Z,H‘X) —
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Specifying a Generative Model

e For1=1, 2, ..., n: |
* Pick a cluster zi from a family of K clusters 2

p(zi = k) = m, 0

» Data is xj = 0¢ + observation noise 4

1 x — 05)%\ =
plr; =x|z; =k) = — exp (—( 202k) )

Joint distribution:

n

p(x,z|w,8,0°%) = | | p(zil2i, 0", 0%)p(zi| )
=1

World parameters: K, {mx, Ok*}, 62

Finite mixture model.



Inference in the Generative Model

n

p(X7 Z‘ﬂ-a 07 02) — Hp(xz‘zza 0*7 0-2>p(zz‘ﬂ-)
1=1

 Posterior distribution gives likely states of latent process:

i} p(x,z|m, 0", 0%) l
0 o2 = Al
p(z|x,m, 6%, 07) p(x|m, 0", 02)

n
= HP(ZH%JT,O*»UQ) T
i=1

1_9* 2 ol
Wkexp(—nx%fn) 2

p(z; = klx;, m,0%,0%) = e
>, meexp(— 22D

— Tik




Learning the Generative Model

n

p(X7 Z‘ﬂ-a 07 02) — Hp(xz‘zza 0*7 0-2>p(zz‘ﬂ-)
1=1

Likely specification of parameters:

arg min p(x|m, 0, 0°) o
7w,0% 02

Maximum likelihood.

Expectation-Maximization algorithm yields:

0* L Zzzzzk Tikxi ol
L=

Zi:zizk Tik mll
6

Asymmetric handling of uncertainties for
“parameters” and “latent variables™. R S R




Bayesian Learning for the Generative Model

n

p(X7 Z‘ﬂ-a 07 02) — Hp(xz‘zza 0*7 0-2>p(zz‘ﬂ-)
1=1

« Bayesian approach treats both equally:

* Give prior to parameters p(7,0*,62). o
 Joint distribution: ol
p(X, Z’ﬂ-a 0*; 0'2)]9(77, 0*, 0'2)

e Posterior distribution:
p(x7 Z7 T‘-? 0*7 0-2)

0, 0°|x) =
p(z,m, 0%, o) p(z,m, 0", 02%|x)

« What about K? s e 4 2 o 2 « & 3



What Number of Clusters?

Can we be Bayesian about K as well?

Place prior over K:
p(K)
Compute posterior distribution over K:
p(X|K)p(K) Yy m0r 02 P(X2, 7,07, 0% K)p(K)
p(x) p(x)

p(K|x) =

Computationally intractable.
« K is not just a parameter, it determines the number of other parameters.

« Related to computing the partition function in statistical physics.



An Alternative Generative Model

* An alternative generative model:

* First item assigned to first cluster; z1=1.
e Fori=2 ... n: JA
ng 2
zi = k) =

Pl ) 1 — 14+« 0
( )= — 2

Z; = New
b 1 — 1+« g

« Chinese restaurant process. D T

OO0OO0



Chinese Restaurant Process

1 — 14+«

» Rich gets richer. oL e

K 1s random. 290 | | | | | | | | |

« K increases without bound as n increases. . e

150
100

50

Y e
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CRP Mixture Model

* Generate assignment of data items to clusters according to CRP scheme:

T
i =k) = -
pla =k) = ———
p(z; = new) = - -
1— 1+«

 For each cluster k:
« Generate parameter k™ which describes the characteristics of the cluster:
0, ~H
e Generate each data item 1 assigned to k:
;|0 ~ F(6)



p

Exchangeability

OO00O0C

» CRP generative process assumes a particular order of data items.

P123456789 (new, 1, new, 1, 2, new, new, 4, new)

_04-1-04-2-1-04-04-1-04 a2

a-(1+a)---(B8+a) oo

Pos7654321 (HQW, new, 2, new, new, new, 4, 5, 5)
a-a-1l-a-a-a-1-1-2  a°2

a-(1+a)-8+a) oo

« Exchangeable --- distribution over partitions is invariant to order.
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Inference in the CRP Mixture Model

» Initialize data items to random clusters.

* Initialize cluster parameters randomly. Al
* [terative updates: i

e Fori=1,..n:
p(z; = k|rest)

{nnﬂa p(x;|07)  for existing cluster k;

n_?+ap($i|9* ) for new cluster.

new 6l
* For each cluster k : Ps s 4 2 o 2 4 6 8
p(65|rest) o< p(6) || p(x:l6F)
1.2, =k

e Demo



Probability Theory



Probability Theory

« Anevent E is a set of values that a random variable X can take on.
« Axioms of probability:
« 0<p(XEE)<I
e p(XELD)=0,p(XEA)=1 (Ais set of all possible values)
e p(XEE)=1-p(XEELE)
e p(XE€ U Ei)=2p(X€EE)) for disjoint events
e Other important formulas:
« Chainrule:p(X€E, YEF)=p(XEE|YEF)*p(YEF)
« Bayes’rule:p(XE€E|YEF)=p(XEE,YEF)/p(YEF)
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Probability Theory

» A s-algebra X is a family of subsets of a set @ such that
2 1s not empty;
e if 4 €2 then P4 €2
o 1f A1, A>,... € Xthen Uidi€E 2.
* (O, 2) is a measure space and 4 € 2 are the measurable sets.
A measure u over (0, 2) is a function u : 2’ —[0,9] such that
* u$d) = 0;
o if A1, Ao,... € X are disjoint then p(Uidi) = 2i u(4i);

« A probability measure is one where u(®) = 1.



Probability Theory

» Everything we consider here will be measurable.

» Given two measure spaces (0, 2) and (4, @) a function f: @ — 4 1s
measurable if f1(4) € X for every 4 € .

e An event is a measurable subset 4 € @.

 If P is a probability measure on (®, 2), a random variable X taking values in
A 1s simply a measurable function X : @ — 4.

 The probability of an event 4 € @ is P(XE A) = P(X1(4)).

A stochastic process is simply a collection of random variables {Xi}ie| over
the same measure space (6, 2), where [ is an index set.

[ can be an infinite (even uncountably infinite) set.
X

®
source of
randomness



Dirichlet Processes and
Random Partitions
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Finite Mixture Models

Data item i:

Generative model for clustering data. ‘

z;|m ~ Discrete()

Y

Mixing proportions:

w = (m1,...,7K)|a ~ Dirichlet(a/K, ..., a/K) ? pgl=mE

Cluster £: @/
0. |H ~ H




p

Finite Mixture Models

* Dirichlet distribution on the K-dimensional
probability simplex { T | Zk Tk = I )

. a/K 1
oo il

with T'(a fo a—leT .

 Standard dlstrlbutlon on probability vectors, due to
conjugacy with multinomial.
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Dirichlet Distribution

(1,1,1) (2,2,2) (5,5,5)
(2,5,5) (2,2,5) r\(0.7,0.7, 0.7)

H"«-\._\_
e
.

B

>




Dirichlet-Multinomial Conjugacy

» Joint distribution over zj and T

P(m|a) X HP(Z7,|7T) =

I'(c) =

[Tem: D/ K) 5

a/K 1><H7T

where nc =#{zi=c }.

* Posterior distribution:
K
F(n ‘|‘ Oé H k_|_a/K 1

Hi(:l (nk +a/K) |,

P(m|z,a) =

» Marginal distribution:

Plala) = — L@ Ty Dlne+a/K)

Hi{:1 ['(a/K) I'(n+a)




Ferguson’s Definition



Ferguson’s Definition of Dirichlet Processes

« A Dirichlet process (DP) is a random probability measure G over (O, X)
such that for any finite set of disjoint measurable sets A41,...Ax € 2 with

AU UAg = 0O
we have
(G(Ay),...,G(Ak)) ~ Dirichlet(aH (A1), ..., aH(Ak))

where o and H are parameters of the DP.

A
A
As
Ao A
Ao
[Ferguson 1973]
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Parameters of the Dirichlet Process

* a is called the strength, mass or concentration parameter.
» H is called the base distribution.

 Mean and variance:

where 4 1s a measurable subset of ©.

» H is the mean of G, and a 1s an 1nverse variance.
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Posterior Dirichlet Process

e Suppose
G ~ DP(a, H)

* We can define random variables that are G distributed:

0,|G~G fori=1,...,n

 The usual Dirichlet-multinomial conjugacy carries over to the DP as well:

aH+Z?:1 591)
a—+n

G|04,...,0, ~DP(a+n,



Pélya Urn Scheme
G ~ DP(a, H)
0;,|G~G fori=1,2,...

« Marginalizing out G, we get:
aH + Z?zl 69@'
a—+n

en—l—l‘ela-”aen ~

« This is called the Polya, Hoppé or Blackwell-MacQueen urn scheme.,
« Start with an urn with o balls of a special colour.
 Pick a ball randomly from urn:

e If it 1s a special colour, make a new ball with colour sampled from H,
note the colour, and return both balls to urn.

 If not, note its colour and return two balls of that colour to urn.

[Blackwell & MacQueen 1973, Hoppe 1984]



Clustering Property

G ~ DP(a, H)
0;,|G~G fori=1,2,...

 The n variables 61,0-,...,60, can take on K < n distinct values.

* Let the distinct values be 617,...,0x". This defines a partition of {/,...,n} such
that i is in cluster k if and only if 6 = 6.

» The induced distribution over partitions is the Chinese restaurant process.
aH + Z?:l 5(97;

0,11101,...,0,
+16h P
Q K n
k
— H O+
a-+n +kz_:1oz+n %%

[Blackwell & MacQueen 1973, Aldous 1985, Pitman 2006]
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Clustering Property

G ~ DP(a, H)
;|G ~G fori=1,2,...

* The same values can be repeated among the variables 61,0,,...,0n.

 This can only be the case if G is an atomic distribution.

G — i 7'(']459;;
k=1



A draw from a Dirichlet Process

15000

10000 -

5000




Atomic Distributions

* Draws from Dirichlet processes will always be atomic:
o
G =D mdo;
k=1

where 2k« = 1 and 0k € 6.

« A number of ways to specify the joint distribution of {zm, 6k}.
« Stick-breaking construction;

* Poisson-Dirichlet distribution.



Stick-breaking Construction

*

' Xk
—
s s
ﬁ 3
® 7-‘-4
@

Stick-breaking construction for the joint distribution:
0, ~H vr ~ Beta(l, a) for k=1,2,....

k—1 00
T — UV H(l—vj) G:Zﬂ'kégz
71=1 k=1

mk’s are decreasing on average but not strictly.

Distribution of {zx} is called Griffiths-Engen-McCloskey (GEM).

Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing
ordering (but i1s not computationally tractable).



Historical Perspectives



Dirichlet Process

Cornerstone of modern Bayesian nonparametrics.

Rediscovered many times in past.

Formally defined by [Ferguson 1973] as a distribution over measures.

Can be derived in different ways, and as special cases of different processes.
* the Chinese restaurant process
* the stick-breaking construction

e the infinite limit of a Gibbs sampler for finite mixture models



Chinese Restaurant Process

« An important representation of the Dirichlet process
« An important object of study in its own right.

 Predates the Dirichlet process and originated in genetics (related to Ewen’s
sampling formula there).

e Large number of MCMC samplers using CRP representation.

« Random partitions are useful concepts for clustering problems in machine
learning

* CRP mixture models for nonparametric model-based clustering.
* hierarchical clustering using concepts of fragmentations and coagulations.
* clustering nodes in graphs, e.g. for community discovery in social nets.

« Other combinatorial structures can be built from partitions.



Stick-breaking Construction

» Easy to generalize stick-breaking construction:

* to other random measures;

 to random measures that depend on covariates or vary spatially.
» Easy to work with different algorithms:

« MCMC samplers;

 variational inference;

* parallelized algorithms.

[[shwaran & James 2001, Dunson 2010 and many others]



Random Partitions,
Random Measures,
and Exchangeability



Random Measures and Random Partitions

Chinese
Restaurant
Process

Dirichlet
Process

Random
Exchangeable
Partitions

Random
Probability
Measures

[De Finett1 1931, Kingman 1975, Kallenberg 2005]



Random Partitions

* A partition g of a set S'is:

A disjoint family of non-empty subsets of S whose union in S.

« §= {Alice, Bob, Charles, David, Emma, Florence}.
* 0= { {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

Bob
Charles

Alice

David
Emma

 Denote the set of all partitions of S as Ps.
« Random partitions are random variables taking values in Ps.

 Clustering: partitions of S = [n] = {/,2,...n}.



Exchangeable Random Partitions

« A distribution over Ps is exchangeable if it is invariant to permutations of .S
p<Q — {{17 3, 6}7 {27 7}7 {47 3 8}7 {9}})
:p(g — {{37 5, 7}7 {17 4}7 {27 6, 8}7 {9}})

» The probability function is a symmetric function only of K and {na,...,nk},
called the exchangeable partition probability function (EPPF):

p(e) = fa(na, ..., nK)

* We also need self-consistency too. If ppiy,ppzr.... a sequence of distributions on
partitions of [1],[2]...., we want:

Pin)(0n) = Pn+11(0n)

« The EPPF has the property: .

fo(ng,....,ng) :fn+1(n1,...,nK,1)—I—Zf(nl,...,nk—l—l,...,n;()
k=1

[Pitman 2006 ]
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Examples

 Chinese restaurant process:

k K
o
p(sit at table ¢) = fe fr(ni, ... nk) = o H(nk—l)!
o+ ZCEQ Uz (1) k=1
o (©.)
it at table) = _
p(sit at new ) TS G = ; Tk 00
* Finite number of clusters: K
p(table k) o g G = Z Tk 0px
k=1

* Dust:
p(new table) = 1 G =7
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Random Measure = Random Partition

e Random measure G.

e Draw 1id sequence

0;,|G ~ G

 Assign 1, j same cluster if 0i = 0.



Pitman-Yor Process



Chinese Restaurant Process

OO0 O

 Each customer comes into restaurant and sits at a table:

: ze
p(sit at table ¢) =
( ) Q ZCEQ N
Q
p(sit at new table) =
( ) Q ZCGQ T

* Multiplying conditional probabilities together, we get the probability of ¢:

olel
p(o) = [ I (el =1)!

Q{(n) cEp




Two-Parameter Chinese Restaurant Process

OO0 O

Each customer comes into restaurant and sits at a table:

n. — d
sit at table ¢) = c
4 ) A S
Kd
p(sit at new table) = a7
a + Zceg Ne

Additional parameter d.

Multiplying conditional probabilities together, we get the probability of :
ala+d) - (a+ (K —1)d) H

&(n)

plo) = (1=d)(2—=d)--(l¢] =1 —=d)

cEpo

The corresponding random probability measure is the Pitman-Yor process.

[Perman et al 1992, Pitman & Yor 1997, Ishwaran & James 2001 ]



Power-laws in Pitman-Yor Processes

* Power-laws are commonly observed in nature and in human generated data.

 Pitman-Yor processes exhibit power-law properties and can be used to model
data with such properties.

Ne — d

d
P(sit at new table) = a + do|

P(sit at table ¢) =

« With more occupied tables, chance of even more tables becomes higher.

 Tables with small occupancy numbers tend to have lower chance of
getting new customers.

[Pitman 2006, Goldwater et al 2006, Teh 2006]
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Power-Laws 1n Pitman-Yor Processes

=30, d=0 o=1,d=.5
200 250
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Power-Laws 1n Pitman-Yor Processes

=30, d=0 o=1,d=.5

# customers per table

—h
O_L

(=}
T T

—
o

10 10 10
# tables # tables

—_
o



Power-law of English Word Frequencies

10° — — — — Pitman-Yor
108 Er.lg.lish text
= £~ | e Dirichlet
)
= 104 — . .
g .......
= 103
< 10
o
= 102
\
10t |
100 1 llllllll 1 llllllll 1 llllllll 1 llllllll 1 llllllll 1 .III.II l
10Y 10! 102 103 10* 10° 106

Rank (according to frequency)
[Goldwater et al 2006, Teh 2006, Wood et al 2011]



Power-law of Image Segmentations

10 T T 10 .
. —Segment Labels ——Segment Areas
e === PY¥(0.39,3.70) === PY((.02,2.20)
10 'F —=—DP(11.40) i —=—DP(2.40)

Proportion of forest Segments
Number of forest Segments

10 :
10° 10' 10° 10° 10" 10°
Segment Labels (sorted by frequency) Propartion of Imaae Area

10’ . 10° :
“ — Segment Labels o — Segment Areas
S b - —=—PY(0.47,6.90) £ ——PY(0.32,0.80)
E 10 N —=— DP{33.00) g —=—DP({2.90)
g 2
g n 10°
S 10° =
8 8
L*)
‘@ =2
£, E
ks 10 N
§ o
£ 10 3
9 E
o =
g Zz
a ) 1 I 2 10'} I—Z I—1 : o
10 10 10 107 10 10
Segment Labels (sorted by frequency) Proportion of Image Area

[Sudderth & Jordan 2009]



Pitman-Yor Process

» Pitman-Yor processes have been applied in domains with power-laws:
e computational linguistics;
e computer vision.

» They also have stick-breaking constructions and are the next simplest
generalization of Dirichlet processes.



Gibbs Type Random Partitions

e EPPF of random partition:
p(Q) — fn(n17 v jnK)

Simple sensible parameterization:

K
fn(ni,...,ng)=V(n, K) H W (ng)
k=1
Exchangeable and Gibbs type = W (ny) = (1 —d)--- (nx — 1 — d)

p(table k) o ni — d

V(n+1,K+1)
V(n+1,K)

p(new table) o

d can take on values 0<d<l1, d=0, d<0.

If further assume V(n,k)=V(n)U(K), = Pitman-Yor process.

[Gnedin & Pitman 2006]
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Families of Random Probability Measures

T ~7
v|T ~ CRM(p|v(®) = T)
0 =uv/T Poisson
Klngman
\ w W (le])
Normallzed Gibbs
Random
Type
v~ CRM(p) Measure
0=v/v(d) \« \
Normalized Mixtures of
Generalized Pitman-Yor .- -
Finite Dirichlets
Gamma J
Normalized l Normalized
Inverse Dirichlet

Gaussian Stable



Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures
« A random (unnormalized) measure G’ with the property:
G(A) L G(B) whenever AN B = ).

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
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Completely Random Measures

« A random (unnormalized) measure G’ with the property:
G(A) IL G(B) whenever AN B = ().

* Infinitely divisible random variable X if for every n there exists n 11d
variables X1... Xn with X = X1 +... +Xn.

« Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.
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Completely Random Measures

451

4+

CRM can always be decomposed
into 3 independent components:

3.5

3t
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[ ] Locatlons {YI*} are ﬁxed, masses 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
{wi} are random and mutually 2000-,

independent. 500

Locations and masses {mk,0k™} are 100
random, and drawn from a Poisson
process on © x R™,
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Exchangeability
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Exchangeable Sequence of Variables

e Let x1,x2,23,... be an exchangeable sequence of random variables:
P(T1,- . Tn) = P(To(1)s -+ To(n))
for all n and permutations o of [#].

» Generalization of 1.1.d. variables, and can be constructed as mixtures of such:
plar.oa) = [ 9(G) [[plailG)dc
i=1

 de Finetti’s Theorem: exchangeable sequences can always be represented as
mixtures of 1.1.d. variables. Further the latent parameter G is unique, called
the de Finetti measure.



Why Exchangeable Sequence?

* A model for a dataset x1,x2,...,xn 1s a joint distribution p(x1,x2,...,Xn).
* An exchangeable model means:
« The way data items are ordered or indexed does not matter.

* Model 1s unaffected by existence of additional unobserved data items, e.g.
test items.

 To predict m additional test items, we would need
P(Xl,...,Xn, Xn+1,...,Xn+m)

 If model 1s not exchangeable, predictive probabilities will be different
for different values of m.

» There are scenarios where exchangeability 1s suitable or unsuitable.



Dirichlet Process

« The CRP mixture model is exchangeable:

« Sample z ~ CRP(N, ).

* Forcep:
X1 X4 X9
: X6 X7 X
e« Fori=12,...: 8

« sample xj ~ F(6:*) where i € c.

* The resulting de Finetti measure is the DP with parameters « and H.

[Ferguson 1973, Blackwell & MacQueen 1973]



Exchangeability in Bayesian Statistics

* Fundamental role of de Finetti’s Theorem in Bayesian statistics:

« From an assumption of exchangeability, we get a representation as a
Bayesian model with a prior over the latent parameter.

p(x1,...,Tn) = /p(G) Hp(:cﬁG)dG

» Generalizing infinitely exchangeable sequences lead to Bayesian models for
richly structured data. E.g.,

 exchangeability in network and relational data.
* hierarchical exchangeability in hierarchical Bayesian models.

» Markov exchangeability in sequence data.



Exchangeable Graphs and Networks

Exchangeable ) G070 (G 994040
directed graph: p(izi)) /p@”‘ ,07,05) - pl )Hp( i)

[Aldous 1981, Hoover 1979, Kallenberg 2005]



Bayesian Nonparametrics

[Hjort et al 2010]



Bayesian Nonparametric Modelling

* What is a nonparametric model?
 Areally large Bayesian parametric model;
* A parametric model where the number of parameters increases with data;
A parametric model where the number of parameters is infinite;

A family of distributions that is dense in some large space relevant to the
problem at hand.



Model Selection and Averaging

Model selection/averaging typically very expensive computationally.

Used to prevent overfitting and underfitting.

But a well-specified Bayesian model should not overfit anyway.

By using a very large Bayesian model or one that grows with amount of data,
we will not underfit either.



p

Large Coverage

« Large function spaces.

* More straightforward to infer the
infinite-dimensional objects themselves.




Large Coverage
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Novel and Useful Properties

* Many interesting Bayesian nonparametric models with interesting and useful
properties:

 Projectivity, exchangeability.

« Zipf, Heap and other power laws
(Pitman-Yor, 3-parameter IBP).

 Flexible ways of building complex models

(Hierarchical nonparametric models, dependent Dirichlet processes).



duck
chicken

Structural Learning e

mouse

rat
squirrel
cat
cow
shee
pi
deer
horse

LT AL

tiger

lion
lettuce
cucumber
carrot
potato
radish
onions
tangerine
oranei
rapefrui
9 Ramon
apple
rape
stravﬂ)e_ﬁ'g
nectarin
pineapple

e Learning structures.

IIIIII'-'-'r'-'-'“

« Bayesian prior over

combinatorial structures. "

clam
Dhtore
SCiSsors
chisel

ax
tomahabwﬁ
crowbar
screwdriver

wrenc

p'ammer
sledgehammer

« Nonparametric priors
sometimes end up simpler
than parametric priors.

sl [[]]] 4

shovel
e
rake

ship
submarine
helicopter

train
t
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motorcycle

bike
wheelbarrow

[Adams et al 2010, Blundell et al 2010] ticycle
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Are Nonparametric Models Nonparametric?

« Nonparametric just means not parametric: cannot be described by a fixed set
of parameters.

« Nonparametric models still have parameters, they just have an infinite
number of them.

» No free lunch: cannot learn from data unless you make assumptions.

* Nonparametric models still make modelling assumptions, they are just
less constrained than the typical parametric models.

« Models can be nonparametric in one sense and parametric in another:
semiparametric models.



Sequential and
Time Series Models



Infinite Hidden Markov Model



Hidden Markov Models

7 ~ Dirichlet(a/K, ..., a/K) Ze|2t—1 ~ T2,
0F ~ H re|ze ~ H(03)

*@@
@ @ cess @

K

« Can we take K — o? Not easily....
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Infinite Hidden Markov Model

» Use an oracle to allow any state to V) No;
transition to any other state.

e Can also allow to an additional factor for

self-transitions. “

Chinese restaurant process representation

L4
» Complicated, but can be interpreted as a : Q
©
for a hierarchical Dirichlet process. .

[Beal et al 2002, Teh et al 2006]



Word Segmentation
CILTE R - B R AR 1 A B o i R T Rl T R
b A AT S & S E 00T 48 Ml ML & 0 L I I 0T
AT DATEN B HIL VL BER D B E 2 fEoft & WA S, M
2R % #A TR O AKX O ..

« Fla —B L, AME R & 8 % e B, i H 28 Sk Al
8 s AR AR S, BT Lt 5 py B &, B & BT B
PR MK £z

« yuwanttusiD6bUKk?
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IHMM Word Segmentation

TRT T

w a n t

yuwanttusiD6bUk

« Number of word types is unknown (and part of the output of learning).

* We can use the infinite HMM coupled with a model to generate strings of
characters for each word.

[Goldwater et al 2006, Mochihashi et al 2009]



IHMM Word Segmentation

P R F BP BR BF LP LR LF

NGS-u 67.7 702 689 | 80.6 &84.8 826 | 529 51.3 5H2.0
MBDP-1 | 67.0 694 68.2 | 80.3 843 823 | 53.6 H1.3 524

DP 61.9 476 538 | 924 622 743 | 57.0 57.5 572
NGS-b 68.1 68.6 683 | 81.7 825 821 | 545 5H7.0 557
HDP 79.4 74.0 76.6 | 92.4 83.5 87.7 | 67.9 58.9 63.1

Model MSR CITYU Kyoto
NPY(2) |80.2 (51.9) [82.4 (126.5) 62.1 (23.1)
NPY(3) |80.7 (48.8) [81.7 (128.3) |66.6 (20.6)
ZK08 [66.7(—) [69.2(—) -




Infinite Reversible Markov Chain

o

+4
(X, F, u) (X, F,un) (X, F,p)
(a) ERRW-like (b) Mediated transition (c) Mediated transition
transition without discovery with discovery

[Bacallado 2012, Bacallado et al 2012]



High Order Markov Models

[Goldwater et al 2006, Teh 2006]



Sequence Models for Language and Text

 Probabilistic models for sequences of words and characters, e.g.
south, parks, road

s,o,u,t,h, ,p,ark,s, _,road

* n-gram language models are high order Markov models of such discrete
sequence:

P(sentence) = H P(word;|word; _ny1...word;_1)



p

Context Tree

e Context of conditional probabilities naturally organized
using a tree.

e Smoothing makes conditional probabilities
of neighbouring contexts more similar.

e Later words in context more important / \

in predicting next word. parks

south parks to parks \university parks

N /N

along south parks at south parks




Hierarchical Bayes on Context Tree

« Parametrize the conditional probabilities of Markov model:
P(word; = w|word’_; Ni1 = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

* Gu 1s a probability vector associated with context u.
Gy

e
- Ny o

south parks to parks university parks

~ N 7\

Galong south parks at south parks



Hierarchical Dirichlet Language Models

* What is P(G|Gpa(w))? Obvious choice is the standard Dirichlet
distribution over probability vectors.

T N-1| IKN MKN HDLM

2 % 10° 2 | 148.8 144.1 191.2

4 x 106 2 | 137.1 132.7 172.7

6 x 106 2 | 130.6 126.7 162.3

8 x 106 2 | 125.9 122.3 154.7

10 x 106 2 | 122.0 118.6 148.7
12 x 10° 2 1119.0 115.8 144.0
14 x 10° 2 1 116.7 113.6 140.5
14 x 10° 1]169.9 169.2 180.6
14 x 10° 3| 106.1 102.4 136.6

* We will use Pitman-Yor processes instead.

[MacKay and Peto 1994]
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Hierarchical Pitman-Yor Language Models

» Parametrize the conditional probabilities of Markov model:
P(word; = w|word’_; Ni1 = u) = Gy(w)
Gu — [Gu (w)]wEVocabulary

* Gu 1s a probability vector associated with context u.

* Place Pitman-Yor process prior on each Gu. Gy

e N
- Ny o

South parks to parks unlver51ty parks

~ N 7\

Galong south parks at south parks

[Goldwater et al 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models

« Significantly improved on the hierarchical Dirichlet language model.

» Results better Kneser-Ney smoothing, state-of-the-art language models.

T N-1| IKN MKN HDLM HPYLM

2 % 10° 2 | 148.8 144.1 191.2 144.3

4 x 106 2 1 137.1 132.7 172.7 132.7

6 x 10° 2 1130.6 126.7 162.3 126.4

8 x 10° 2 1 125.9 122.3 154.7 121.9

10 x 10° 2 1122.0 118.6 148.7 118.2
12 x 10° 2 1119.0 115.8 144.0 115.4
14 x 10° 2 | 116.7 113.6 140.5 113.2
14 x 10° 1] 169.9 169.2 180.6 169.3
14 x 10° 3| 106.1 1024 136.6 101.9

 Similarity of perplexities not a surprise---Kneser-Ney can be derived as a
particular approximate inference method.



Markov Models for Language and Text

e Usually makes a Markov assumption to simplify model:

P(south parks road) ~
P(south)*
P(parks | south)*
P(road | south parks)

« Language models: usually Markov models of order 2-4 (3-5-grams).
* How do we determine the order of our Markov models?
* Is the Markov assumption a reasonable assumption?

 Be nonparametric about Markov order...
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Non-Markov Models for Language and Text

Model the conditional probabilities of each possible word occurring after
each possible context (of unbounded length).

Use hierarchical Pitman-Yor process prior to share
information across all contexts.

Gy
Hierarchy is infinitely deep. / \

« Sequence memoizer. / Gparks
G(south parks G(to parks Guniversity parks
Galong south parks Gat south parks

meet at south parks

SRR

[Wood et al 2011]
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Comparison to Finite Order HPYLM

400 1.5x 107

1 1.2x107
300 s
ey 9%x106 &
P4 G
2 -
= 5
A 6x10° =
200 =
e

3% 106

>

0 1 2 3 4 D 6
Context length (n)

100 0



Compression Results

Model Average bits/byte
gzip 2.601
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching
CTW: Context Tree Weigting

Online inference, entropic coding.



Coagulations,
Fragmentations, and
Trees
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Bayesian Inference for Trees

Computational and statistical methods for constructing trees:
 Algorithmic, not model-based.
e Maximum likelihood
¢ Maximum parsimony

« Bayesian inference: introduce prior over trees and compute posterior.

P(T|x)  P(T)P(x|T)

« Bayesian nonparametric priors for P(7).

« Exchangeable and projective models.

Models for trees has to be nonparametric.
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Fragmenting Partitions
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* Sequence of finer and finer partitions. G@
il

* Each cluster fragments until all clusters t 1
contain only 1 data item.
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» Can define a distribution over trees
using a Markov chain of fragmenting @@
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Coagulating Partitions

» Sequence of coarser and coarser
partitions.

* Each cluster formed by coagulating
smaller clusters until only 1 left.

» Can define a distribution over trees by
using a Markov chain of coagulating
partitions, with absorbing state 1s
(partition where all data items are in one
cluster).
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Coagulation and Fragmentation Operators
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Random Fragmentations

» Let C € Pnpand for each ¢ € Clet F¢ € P..
* Denote fragmentation of C by {F¢} as frag(C,{F¢:}).
* Write o1 | C ~ FRAG(C,d, @) if o1 = frag(C, {Fc}) with
F¢ ~ CRP(c,d, o) independently.
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Random Coagulations
* Let o1 € Pnjand g2 € P
* Denote coagulation of g1 by g2 as coag(o1, 02).
* Write C | o1 ~ COAG(g1,d, ) 1if C = coag(p1, ¢2) with
02 | o1~ CRP(p1,d, ).
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Nested Chinese Restaurant Process

* Start with the null partition go = {[n]}.
e Foreachlevel/=1,2,...,L:

o= FRAG(01-1,0, o)

* Fragmentations in different clusters (branches of the
hierarchical partition) operate independently.

» Nested Chinese restaurant processes (nCRP) define a
Markov chain of partitions, each of which is exchangeable.

« Can be used to define an infinitely exchangeable sequence,
with de Finetti measure being the nested Dirichlet process
(nDP).

(&= eee (-

[Blei et al 2004, 2010, Rodriguez et al JASA 2008]



Nested Topic Model

the, of,
a, to,
and, 1n,

TN

neurons, visual, algorithm, learning,
cells, cortex, training, method,
synaptic, motion, we, New,
response, processing problem, on
cell, chip, recognition, b, hidden, control,
neuron, analog, speech, X, units, reinforcement,
circuit, vlsi, character, e, layer, learning,
cells, synapse, word, n, input, policy,
input, weight, system, P, output, state,
i, digital, classification, any, unit, actions,
figure, CImos, characters, if, X, value,
synapses design phonetic training vector optimal
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Chinese Restaurant Franchise

 For a simple linear hierarchy of DPs (restaurants linearly
chained together), the Chinese restaurant franchise
(CRF) 1s a sequence of coagulations:

o At the lowest level L+1, we start with the trivial
partition gL+1 = {{/},{2},....{n}}.
 Foreachlevel/=L,L-1,...,1:
o= COAG(gi+1,0, )

 This 1s also Markov chain of partitions.

O—=E— eee (05—



Hierarchical Dirichlet/Pitman-Yor Processes

« Each partition in the Chinese restaurant franchise is again
exchangeable.

» The corresponding de Finetti measure is a Hierarchical
Dirichlet process (HDP).

G1|Gi1—1 ~ DP(a;, G1—1)

* The CRF has been rarely used as a model of hierarchical
partitions. Typically it is only used as a convenient
representation for inference in the HDP and HPYP.

(O o0 @—EO—E
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Continuum Limit of
Partition-valued Markov Chains
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Trees with Infinitely Many Levels

| A/L
« Random trees described so far all consist of a finite number of @ '
levels L. |
« We can be “nonparametric”’ about the number of levels of AL
random trees. '
* Allow a finite amount of change even with an infinite number of
levels, by decreasing the change per level. :

®

l A/L



Dirichlet Diffusion Trees
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In general, the 2th point in the data set is obtained by following a path from the origin
that initially coincides with the path to the previous i —1 data points. If the new path
has not diverged at a time when paths to past data points diverged, the new path chooses
between these past paths with probabilities proportional to the numbers of past paths that
went each way. If at time ¢, the new path is following a path traversed by m previous
paths, the probability that it will diverge from this path within an infinitesimal interval

of duration dt is a(t)dt/m. Once divergence occurs, the new path moves independently of

previous paths. [Neal 2003]



Dirichlet Diffusion Trees

» The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can be
derived from the continuum limit of a nCRP:

* Start with the null partition go = {[#]}.
* For each time ¢, define
o+dt= FRAG( o, 0,a(1)dt)

e The continuum limit of the Markov chain of partitions becomes a continuous
time partition-valued Markov process: a fragmentation process.

e Generalization to Pitman-Yor diffusion trees.

[Neal 2003, Knowles & Ghahramani 2011]



Kingman'’s Coalescent

 Taking the continuum limit of the one-parameter (Markov chain) CRF leads
to another partition-valued Markov process: Kingman’s coalescent.

* Start with the trivial partition go = {{/},{2},....,{n}}.
e For each time ¢ < 0:
or-dt= COAG(o, 0,a(t)/dt)
« This is the simplest example of a coalescence or coagulation process.

A standard genealogical process in genetics.

* A generalization called A-coalescent.

[Kingman 1982a,b, Pitman 1999]



Kingman'’s Coalescent
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A Few Final Words



Summary

Introduction to Bayesian learning and Bayesian nonparametrics.

Dirichlet processes:
 Chinese restaurant processes, stick-breaking construction.

* Ferguson’s Definition.

Pitman-Yor processes:
» Two-parameter Chinese restaurant processes.

« Power-law properties.

Hierarchical Bayesian nonparametric models.

Infinite hidden Markov models and high order Markov models.

Random partitions, coagulations, fragmentations, trees.

Important models that did not cover: Gaussian processes, Indian buffet
processes.



Current Issues

Developing classes of nonparametric priors suitable for modelling data.

Developing algorithms that can efficiently compute the posterior is important.

Developing theory of asymptotics in nonparametric models.

More applications in machine learning and beyond.



Other Tutorials and Reviews

 Mike Jordan’s tutorial at NIPS 2005.
o Zoubin Ghahramani’s tutorial at UAI 2005.
 Peter Orbanz’ tutorial at MLSS 2009 (videolectures)

My own tutorials at MLSS 2007, 2009 (videolectures), 2011 (Singapore,
France), NIPS 2011 (with Peter Orbanz) and elsewhere.

e Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz &
Teh 2010, Gershman & Blei 2011], hierarchical Bayesian nonparametric
models [Teh & Jordan 2010].

« Bayesian nonparametrics book [Hjort et al 2010].



Probabilistic Modelling

e Machine learning is all about data.
 Stochastic, chaotic and/or complex process
 Noisily observed

« Partially observed

Probability theory is a rich language to express these uncertainties.
 Probabilistic models

Graphical tool to visualize complex models for complex problems.

Complex models can be built from simpler parts.

Well-understood ways to derive algorithmic solutions.

Separation of modelling questions from algorithmic questions.



Supplementary Material



DP Mixture Model:
Representations and Inference



DP Mixture Model

A DP mixture model:

G|o, H ~ DP(c, H)

(@
|
0,|G ~ G (;%‘GD
v
(6

 Different representations:

* 01,0,,...,0n are clustered according to Polya urn
scheme, with induced partition given by a CRP.

* (5 is atomic with weights and atoms described
by stick-breaking construction. i=1..n

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002 ]



CRP Representation

« Representing the partition structure explicitly with
a CRP:

pla ~ CRP(|n], a)
0°|H ~ H for cep
x;|05 ~ F(07) for ¢ > i

@
N
oHe

%
(&
$=1.:.n CEDp

« Makes explicit that this is a clustering model.

« Using a CRP prior for ¢ obviates need to limit
number of clusters as in finite mixture models.

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002 ]



A

Marginal Sampler pla ~ CRP([n], )
0°|H ~ H for cep
e “Marginal” MCMC sampler. 2|05 ~ F(07) for ¢ > i

* Marginalize out G, and Gibbs sample partition.

 Conditional probability of cluster of data item i:

P(pilp\isx,0) =P(pilp\i) P (il pis x\i, 0)

Y
(€] £ — . '
n—1+ta Pi = C € P\ |
P(pilpy;) =4 n-lre R QD\ =
—=— if p; = new
v

 n—1+«o

f(@il6,,) if p; = ¢ € py,
P AKX 'L'ag = < ' .
e O = f@lopn@)do it pi = new @ Z

$=1.:.n CEDp

Q_@

A variety of methods to deal with new clusters.

* Difficulty lies in dealing with new clusters,
especially when prior /4 is not conjugate to f.

[Neal 2000]



. ______*ucL
Induced Prior on the Number of Clusters

» The prior expectation and variance of |p| are:
E[|p|le, n] = a(¢p(a +n) — (o)) = alog (1 + 2)
Vllplla, n] = a(i(a+n) — (@) + o (' (e +n) —¢'(a)) = alog (1 + 2)
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Marginal Gibbs Sampler Pseudocode

e |nitialize: randomly assign each data item to some cluster.
e K :=the number of clusters used.
e For each cluster k = 1...K:
e Compute sufficient statistics sk:= 2 { s(x)) : zi = k }.
e Compute cluster sizes ng:=#{i:zj =k }.
e [terate until convergence:
e For each data item i = 1...n:
e Let k := z; be the current cluster data item is assigned to.
e Remove data item: sk —= s(x), nk—= 1.
e If nx= 0 then remove cluster k (K —= T and relabel rest of clusters).
e Compute conditional probabilities p(zi=c|others)
for c = 1...K, kempty := K+1.
e Sample new cluster for data item from conditional probabilities.
e If ¢ = kempty then create new cluster: K+=1, sc:= 0, nc= 0.
e Add data item: z; := ¢, sc+= s(x)), nc+= 1.



Stick-breaking Representation

* Dissecting stick-breaking representation for G:
™ |a ~ GEM(«)
0.|H ~ H

@
z;|m* ~ Discrete(n™) i -
zi|zi, 07, ~ F(07,) @ Q
;

» Makes explicit that this is a mixture model with an
infinite number of components.

« Conditional sampler:

 Standard Gibbs sampler, except need to truncate the
number of clusters.

 Easy to work with non-conjugate priors. i=1...n

* For sampler to mix well need to introduce moves
for permuting the order of clusters.

[Ishwaran & James 2001, Walker 2007, Papaspiliopoulos & Roberts 2008]



Explicit G Sampler @

« Represent G explicitly, alternately sampling {6i}|G

(simple) and G|{6i} .. v
aH4>" 16
Glos,....0, NDP(a+ n, S doy @%
(70, T sy M) NDlrlchlet(oz,nl,...,nK) @
G' ~ DP(a, H)
 Use a stick-breaking representation for G’ and @
truncate as before. -

» No explicit ordering of the non-empty clusters Gla, H ~ DP(a, H)
makes for better mixing. ’ ’
0;,|G ~G

» Explicit representation of G allows for posterior 2,10 ~ F(6;)

estimates of functionals of G.



Other Inference Algorithms

Split-merge algorithms [Jain & Neal 2004].

 Close 1n spirit to reversible-jump MCMC methods [Green & richardson
2001].

Sequential Monte Carlo methods [Liu 1996, Ishwaran & James 2003,
Fearnhead 2004, Mansingkha et al 2007].

Variational algorithms [Blei & Jordan 2006, Kurihara et al 2007, Teh et al
2008].

Expectation propagation [Minka & Ghahramani 2003, Tarlow et al 2008].



Fragmentation-Coagulation:
Duality and Processes

[Berestycki 2004, Teh et al 2011]



Duality of Coagulation and Fragmentation

» The following statements are equivalent:
(I) 02 ~ CRP([”’]? d27 Oédg) and Q1|Q2 ~ CRP(QQ; d17 Oé)
(II) C ~ CRP([TL], dldg, OédQ) and Fc’C ~ CRP(C, dg, —dldg) Ve e C
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Markov Chain over Partitions

CRP([n], 1, Re) CRP([n], 1, Re)
Q‘)@\ Me OO QVQ,\ M2¢
Q- o Q-
6\@“ /c G\Q’O
N G
< )
Q0 Oc
CRP([n|, 1, 0) CRP([n], 1, 0)

» Defines a Markov chain over partitions.

« Each transition is a fragmentation followed by coagulation.

p




p

Stationary Distribution

CRP([n], u, Re) CRP([n], pu, Re)

 Stationary distribution 1s a CRP with parameters p and 0.



p

Exchangeability and Projectivity

CRP([n], u, Re) CRP([n], pu, Re)

« Each mt1s exchangeable, so that the whole Markov chain is an exchangeable
process.

 Projectivity of the Chinese restaurant process extends to the Markov chain as
well.



p

Reversibility of Markov Chain

CRP([n], u, Re) CRP([n], pu, Re)

 The Markov chain 1s reversible.

» Coagulation and fragmentation are duals of each other.



p

Continuum Limit

CRP([n], u, Re) CRP([n], pu, Re)

» Taking e—0 obtains a continuous time Markov process over partitions, an
exchangeable fragmentation-coalescence process (Berestycki 2004).

« At each time, at most one coagulation (involving two blocks) or one
fragmentation (splitting into two blocks) will occur,



Conditional Distribution of a Trajectory
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e This process is reversible.



Coagulation and Fragmentation Rates

» Describe Markov process in terms of rates of fragmentation and coagulation
events:

e Rate of fragmentation of a EIljnjtintobandc:  RLU 1§|()|1;|()|C|)

* Rate of coagulation of a,b € [ntinto into alUb: g /u

~ —~ ~
1 1 1
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Dirichlet Diffusion Trees and Coalescents

« Rate of fragmentation 1s same as for Dirichlet diffusion trees with constant
fragmentation rate (Neal 2003).

« Rate of coagulation is same as for the coalescent (with time rescaled)
(Kingman 1982).

« Reversibility means that the Dirichlet diffusion tree is the “reverse” of
Kingman’s coalescent.

 Class of exchangeable fragmentation-coalescence processes (Berestycki
2004) includes more general processes.

 This process seems to be a canonical example of exchangeable

fragmentation-coalescence processes, but cannot find a reference in
literature?



Relationship with Hidden Markov Models

* Both can be interpreted as models of sequence data with a latent partition
structure at each time point.

« Hidden Markov models have explicit labels of hidden states, fragmentation-
coagulation processes do not.

« Hidden Markov models need to specify the number of states, fragmentation-
coagulation processes do not.

« HMM labels allow generalization across times, but lead to label switching
problems.
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Comparison with Bayesian HMMs
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Hierarchical Dirichlet Processes

[Teh et al 2006, Teh & Jordan 2010]



Topic Modelling

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

[Blei et al 2003, Griffiths & Steyvers 2004]




| atent Dirichlet Allocation

* Model a topic as a distribution over words that
tend to co-occur together among documents.

* Model words in documents as exchangeable and
documents as mixtures of topics.

m; ~ Dirichlet(a/K, ..., a/K)
0,. ~ Dirichlet(8/W,...,8/W)

zji|m; ~ Discrete(r;)

jilzji, 0, ~ Discrete(67 )

words i=1...nd topics k=1...K

 How many topics can we find 1n a corpus? document j=1...D

[Blei et al 2003, Griffiths & Steyvers 2004]



Nonparametric Latent Dirichlet Allocation?

e Use a DP for each document.

A

 There 1s no sharing of topics across different
documents, because H is smooth.

o Solution: make H discrete.

e Put a DP prior on H.




Hierarchical Dirichlet Process

A hierarchy of Dirichlet processes:
Go ~ DP(ag, H)

Gl‘GO ~ DP(al,Go)
G2|Go ~ DP(a2, Go)

« Extension to larger hierarchies straightforward:

Gj ~ DP<aj7 Gpa(j))

? ?
 Hierarchical modelling are a widespread technique

to share statistical strength.

[Teh et al 2006]



Hierarchical Dirichlet Process

Go

Y/ \NI/
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Chinese Restaurant Franchise

* (1 and G2 can both be represented using CRPs.




Chinese Restaurant Franchise
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* (1 and G2 can both be represented using CRPs.




Chinese Restaurant Franchise

011 O19
G 913 912 915 ‘ sse0
16 17
0.
923 924 oo

* (1 and G2 can both be represented using CRPs.

—&te

<
I
—_

... M

©
—&t@

... N9




Chinese Restaurant Franchise

* Go can also be represented using a CRP.
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Chinese Restaurant Franchise

* Go can also be represented using a CRP.

90-.,] 906
GOZ 605 903 907 (XX X

923 924 oo

* (1 and G2 can both be represented using CRPs.




p

Hierarchical Bayesian Modelling

* An important overarching theme in modern statistics.

 In machine learning, have been used for multitask learning, transfer learning,
learning-to-learn and domain adaptation.

@
@

i=1...n1 i=1...n2 i=1...n3

Oun©.
O

[Gelman et al, 1995, James & Stein 1961 ]



Hierarchical Bayesian Nonparametrics

Bayesian nonparametric models are increasingly used as building blocks by
modellers to build complex probabilistic models.

Hierarchical modelling are a natural technique for combining building blocks.

Applications span computational linguistics, time series and sequential
models, vision, genetics etc.

Dependent random measures:

* techniques for introducing dependencies among random measures indexed
by spatial or temporal covariates.

Nested processes:

« technique for modelling heterogeneity in data.



Dependent Random Measures

A measure-valued stochastic process {Gy} indexed by a covariate space .

Gy 1s the random measure at location ¢ € @.

If each Gy is marginally DP, we have a dependent Dirichlet process.

Density regression: estimating density over output space conditional on ¢.

Applications include image segmentation, topic models through time,
dictionary learning, spatial models, and many others in biostatistics, signal
processing etc.

[MacEachern 1999, Dunson 2010]



