
2361-13

School on Large Scale Problems in Machine Learning and Workshop
on Common Concepts in Machine Learning and Statistical Physics

Martin WAINWRIGHT

20 - 31 August 2012

Department of Statistics and EECS
UC Berkeley CA

U.S.A.

BACKGROUND INFORMATION FOR LECTURES ON VARIATIONAL
METHODS, DUALITY AND MESSAGE-PASSING "Graphical Models and

Message-passing Algorithms: Some Introductory Lectures"

Graphical models and message-passing
algorithms: Some introductory lectures

Martin J. Wainwright

1 Introduction

Graphical models provide a framework for describing statistical dependencies in
(possibly large) collections of random variables. At their core lie various correspon-
dences between the conditional independence properties of a random vector, and the
structure of an underlying graph used to represent its distribution. They have been
used and studied within many sub-disciplines of statistics, applied mathematics, and
computer science, including statistical machine learning and artificial intelligence,
communication and information theory, statistical physics, network control theory,
computational biology, statistical signal processing, and computer vision.

The purpose of these notes is to provide an introduction to the basic material of
graphical models and associated message-passing algorithms. We assume only that
the reader has undegraduate-level background in linear algebra, probability theory
(without needing measure theory), and some basic graph theory.

These introductory lectures should be viewed as complementary to the mono-
graph [12], which focuses primarily on some more advanced aspects of the theory
and methodology of graphical models.

2 Probability distributions and graphical structure

In this section, we define various types of graphical models, and discuss some
of their properties. Before doing so, let us introduce the basic probabilistic nota-
tion used throughout these notes. Any graphical model corresponds to a family
of probability distributions over a random vector X = (X1, . . . ,Xm). Here for each
i ∈ [m] = {1,2, . . . ,m}, the random variable Xi take values in some space Xi, which

Martin J. Wainwright
Department of Statistics, UC Berkeley, Berkeley, CA 94720e-mail: wainwrig@stat.berkeley.edu

1

2 Martin J. Wainwright

(depending on the application) may either be continuous (e.g., Xi = R) or discrete
(e.g.,Xi = {0,1, . . . ,k−1}). Lower case letters are used to refer to particular elements
ofXi, so that the notation {Xi = xi} corresponds to the event that the random variable
Xi takes the value xi ∈ Xi. The random vector X = (X1,X2, . . . ,Xm) takes values in
the Cartesian product space X1 ×X2 × . . .×Xm. For any subset A ⊆ [m], we define
the subvector XA := (Xs, s ∈ A), corresponding to a random vector that takes values
in the space XA. We use the notation xA := (xs, s ∈ A) to refer to a particular element
of the space XA. With this convention, note that X[m] is shorthand notation for the
Cartesian product X1×X2× . . .×Xm.

2.1 Directed graphical models

We begin our discussion with directed graphical models, which (not suprisingly) are
based on the formalism of directed graphs. In particular, a directed graph D = (V,

→

E)
consists of a vertex set V = {1, . . . ,m} and a collection

→

E of directed pairs (i→ j),
meaning that i is connected by an edge directed to j. When there exists a directed
edge (j→ i) ∈ E, we say that node i is a child of node j, and conversely that node
j is a parent of node i. We use the notation π(i) to denote the set of all parents of
node i (which might be an empty set). A directed cycle is a sequence of vertices
(i1, i2, . . . , i�) such that (i� → i1) ∈

→

E, and (ik → ik+1) ∈
→

E for all k = 1, . . . , � − 1. A
directed acyclic graph, or DAG for short, is a directed graph that contains no di-
rected cycles.

Any mapping ρ : [m] → [m] defines a particular ordering of the vertex set
V = {1,2, . . . ,m}, and of interest to us are particular orderings of the vertex set of
a DAG.

Definition 1. The ordering {ρ(1), . . . ,ρ(m)} of the vertex set V is topological
if for each i ∈ V, we have ρ(j) < ρ(i) for all j ∈ π(i).

Alternatively stated, in a topological ordering, children always come after their par-
ents. It is an elementary fact of graph theory that any DAG has at least one topo-
logical ordering, and this fact plays an important role in our analysis of directed
graphical models. So as to lighten notation, we typically assume that the canonical
orderingV = {1,2, . . . ,m} is topological. Note that in this case, vertex 1 cannot have
any parents (i.e., π(1) = ∅), and moreover vertex m cannot have any children.

A directed graphical model is obtained by associating each node i of a DAG
with a random variable Xi, and requiring the joint probability distribution over
(X1, . . . ,Xm) factorize according to the DAG. Consider the subset of vertices (i,π(i))
corresponding to a given vertex i and its parents π(i). We may associate with this

Graphical models and message-passing algorithms: Some introductory lectures 3

subset a real-valued function fi : X(i,π(i)) → R+ that maps any given configuration
(xi, xπ(i)) ∈ X(i,π(i)) to a real number fi(xi, xπ(i)) ≥ 0. We assume moreover that fi sat-
isfies the normalization condition∑

xi

fi(xi, xπ(i)) = 1 for all xπ(i) ∈ Xπ(i). (1)

With this set-up, the directed graphical model based on a given DAG D is the col-
lection of probability distributions over the random vector (X1, . . . ,Xm) that have a
factorization of the form

p(x1, . . . , xm) =
1
Z

m∏
i=1

fi(xi, xπ(i)), (2)

for some choice of the parent-child functions (f1, . . . , fm) that satisfy the normaliza-
tion condition (1). In the factorization (2), the quantity Z denotes a constant chosen
to ensure that p sums to one.

Proposition 1. For any directed acyclic graph D, the factorization (2) with
Z = 1 defines a valid probability distribution such that fi(xi, xπ(i)) = p(xi | xπ(i))
for all i ∈ V.

Proof. We proceed via induction on the number of nodes m. For m = 1, the claim is
trivial. Let us assume that it is true for all DAGs with at most m nodes, and prove
that it must hold for any DAG with m+1 nodes. Given a DAG with m+1 nodes, we
assume without loss of generality (re-indexing as necessary) that {1,2, . . . ,m+1} is
a topological ordering. Given such an ordering, it must be the case that xm+1 has no
children, so that we may write

p(x1, . . . , xm, xm+1) =
1
Z

[m∏
i=1

fi(xi, xπ(i))
]

fm+1(xm+1, xπ(m+1)).

Marginalizing over xm+1 yields that

p(x1, . . . , xm) =
1
Z

[m∏
s=1

f (xs, xπ(s))
][∑

xm+1

fm+1(xm+1, xπ(m+1))
]

=
1
Z

m∏
s=1

fi(xi, xπ(i)),

where we have used the facts that xm+1 appears only in one term (since m+ 1 is a
leaf node), and that

∑
xm+1 fm+1(xm+1, xπ(m+1)) = 1. In graphical terms, marginalizing

over xm+1 allows us to remove m+ 1 from the DAG, so that we have reduced the

4 Martin J. Wainwright

problem to a DAG with m nodes. By the induction hypothesis, we have Z = 1, and
fi(xi, xπ(i)) = p(xi | xπ(i)) for all i = 1, . . . ,m. Moreover, we have

p(x1, x2, . . . , xm+1)
p(x1, . . . , xm)

= fm+1(xm+1, xπ(m+1)) for all (x1, . . . , xm+1),

which shows that p(xm+1 | x1, . . . , xm) depends only on the subvector (xm+1, xπ(m+1)).
We conclude that p(xm+1 | xπ(m+1)) is proportional to fm+1(xm+1, xπ(m+1)), and the
normalization condition on fm+1 implies that equality holds, thereby completing the
proof. ��

in the factorization (2) have a concrete interpretation as the child-parent con-
ditional probability tables (i.e., fi(xi, xπ(i)) is equal to the conditional probability
of Xi = xi given that Xπ(i) = xπ(i)). This local interpretability, which (as we will
see) is not shared by the class of undirected graphical models, has some impor-
tant consequences. For instance, sampling a configuration (X̃1, . . . , X̃m) from any
DAG model is straightforward: we first sample X̃1 ∼ f1(·), and then for i = 2, . . . ,m,
sample X̃i ∼ fi(·, X̃π(i)). This procedure is well-specified: due due to the topologi-
cal ordering, we are guaranteed that the variable X̃π(i) has been sampled before we
move on to sampling X̃i. Moveover, by construction, the random vector (X̃1, . . . , X̃m)
is distributed according to the probability distribution (2).

2.2 Undirected graphical models

We now turn to discussion of undirected graphical models, which are also known as
Markov random fields or Gibbs distributions. Naturally, these models are built using
an undirected graphs, by which we mean a pair G = (V,E), whereV = {1, . . . ,m} is
the vertex set (as before), and E is a collection of undirected edges, meaning that
there is no distinction between the edge (i, j) and the edge (j, i).

Definition 2 (Markov property). A random vector (X1, . . . ,Xm) is Markov
with respect to a graph G means that for all vertex cutsets S and associated
components A and B, the conditional independence condition XA ⊥⊥ XB | XC
holds.

A clique C of an undirected graph G is a fully connected subset C of the vertex
setV (i.e., (s, t) ∈ E for all s, t ∈C). A clique is maximal if it is not contained within
any other clique.

Graphical models and message-passing algorithms: Some introductory lectures 5

Definition 3 (Factorization). We say that a random vector (X1, . . . ,Xm) fac-
torizes over the graph G if its probability distribution can be written as

p(x1, . . . , xm) =
1
Z

∏
C∈C
ψC(xC), (3)

corresponding to a factorization in terms of compatibility functions ψC asso-
ciated with each clique C ∈ C of the graph.

2.3 Factor Graphs

For large graphs, the factorization properties of a graphical model, whether undi-
rected or directed, may be difficult to visualize from the usual depictions of graphs.
The formalism of factor graphs provides an alternative graphical representation, one
which emphasizes the factorization of the distribution [6, 8].

Let F represent an index set for the set of factors defining a graphical model dis-
tribution. In the undirected case, this set indexes the collection C of cliques, while
in the directed case F indexes the set of parent–child neighborhoods. We then con-
sider a bipartite graph G = (V,F ,E), in whichV is (as before) an index set for the
variables, and F is an index set for the factors. Given the bipartite nature of the
graph, the edge set E now consists of pairs (i,a) of nodes i ∈ V such that the fact
a ∈ N(i), or equivalently such that a ∈ N(i). See Figure 1(b) for an illustration.

1

2

3

4

5

6

7 1

2

3

4

5

6

7

a

b

c

Fig. 1. Illustration of undirected graphical models and factor graphs. (a) An undirected
graph on m = 7 vertices, with maximal cliques {1,2,3,4}, {4,5,6} and {6,7}. (b) Equivalent
representation of the undirected graph in (a) as a factor graph, assuming that we define com-
patibility functions only on the maximal cliques in (a). The factor graph is a bipartite graph
with vertex set V = {1, . . . ,7} and factor set F = {a,b,c}, one for each of the compatibility
functions of the original undirected graph.

6 Martin J. Wainwright

For undirected models, the factor graph representation is of particular value when
C consists of more than the maximal cliques. Indeed, the compatibility functions for
the nonmaximal cliques do not have an explicit representation in the usual represen-
tation of an undirected graph — however, the factor graph makes them explicit.

2.4 Equivalence between factorization and Markov properties

This section is devoted to a classical result that establishes a certain equivalence
between factorization and Markov properties. For strictly positive distributions p,
this equivalence is complete.

Theorem 1 (Hammersley-Clifford). If a random vector (X1, . . . ,Xm) factor-
izes over a graph G, then it is Markov with respect to G. Conversely, if a
random vector is Markov with respect to G and p(x) > 0 for all x ∈ Xm, then
it factorizes over the graph.

Proof. We begin by proving that (F) =⇒ (M). Suppose that the factorization (3)
holds, and let S be an arbitrary vertex cutset of the graph such that subsets A and B
are separated by S . We may assume without loss of generality that both A and B are
non-empty, and we need to show that XA ⊥⊥ XB | XS . Let us define subsets of cliques
by CA := {C ∈ C | C∩A � ∅}, CB := {C ∈ C | C∩B � ∅}, and CS := {C ∈ C | C ⊆ S }.
We claim that these three subsets form a disjoint partition of the full clique set—
namely, C = CA∪CS ∪CB. Given any clique C, it is either contained entirely within
S , or must have non-trivial intersection with either A or B, which proves the union
property. To establish disjointness, it is immediate that CS is disjoint from CA and
CB. On the other hand, if there were some clique C ∈ CA∩CB, then there would exist
nodes a ∈ A and b ∈ B with {a,b} ∈ C, which contradicts the fact that A and B are
separated by the cutset S .

Consequently, we may write

p(xA, xS , xB) =
1
Z
[∏

C∈CA

ψC(xC)
]

︸�����������︷︷�����������︸
[∏

C∈CS

ψC(xC)
]

︸�����������︷︷�����������︸
[∏

C∈CB

ψC(xC)
]

︸�����������︷︷�����������︸
.

ΨA(xA, xS) ΨS (xS) ΨB(xB, xS)

Defining the quantities

ZA(xS) :=
∑
xA

ΨA(xA, xS), and ZB(xS) :=
∑
xB

ΨB(xB, xS),

we then obtain the following expresssions for the marginal distributions of interest

Graphical models and message-passing algorithms: Some introductory lectures 7

p(xS) =
ZA(xS) ZB(xS)

Z
ΨS (xS) and p(xA, xS) =

ZB(xS)
Z
ΨA(xA, xS) ΨS (xS),

with a similar expression for p(xB, xS). Consequently, for any xS for which p(xS) > 0,
we may write

p(xA, xS , xB)
p(xS)

=

1
Z ΨA(xA, xS)ΨS (xS)ΨB(xB, xS)

ZA(xS) ZB(xS)
Z ΨS (xS)

=
ΨA(xA, xS)ΨB(xB, xS)

ZA(xS) ZB(xS)
. (4)

Similar calculations yield the relations

p(xA, xS)
p(xS)

=

ZB(xS)
Z ΨA(xA, xS) ΨS (xS)
ZA(xS)ZB(xS)

Z ΨS (xS)
=
ΨA(xA, xS)

ZA(xS)
, and (5a)

p(xB, xS)
p(xS)

=

ZA(xS)
Z ΨB(xB, xS) ΨS (xS)
ZA(xS)ZB(xS)

Z ΨS (xS)
=
ΨB(xB, xS)

ZB(xS)
. (5b)

Combining equation (4) with equations (5a) and (5b) yields

p(xA, xB | xS) =
p(xA, xB, xS)

p(xS)
=

p(xA, xS)
p(xS)

p(xB, xS)
p(xS)

= p(xA | xS) p(xB | xS),

thereby showing that XA ⊥⊥ XB | XS , as claimed.
In order to prove the converse implication (M) =⇒ (F), we require a version of

the inclusion-exclusion formula. Given a set [m] = {1,2, . . . ,m}, let P([m]) its power
set, meaning the set of all subsets of [m]. With this notation, the following inclusion-
exclusion formula is classical:

Lemma 1 (Inclusion-exclusion). For any two real-valued functions Ψ and Φ
defined on the power set P([m]), the following statements are equivalent:

Φ(A) =
∑
B⊆A

(−1)|A\B|Ψ (B) for all A ∈ P([m]). (6a)

Ψ (A) =
∑
B⊆A
Φ(B) for all A ∈ P([m]). (6b)

Proofs of this result can be found in standard texts in combinatorics (e.g., [7]).
Returning to the main thread, let y ∈ Xm be some fixed element, and for each subset
A ∈ P([m]), define the function φ : Xm→ R via

8 Martin J. Wainwright

φA(x) :=
∑
B⊆A

(−1)|A\B| log
p(xB,yBc)

p(y)
. (7)

(Note that taking logarithms is meaningful since we have assumed p(x) > 0 for all
x ∈ Xm). From the inclusion-exclusion formula, we have log p(xA,yAc)

p(y) =
∑

B⊆AφB(x),
and setting A = [m] yields

p(x) = p(y)exp
{ ∑

B∈P([m])]
φB(x)

}
. (8)

From the definition (7), we see that φA is a function only of xA. In order to
complete the proof, it remains to show that φA = 0 for any subset A that is not a
graph clique. As an intermediate result, we claim that for any t ∈ A, we can write

φA(x) =
∑

B⊆A\{t}
(−1)|A−B| log

p(xt | xB,yBc\{t})
p(yt | xB,yBc\{t})

. (9)

To establish this claim, we write

φA(x) =
∑
B⊂A
B�t

(−1)|A\B| log
p(xB,yBc)

p(y)
+

∑
B⊂A
B�t

(−1)|A\B| log
p(xB,yBc)

p(y)

=

∑
B⊆A\{t}

(−1)|A\B|
{

log
p(xB,yBc)

p(y)
− log

p(xB∪t,yBc\{t})
p(y)

}

=

∑
B⊆A\{t}

(−1)|A\B| log
p(xB,yBc)

p(xB∪t,yBc\{t})
(10)

Note that for any B ⊆ A\{t}, we are guaranteed that t � B, whence

p(xB,yBc)
p(xB∪t,yBc\{t})

=
p(yt | xB,yBc\{t})
p(xt | xB,yBc\{t})

.

Substituting into equation (10) yields the claim (9).
We can now conclude the proof. If A is not a clique, then there must some exist

some pair (s, t) of vertices not joined by an edge. Using the representation (9), we
can write φA as a sum of four terms (i.e., φA =

∑4
i=1 Ti), where

Graphical models and message-passing algorithms: Some introductory lectures 9

T1(x) =
∑

B⊆A\{s,t}
(−1)|A\B| log p(yt | xB,yBc\{t}),

T2(x) =
∑

B⊆A\{s,t}
(−1)|A\(B∪{t})| log p(xt | xB,yBc\{t})

T3(x) =
∑

B⊆A\{s,t}
(−1)|A\(B∪{s})| log p(yt | xB∪{s},yBc\{s,t}), and

T4(x) =
∑

B⊆A\{s,t}
(−1)|A\(B∪{s,t})| log p(xt | xB∪{s},yBc\{s,t}).

Combining these separate terms, we obtain

φA(x) =
∑

B⊆A\{s,t}
(−1)|A\B| log

p(yt | xB,yBc\{t})p(xt | xB∪{s},yBc\{s,t})
p(xt | xB,yBc\{t})p(yt | xB∪{s},yBc\{s,t})

.

But using the Markov properties of the graph, each term in this sum is zero. Indeed,
since s � N(t), we have

p(xt | xB,yBc\{t})= p(xt | xB∪{s},yBc\{s,t}), and p(yt | xB,yBc\{t})= p(yt | xB∪{s},yBc\{s,t}),

which completes the proof. ��

3 Exact algorithms for inference

In applications of graphical models, one is typically interested in addressing some
kind of statistical inference problem, in which one uses partial or noisy observations
to draw inferences about the underlying model. Approaching any such statistical in-
ference problem typically requires solving one of a core set of computational prob-
lems. This set of core problems includes likelihood computation, which arises (for
instance) as a part of hypothesis testing or parameter estimation. A closely related
problem is that of computing the marginal distribution p(xA) over a particular subset
A ⊂V of nodes, or similarly, computing the conditional distribution p(xA | xB), for
disjoint subsets A and B of the vertex set. This marginalization problem is needed
to in order to perform filtering or smoothing of time series (for chain-structured
graphs), or the analogous operations for more general graphical models. A third
problem is that of mode computation, in which the goal is to find an element x̂ in
the set argmaxx∈Xm p(x).

At first sight, these problems—-likelihood computation, marginalization and
mode computation—might seem quite simple and indeed, for small graphical mod-
els (e.g., m ≈ 10—20), they can be solved directly with brute force approaches.
However, many applications involve graphs with thousands (if not millions) of
nodes, and the computational complexity of brute force approaches scales very
poorly in the graph size. More concretely, let us consider the case of a discrete ran-
dom vector (X1, . . . ,Xm) ∈Xm such that, for each node s ∈V, the random variable Xs

10 Martin J. Wainwright

takes values in the state spaceXs = {0,1, . . . ,k−1}. A naive approach to computing a
marginal at a single node — say p(xs) — entails summing over all configurations of
the form {x′ ∈ Xm | x′s = xs}. Since this set has km−1 elements, it is clear that a brute
force approach will rapidly become intractable. Given a graph with m= 100 vertices
(a relatively small problem) and binary variables (k = 2), the number of terms is 299,
which is already larger than estimates of the number of atoms in the universe. This
is a vivid manifestation of the “curse-of-dimensionality” in a computational sense.

A similar curse applies to the problem of mode computation for discrete ran-
dom vectors, since it is equivalent to solving an integer programming problem.
Indeed, the mode computation problem for Markov random fields includes many
well-known instances of NP-complete problems (e.g., 3-SAT, MAX-CUT etc.) as
special cases. Unfortunately, for continuous random vectors, the problems are no
easier and typically harder, since the marginalization problem involves computing
a high-dimensional integral, whereas mode computation corresponds to a generic
(possibly non-convex) optimization problem. An important exception to this state-
ment is the Gaussian case where the problems of both marginalization and mode
computation can be solved in polynomial-time for any graph (via matrix inversion),
and in linear-time for tree-structured graphs via the Kalman filter.

In the following sections, we develop various approaches to these computa-
tional inference problems, beginning with discussion of a relatively naive but ped-
agogically useful scheme known as elimination, moving onto more sophisticated
message-passing algorithms, and culminating in our derivation of the junction tree
algorithm.

3.1 Elimination algorithm

Vertex elimination algorithm

1. Initialize all vertices marked as undeleted, and the edge set E. Choose a
permutation of the vertex set V corresponding to the order in which to
perform elimination.

2. For i = 1,2, . . . ,m:
(a) Set current vertex k = ρ(i).
(b) Augment the current edge set with the collection of edges
{(j,k), ∀ j ∈ N(k)}.

3. Return the augmented graph G̃ = (V, Ẽ) that contains the original edge set
E and all edges added during the procedure.

Graphical models and message-passing algorithms: Some introductory lectures 11

3.2 Message-passing algorithms on trees

We now turn to discussion of message-passing algorithms for models based on
graphs without cycles, also known as trees. So as to highlight the essential ideas
in the derivation, we begin by deriving message-passing algorithms for trees with
only pairwise interactions, in which case the distribution has form

p(x1, . . . , xm) =
1
Z

∏
i∈V
ψi(xi)

∏
(i, j)∈E

ψi j(xi, x j), (11)

where T = (V,E) is a given tree, and {ψi, i ∈V} and {ψi j, (i, j) ∈ E} are compatibility
functions. (In Section 3.2.2, we provide extensions to general factor trees that allow
for higher-order interactions.) For a tree, the elimination algorithm takes a very sim-
ple form—assuming that the appropriate ordering is followed. Recall that a node in
a graph is called a leaf if it has degree one.

The key fact is that for any tree, it is always possible to choose an elimination
ordering ρ(V) = {ρ(1),ρ(2), . . . ,ρ(m)} such that:

1. The vertex ρ(1) is a leaf node of the original graph G, and
2. For t = 2,3, . . . ,m−1, the vertex ρ(t) is a leaf node of reduced graph Gt at step t

of the elimination algorithm.

This claim follows because any tree always has at least one leaf node [4], so that the
algorithm can be initialized in Step 1. Moreover, an inductive argument shows that
the elimination algorithm will never introduce any additional compatibility func-
tions into the factorization, so that the graph Gt at each stage of elimination remains
a tree, and we can always find a leaf node to continue the process. We refer to such
an ordering as a leaf-exposing ordering.

In computational terms, at round t = 1, . . . ,m−1, the relevant leaf node is v = ρ(t),
so the algorithm marginalizes over xv, and then passes the result to its unique parent
π(v). The result of this intermediate computation is a function of xπ(v), so that we can
represent it by a “message” of the form Mv→π(v) that provides one number for each
possible setting of xπ(v). Upon termination, the elimination algorithm will return the
marginal distribution p(xr) at the root node r ∈V; more specifically, this marginal is
specified in terms of the local compatiblity function ψr and the incoming messages
as follows:

p(xr) ∝ ψr(xr)
∏

i∈N(r)
Mi→r(xr).

Assuming that each variable takes at most k values (i.e., |Xi| ≤ k for all i ∈ V), the
overall complexity of running the elimination algorithm for a given root node scales
as O(k2m), since computing each message amounts to summing k numbers a total
of k times, and there are m rounds in the elimination order.

12 Martin J. Wainwright

3.2.1 Sum-product algorithm

In principle, by running the tree-based elimination algorithm m times—once for
each node acting as the root in the elimination ordering—we could compute all sin-
gleton marginals in time O(k2m2). However, as the attentive reader might suspect,
such an approach is wasteful, since it neglects to consider that many of the interme-
diate operations in the elimination algorithm would be shared between different or-
derings. Herein lies the cleverness of the sum-product algorithm: it re-uses these in-
termediate results in the appropriate way, and thereby reduces the overall complexity
of computing all singleton marginals to time O(k2m). For each edge (i, j) ∈ E, the
algorithm maintains two messages—Mi→ j and Mj→i—corresponding to two pos-
sible directions of the edge.1 With this notation, the sum-product message-passing
algorithm takes the following form:

Sum-product message-passing algorithm (pairwise tree):

1. At iteration t = 0:
For all (i, j) ∈ E, initialize messages

M0
j→i(xi) = 1 for all xi ∈ Xi, and

M0
i→ j(x j) = 1 for all x j ∈ X j.

2. For iterations t = 1,2, . . .:
(i) For each (j, i) ∈ E, update messages:

Mt
j→i(xi)← κ

∑
x′j

{
ψi j(xi, x′j)ψ j(x′j)

∏
k∈N(j)/i

Mt−1
k→ j(x

′
j)
}
, (12)

where κ > 0 chosen such that
∑

xi Mt
j→i(xi) = 1.

(ii) If desired, compute current estimates of marginals

μt(xi) = κi ψi(xi)
∏
j∈N(i)

Mt
j→i(xi), and (13a)

μt
i j(xi, x j) = κi j ψi j(xi, x j)

∏
k∈N(i)\{ j}

Mt
k→i(xi)

∏
k∈N(j)\{i}

Mt
k→ j(x j),

(13b)

where κi > 0 and κi j > 0 are normalization constants chosen such that∑
xi μ

t
i(xi) = 1 =

∑
xi,x j μ

t
i j(xi, x j).

The initialization given in Step 1 is the standard “uniform” one; we note that the
final output of the algorithm will be same for any initialization of the messages that
1 Recall that the message Mi→ j is a vector of |X j| numbers, one for each value x j ∈ X j.

Graphical models and message-passing algorithms: Some introductory lectures 13

has strictly positive components. The following result states the convergence and
correctness guarantees associated with the sum-product algorithm on a tree:

Proposition 2. For any tree T with diameter d(T), the sum-product updates
have a unique fixed point M∗. The algorithm converges to it after at most d(T)
iterations, and the marginals obtained by equations (13a) and (13b) are exact.

Proof. We proceed via induction on the number of nodes. For m = 1, the claim is
trivial. Now assume that the claim holds for all trees with at most m−1 nodes, and
let us show that it also holds for any tree with m nodes. It is an elementary fact of
graph theory [4] that any tree has at least one leaf node. By re-indexing as necessary,
we may assume that node m is a leaf, and its unique parent is node 1. By definition
of the sum-product updates, for all iterations t = 1,2, . . ., the message sent from m to
1 is given by

M∗m→1(x1) = κ
∑
xm

ψm(xm)ψm1(xm, x1).

Given this fixed message, we may consider the probability distribution defined on
variables (x1, . . . , xm−1) given by

p(x1, . . . , xm−1) ∝ M∗m→1(x1)
[m−1∏

i=1
ψi(xi)

] ∏
(i, j)∈E\{(1,m)}

ψi j(xi, x j).

Our notation is consistent, in that p(x1, . . . , xm−1) is the marginal distribution ob-
tained by summing out xm from the original problem. It corresponds to an instance
of our original problem on the new tree T ′ = (V′,E′) with V′ = {1, . . . ,m− 1} and
E′ = E\{(1,m)}. Since the message M∗m→1 remains fixed for all iterations t ≥ 1, the
iterates of the sum-product algorithm on T ′ are indistinguishable from the iterates
on tree (for all nodes i = 1, . . . ,m−1 and edges (i, j) ∈ E′).

By the induction hypothesis, the sum-product algorithm applied to T ′ will con-
verge after at most d(T ′) iterations to a fixed point M∗ = {M∗i→ j,M

∗
j→i | (i, j) ∈ E

′},
and this fixed point will yield the correct marginals at all nodes i = 1, . . . ,m− 1.
As previously discussed, the message from m to 1 remains fixed for all iterations
after the first, and the message from 1 to m will be fixed once the iterations on the
sub-tree T ′ have converged. Consequenly, we include the extra iteration for the mes-
sages between m and 1, we conclude that sum-product on T converges in at most
d(T) ≤ d(T ′)+1 iterations as claimed.

It remains to show that the marginal at node m is proportional to the quantity
μm(xm) ∝ ψm(xm)M∗1→m(xm), where

14 Martin J. Wainwright

M∗1→m(xm) := κ
∑
x1

ψ1(x1) ψ1m(x1, xm)
∏

k∈N(1)\{m}
M∗k→1(x1).

By elementary probability theory, we have p(xm) =
∑

x1 p(xm | x1)p(x1). Since m
is a leaf node with unique parent 1, we have the conditional independence relation
Xm ⊥⊥ XV\{1} | X1, and hence

p(xm | x1) =
ψm(xm)ψ1m(x1, xm)∑
xm ψm(xm)ψ1m(x1, xm)

∝
ψm(xm)ψ1m(x1, xm)

M∗m→1(x1)
. (14)

By the induction hypothesis, the sum-product algorithm, when applied to the distri-
bution (14), returns the marginal distribution

p(x1) ∝
[
M∗m→1(x1)ψ1(x1)

] ∏
k∈N(1)\{m}

M∗k→1(x1).

Combining the pieces yields

p(xm) =
∑
x1

p(xm | x1)p(x1)

∝ ψm(xm)
∑
x1

ψ1m(x1, xm)
M∗m→1(x1)

[
M∗m→1(x1)ψ1(x1)]

∏
k∈N(1)\{m}

M∗k→1(x1)

∝ ψm(xm) M∗1→m(xm),

as required. A similar argument yields that equation (13b) yields the correct form
of the pairwise marginals for each edge (i, j) ∈ E; we leave the details as an exercise
for the reader. ��

3.2.2 Sum-product on general factor trees

In the preceding section, we derived the sum-product algorithm for a tree with pair-
wise interactions; in this section, we discuss its extension to arbitrary tree-structured
factor graphs. Before proceeding, it is worth noting that the resulting algorithm is not
strictly more general than sum-product for pairwise interactions. Indeed, in the case
of discrete variables considered here, any tree-structured factor graph—regardless
of the order of interactions that it involves—can be converted to an equivalent tree
with pairwise interactions.

We use Mi→a to denote the message from node i to the factor node a ∈ N(i), and
similarly Ma→i to denote the message from factor node a to i ∈ N(a). Both messages
(in either direction) are functions of xi, where Ma→i(xi) (respectively Mi→a(xi)) de-
notes the value taken for a given xi ∈ Xi. We let xa = {xi, i ∈ N(a)} denote the sub-
vector of random variables associated with factor node a ∈ F . With this notation,
the sum-product updates for a general tree factor graph take the following form:

Graphical models and message-passing algorithms: Some introductory lectures 15

Sum-product updates for tree factor graph:

Mi→a(xi)← κ ψi(xi)
∏

b∈N(i)\{a}
Mb→i(xi), and (15a)

Ma→i(xi)← κ
∑

x j, j∈N(a)\{i}

[
ψa(xa)

∏
j∈N(a)\{i}

Mj→a(x j)
]
. (15b)

Here the quantity κ again represents a positive constant chosen to ensure that
the messages sum to one. (As before, its value can differ from line to line.) Upon
convergence, the marginal distributions over xi and over the variables xa are given,
respectively, by the quantities

μi(xi) = κψi(xi)
∏

a∈N(i)
Ma→i(xi), and (16a)

μa(xa) = κψa(xa)
∏

j∈N(a)
Mj→a(x j). (16b)

We leave it as an exercise for the reader to verify that the message-passing up-
dates (15) will converge after a finite number of iterations (related to the diameter
of the factor tree), and when equation (16) is applied using the resulting fixed point
M∗ of the message updates, the correct marginal distributions are obtained.

3.2.3 Max-product algorithm

Thus far, we have discussed the sum-product algorithm that can be used to solve the
problems of marginalization and likelihood computation. We now turn to the max-
product algorithm, which is designed to solve the problem of mode computation. So
as to clarify the essential ideas, we again present the algorithm in terms of a factor
tree involving only pairwise interactions, with the understanding that the extension
to a general factor tree is straightforward.

Recall that the mode computation problem amounts to finding an element

x∗ ∈ arg max
x∈Xm

p(x1, . . . , xm).

As an intermediate step, let us first consider the problem of computing the so-called
max-marginals associated with any distribution defined by a tree G = (V,E). In
particular, for each variable node i ∈ V and each xi ∈ Xi, we define the singleton
max-marginal

νi(xi) := max
{x′∈Xm | x′i=xi}

p(x′1, . . . , x
′
m), (17)

16 Martin J. Wainwright

For each edge (i, j) ∈ E, the pairwise max-marginal is defined in an analogous man-
ner:

νi j(xi, x j) := max
{x′∈Xm | (x′i ,x

′
j)=(xi,x j)}

p(x′1, . . . , x
′
m), (18)

Note that the singleton and pairwise max-marginals are the natural analogs of the
usual marginal distributions, in which the summation operation has been replaced
by the maximization operation.

Before describing how these max-marginals can be computed by the max-
product algorithm, first let us consider how max-marginals are relevant for the prob-
lem of mode computation. This connection is especially simple if the singleton max-
marginals satisfy the unique maximizer condition—namely, if for all i ∈ V, the set
argmaxxi∈Xi νi(xi) consists of a single element, say x∗i ∈ Xi. In this case, we claim
that the element (x∗1, . . . , x

∗
m) ∈ Xm is the unique maximizer of p(x1, . . . , xm). Let us

establish this claim. Note that for any i ∈V, by the unique maximizer condition and
the definition of the max-marginals, we have

νi(x∗i) = max
xi∈Xi
νi(xi) = max

x∈Xm
p(x).

Now for any x̃ � x∗, there must be some index i such that x∗i � x̃i. For this index, we
have

max
x∈Xm

p(x) = νi(x∗i) > νi(x̃i) ≥ p(x̃),

showing that p(x̃) <maxx∈Xm p(x).
If the unique maximizer condition fails to hold, then the distribution p must have

more than one mode, and it requires a bit more effort to determine one. Most impor-
tantly, it is no longer sufficient to extract some x∗i ∈ argmaxxi∈Xi νi(xi). To appreciate
this fact, consider the distribution over a pair of binary variables given by

p(x1, x2) =

⎧⎪⎪⎨⎪⎪⎩0.45 if x1 � x2, and
0.05 otherwise.

(19)

In this case, we have ν1(x1) = ν2(x2) = 0.45 for all (x1, x2) ∈ {0,1}2, but only con-
figurations with x1 � x2 are globally optimal. As a consequence, a naive procedure
that looks only at the singleton max-marginals has no way of determining such a
globally optimal configuration.

Consequently, when the unique maximizer condition no longer holds, it is nec-
essary to also take into account the information provided by the pairwise max-
marginals (18). In order to do so, we consider a back-tracking procedure that sam-
ples some configuration x∗ ∈ argmaxx∈Xm p(x). Let us assume that the tree is rooted
at node 1, and thatV = {1,2, . . . ,m} is a topological ordering (i.e., such that π(i) < i
for all i = 2, . . . ,m). Using this topological ordering we may generate an optimal
configuration x∗ as follows:

Graphical models and message-passing algorithms: Some introductory lectures 17

Back-tracking for choosing a mode x∗

1. Initialize the procedure at node 1 by choosing any x∗1 ∈ arg max
x1∈X1

νi(xi).

2. For each i = 2, . . . ,m, choose any x∗i ∈ Xi such that
x∗i ∈ argmax

xi∈Xi
νi,π(i)(xi, x∗π(i)).

We establish the correctness of this back-tracking procedure in Proposition 3 below.
Having established the utility of the max-marginals for computing modes, let

us now turn to an efficient algorithm for computing them. As alluded to earlier,
the max-marginals are the analogs of the ordinary marginals when summation is
replaced with maximization. Accordingly, it is natural to consider the analog of the
sum-product updates with the same replacement; doing so leads to the following
max-product updates:

Mj→i(xi)← κ max
x′j

{
ψi j(xi, x′j)ψ j(x′j)

∏
k∈N(j)/i

Mk→ j(x′j)
}
, (20)

where κ > 0 chosen such that maxxi Mj→i(xi) = 1. When the algorithm converges to
a fixed point M∗, we can compute the max-marginals via equations (13a) and (13b).

Proposition 3. For any tree T with diameter d(T), the max-product updates
converge to their unique fixed point after at most d(T) iterations, and the
max-marginals obtained by equations (13a) and (13b) are exact. Moreover,
the back-tracking procedure yields an element x∗ ∈ arg max

x∈Xm
p(x).

Proof. The proof of convergence and correct computation of the max-marginals is
formally identical to that of Proposition 2, so we leave the details to the reader
as an exercise. Let us verify the remaining claim—namely, the optimality of any
configuration x∗ ∈ Xm returned by the back-tracking procedure.

In order to do so, recall that we have assumed without loss of generality (re-
indexing as necessary) thatV = {1,2, . . . ,m} is a topological ordering, with vertex 1
as the root. Under this ordering, let us use the max-marginals to define the following
cost function:

J(x;ν) = ν1(x1)
m∏

i=2

νiπ(i)(xi, xπ(i))
νπ(i)(xπ(i))

. (21)

(In order for division to be defined in all cases, we take 0/0 = 0.) We first claim that
there exists a constant κ > 0 such that J(x;ν) = κ p(x) for all x ∈ Xm, which implies

18 Martin J. Wainwright

that argmaxx∈Xm J(x;ν)= argmaxx∈Xm p(x). (By virtue of this property, we say that ν
defines a reparameterization of the original distribution.) To establish this property,
we first note that the cost function J can also be written in the symmetric form

J(x;ν) =
m∏

i=1
νi(xi)

∏
(i, j)∈E

νi j(xi, x j)
νi(xi)ν j(x j)

. (22)

We then recall that the max-marginals are specified by the message fixed point
M∗ via equations (13a) and (13b). Substituting these relations into the symmetric
form (22) of J yields

J(x;ν) ∝
[∏

i∈V
ψi(xi)

∏
k∈N(i)

M∗k→i(xi)
] [∏

(i, j)∈E

ψi j(xi, x j)
M∗i→ j(x j)M∗j→i(xi)

]

=

∏
i∈V
ψi(xi)

∏
(i, j)∈E

ψi j(xi, x j)

∝ p(x),

as claimed.
Consequently, it suffices to show that any x∗ ∈ Xm returned by the back-tracking

procedure is an element of argmaxx∈Xm J(x;ν). We claim that

νiπ(i)(x∗i , x
∗
π(i))

νπ(i)(x∗π(i))
≥
νiπ(i)(xi, xπ(i))
νπ(i)(xπ(i))

for all (xi, xπ(i)). (23)

By definition of the max-marginals, the left-hand side is equal to one. On the other
hand, we have νπ(i)(xπ(i)) ≥ νiπ(i)(xi, xπ(i)), showing that the right-hand side is less
than or equal to one.

By construction, any x∗ returned by back-tracking satisfies ν1(x∗1) ≥ ν1(x1) for
all x1 ∈ X1. This fact, combined with the pairwise optimality (23) and the defini-
tion (21), implies that J(x∗;ν) ≥ J(x;ν) for all x ∈ Xm, showing that x∗ is an element
of the set argmaxx∈Xm J(x;ν), as claimed. ��

In summary, the sum-product and max-product are closely related algorithms,
both based on the basic principle of “divide-and-conquer”. A careful examination
shows that both algorithms are based on repeated exploitation of a common al-
gebraic property, namely the distributive law. More specifically, for arbitrary real
numbers a,b,c ∈ R, we have

a · (b+ c) = a ·b+a · c, and a · max{b,c} =max{a ·b, a · c}.

The sum-product (respectively max-product) algorithm derives its power by exploit-
ing this distributivity to re-arrange the order of summation and multiplication (re-
spectively maximization and multiplication) so as to minimize the number of steps
required. Based on this perspective, it can be shown that similar updates apply to any
pair of operations (⊕,⊗) that satisfy the distributive law a⊗ (b⊕ c) = a⊗ b ⊕ a⊗ c,

Graphical models and message-passing algorithms: Some introductory lectures 19

and for which ⊗ is a commutative operation (meaning a⊗ b = b⊗ a). Here the el-
ements a,b,c need no longer be real numbers, but can be more exotic objects; for
instance, they could elements of the ring of polynomials, where (⊗,⊕) correspond
to multiplication or addition with polynomials. We refer the interested reader to the
papers [1, 5, 9, 11] for more details on such generalizations of the sum-product and
max-product algorithms.

4 Junction tree framework

Thus far, we have derived the sum-product and max-product algorithms, which are
exact algorithms for tree-structured graphs. Consequently, given a graph with cy-
cles, it is natural to think about some type of graph transformation—for instance,
such as grouping its nodes into clusters—-so as to form a tree to which the fast and
exact algorithms can be applied. It turns out that this “clustering”, if not done care-
fully, can lead to incorrect answers. Fortunately, there is a theory that formalizes
and guarantees correctness of such a clustering procedure, which is known as the
junction tree framework.

4.1 Clique trees and running intersection

In order to motivate the development to follow, let us begin with a simple (but cau-
tionary) example. Consider the graph on five vertices shown in Figure 2(a), and
note that it has four maximal cliques—namely {2,3,4}, {1,2}, {1,5} and {4,5}. The
so-called clique graph associated with this graph has four vertices, one for each
of these maximal cliques, as illustrated in panel (b). The nodes corresponding to
cliques C1 and C2 are joined by an edge in the clique graph if and only if C1∩C2 is
not empty. In this case, we label the edge joining C1 and C2 with the set S =C1∩C2,
which is known as the separator set. The separator sets are illustrated in gray boxes
in panel (b). Finally, one possible tree contained within this clique graph—known
as a clique tree—is shown in panel (c).

Now suppose that we were given a MRF distribution over the single cycle in
panel (a); by the Hammersley-Clifford theorem, it would have the form

p(x1, . . . x5) ∝ ψ234(x2, x3, x4)ψ12(x1, x2)ψ15(x1, x5)ψ45(x4, x5). (24)

Now we could provide an alternative factorization of (essentially) the same model
on the clique graph in panel (b) by making two changes: first, introducing extra
copies of variables (i.e., x′i for i = 1, . . .5) so as to account for the fact that each
variable from the original graph appears in multiple places on the clique graph, and
second, introducing indicator functions on the edges to enforce equality between the
different copies. Doing so yields a distribution q(x, x′)= q(x1, . . . , x4, x5x′1, . . . , x

′
4, x
′
5)

20 Martin J. Wainwright

5

1

2

43

54

5
54

1 2

12 3
4

12

54

5
4

1 2

12 3
4

12

Fig. 2. (a) A graph with cycles on five vertices. (b) Associated clique graph in which cir-
cular nodes are maximal cliques of G; square gray boxes sitting on the edges represent
separator sets, corresponding to the intersections between adjacent cliques. (c) One clique
tree extracted from the clique graph. It can be verified that this clique tree fails to satisfy
the running intersection property.

that factorizes as

q(x, x′) ∝ ψ234(x2, x3, x4)ψ12(x1, x′2)ψ15(x′1, x5)ψ45(x′4, x5) ×
5∏

i=1
I [xi = x′i], (25)

where I [xi = x′i] is a {0,1}-valued indicator function for the event {xi = x′i }. By con-
struction, for any i= 1,2, . . . ,4, if we were to compute the marginal distribution q(xi)
in the expanded model (25), it would be equal to the marginal p(xi) from the original
model (24). (Although the expanded model (25) involves additional copies x′i , the
indicator functions associated with the edges of the clique graph enforce the needed
equalities to maintain model consistency.)

However, the clique graph in panel (b) and the distribution (25) are not still trees,
which leads us to the key question. When is it possible to extract a tree from the
clique graph, and have a factorization over the resulting clique tree that remains
consistent with the original model (24)? Panel (c) of Figure 2 shows one clique tree,
obtained by dropping the edge labeled with separator set {5} that connects the nodes
labeled with cliques {4,5} and {1,5}. Accordingly, the resulting factorization r(·)
over the tree would be obtained by dropping the indicator function I [x5 = x′5], and
take the form

r(x, x′) ∝ ψ234(x2, x3, x4)ψ12(x1, x′2)ψ15(x′1, x5)ψ45(x′4, x5) ×
4∏

i=1
I [xi = x′i], (26)

Of course, the advantage of this clique tree factorization is that we now have a dis-
tribution to which the sum-product algorithm could be applied, so as to compute
the exact marginal distributions r(xi) for i = 1,2, . . . ,5. However, the drawback is
that these marginals will not be equal to the marginals p(xi) of the original dis-
tribution (24). This problem occurs because—in sharp contrast to the clique graph
factorization (25)—the distribution (26) might assign non-zero probability to some
configuration for which x5 � x′5. Of course, the clique tree shown in Figure 2(c) is

Graphical models and message-passing algorithms: Some introductory lectures 21

only one of spanning trees contained within the clique graph in panel (b). However,
the reader can verify that none of these clique trees have the desired property.

A bit more formally, the property that we require is the clique tree factorization
always have enough structure to enforce the equivalences xi = x′i = x′′i = . . ., for
all copies of a given variable i ∈ V. (Although variables only appeared twice in
the example of Figure 2, the clique graphs obtained from more complicated graphs
could have any number of copies.) Note that there are copies xi and x′i of a given
variable xi if and only if i appears in at least two distinct cliques, say C1 and C2.
In any clique tree, there must exist a unique path joining these two nodes, and what
we require is that the equivalence {xi = x′i } be propagated along this path. In graph-
theoretic terms, the required property can be formalized as follows:

Definition 4. A clique tree has the running intersection property if for any two
clique nodes C1 and C2, all nodes on the unique path joining them contain the
intersection C1 ∩C2. A clique tree with this property is known as a junction
tree.

To illustrate this definition, the clique tree in Figure 2 fails to satisfy running
intersection since 5 belongs to both cliques {4,5} and {1,5}, but does not belong to
the clique {2,3,4} along the path joining these two cliques in the clique tree. Let us
now consider a modification of this example so as to illustrate a clique tree that does
satisfy running intersection, and hence is a junction tree.

5

1

2

43

4

4 4

5
2 3
4

41

1 2
4

2 1 4 4

5
2 3
4

41

1 2
4

2 1

(a) (b) (c)
Fig. 3. (a) A modified version of the graph from Figure 2(a), containing the extra edge
(1,4). The modified graph has three maximal cliques, each of size three. (b) The associated
clique graph has one node for each of three maximal cliques, with gray boxes representing
the separator sets. (c) A clique tree extracted from the clique graph; it can be verified that
this clique tree satisfies the running intersection property.

Figure 3(a) shows a modified version of the graph from Figure 2(a), obtained by
adding the extra edge (1,4). Due to this addition, the modified graph now contains
three maximal cliques, each of size three. Panel (b) shows the associated clique
graph; it contains three vertices, one for each of the three maximal cliques, and the

22 Martin J. Wainwright

gray boxes on the edges represent the separator sets. Panel (c) shows one clique tree
extracted from the clique graph in panel (b). In contrast to the tree from Figure 2(a),
this clique tree does satisfy the running intersection property, and hence is a junction
tree. (For instance, vertex 4 belongs to both cliques {2,3,4} and {1,4,5}, and to every
clique on the unique path joining these two cliques in the tree.)

4.2 Triangulation and junction trees

Thus far, we have studied in detail two particular graphs, one (Figure 2(a)) for which
it was impossible to obtain a junction tree, and a second (Figure 3(a)) for which a
junction tree could be found. In this section, we develop a principled basis on which
to produce graphs for which the associated clique graph has a junction tree, based
on the graph-theoretic notion of triangulation.

Recall that a cycle in a graph is a sequence of vertices (s1, s2, . . . s�, s1) such that
(s�, s1) ∈ E and (sisi+1) ∈ E for all i = 1, . . . , �−1. The cycle is chordless if there are
no edges in the graph joining non-successive vertices in the cycle—that is, the graph
does not contain any edges apart from those listed above that form the cycle. For
example, the cycle (1,2,4,5,1) in the graph from Figure 2(a) is chordless, whereas
in contrast, the cycle (1,2,3,4,5,1) contains the chord (2,4).

Definition 5. A graph is triangulated if it contains no chordless cycles of
length greater than three.

Thus, the graph in Figure 2(a) is not triangulated (due to the chordless cycle
(1,2,4,5,1)), whereas it can be verified that the graph in Figure 3(a) is triangulated.
We now state the fundamental connection between triangulation and junction trees:

Theorem 2. The clique graph associated with a graph G has a junction tree
if and only if G is triangulated.

We provide a proof of this result as a part of a more general set of graph-theoretic
equivalences in Appendix B. The practical significance of Theorem 2 is that it en-
ables us to construct a modified graph G̃—by triangulating the original graph G—
such that the clique graph associated with G̃ is guaranteed to have at least one junc-
tion tree. There are a variety of algorithms for obtaining triangulated graphs. For
instance, recall the vertex elimination procedure discussed in Section 3.1; it takes as
input a graph G = (V,E) and then processes the vertices in a pre-specified order so
as to produce a new graph.

Graphical models and message-passing algorithms: Some introductory lectures 23

Lemma 2. The output G̃ = (V, Ẽ) of the vertex elimination algorithm is a tri-
angulated graph.

We leave the proof of Lemma 2 as an exercise for the reader. This fact establishes
that there is a connection between the elimination algorithm and the property of
triangulation.

Example 1 (Triangulation and junction tree). To illustrate the triangulation proce-
dure, consider the 3×3 grid shown in Figure 4(a). If we run the vertex elimination
algorithm using the ordering ρ(V) = {1,3,7,9,4,6,2,8}, then we obtain the graph
G̃ shown in panel (b). (Note that the graph would not be triangulated if the addi-
tional edge joining nodes 2 and 8 were not present. Without this edge, the 4-cycle
{2,4,8,6,2} would lack a chord). Note that G̃ has six maximal cliques: two 4-cliques

1 2

65

9

3

4

7 8

1 2

5

9

3

4

7 8

6

(a) (b)

2

8

8 8

22

6 8

2 5 8

1 2 4

4 7 8

2
4 5

8

6 8 9

2
5 6
8

2 3 6

2 62 4

4 8 6 8

2 5 8

1 2 4

4 7 8

2
4 5

8

6 8 9

2
5 6
8

2 3 6

2 62 4

4 8

(c) (d)
Fig. 4. Illustration of junction tree construction. (a) Original graph is a 3×3 grid. (b) Trian-
gulated version of original graph. Note the two 4-cliques in the middle. (c) Corresponding
junction tree for triangulated graph in (b), with maximal cliques depicted within ellipses,
and separator sets within rectangles.

in the middle of the graph, and four 3-cliques on the boundary. The clique graph as-
sociated with G̃ is illustrated in panel (c), and one clique tree is shown in panel (d).
It can be verified

24 Martin J. Wainwright

4.3 Constructing the junction tree

Given that any triangulated graph has a junction tree (JT), the first step in the JT pro-
cedure is to triangulate the graph. At least in principle, this operation is straightfor-
ward since it entails adding edges so as to remove chordless cycles from the graph.
(However, see the discussion at the end of Section 4 for discussion of optimal trian-
gulations.) The focus of this section is the next step of the JT procedure—namely,
how to form a junction tree from a triangulated graph. Any graph with cycles has
more than one clique tree. Given a triangulated graph, we are guaranteed that at least
one of these clique trees has the running intersection property, and so is a junction
tree. How to find such a junction tree? It turns out that there is a simple procedure,
based on solving a certain maximum weight spanning tree problem, that is always
guaranteed to find a junction tree.

Given a triangulated graph, we again consider the clique graph, as previously de-
fined. Recall that nodes C1 and C2 (corresponding to cliques from the original graph)
are connected by an edge if and only if the associated separator set S =C1∩C2 is
non-empty. Accordingly, for each edge e = (C1,C2) of the clique graph, we can as-
sociate the positive weight w(e) = card(C1 ∩C2). We refer to the resulting object
as the cardinality-weighted clique graph. Given this weighted graph, the maximum
weight spanning tree problem corresponds to finding the tree T (whose vertex set
includes every node) such that the weight w(T) :=

∑
e∈T w(e) is maximized.

Proposition 4. Any maximal weight spanning tree of the cardinality-weighted
clique graph is a junction tree for the original graph.

Proof. Suppose that the triangulated graph G̃ has M maximal cliques, so that (by
definition) the weighted clique graph has M nodes. Let us consider an arbitrary
spanning tree T of the weighted clique graph, say with nodes {C1, . . . ,CM} and
an associated edge set {S 1, . . . ,S M−1}, where we have identified each edge with
its associated separator set. The weight of this spanning tree can be written as
w(T) =

∑M−1
j=1 card(S j). Letting I [t ∈ S j] be an {0−1}-valued indicator function for

the event {t ∈ S j}, we may write card(S j) =
∑

t∈V I [t ∈ S j], and hence we have

w(T) =
M−1∑
j=1

∑
t∈V
I [t ∈ S j] =

∑
t∈V

M−1∑
j=1
I [t ∈ S j] (27)

We now claim that for any t ∈ V, we have the inequality

M−1∑
j=1
I [t ∈ S j] ≤

M∑
i=1
I [t ∈Ci]−1, (28)

Graphical models and message-passing algorithms: Some introductory lectures 25

with equality if and only if the subgraph induced by t is connected. To establish this
claim, consider the subgraph of T that induced by vertex t—meaning the subgraph
formed by the clique nodes Ci that include t, and the associated edges or separator
sets S j that also include t. Since it is a subgraph of the tree T , it must also be acyclic,
from which the inequality (28) follows. If the subgraph has a single connected com-
ponent, then equality holds. When T is actually a junction tree, this equality will
hold for any vertex t.

Substituting the bound (28) into the earlier inequality (27), we conclude that

w(T) ≤
∑
t∈V

{ M∑
i=1
I [t ∈Ci]−1

}
,

where equality holds if and only T is a junction tree. Since the given tree T was
arbitrary, the claim follows. ��

Junction tree algorithm Given an undirected graph G = (V,E):

1. Run a triangulation procedure to obtain a triangulated graph G̃.
2. Form the weighted junction graph, and find a maximum weight spanning

tree via a standard algorithm (e.g., Kruskal’s algorithm, Dykstra’s algo-
rithm).

3. Given the junction tree, define appropriate compatibility functions on its
nodes and edges to reproduce the original distribution, and run the sum-
product algorithm.

There are various techniques for finding some triangulation of a graph; in fact,
running the vertex elimination algorithm (using any ordering) yields a triangulation.
Note, however, that the complexity of tree inference depends on the size of the state
spaces at each node in the junction tree, which are determined by the clique sizes
in the triangulated graph. It would be desirable, then, to obtain a triangulation with
minimal maximal clique size, or equivalently, with minimal treewidth.

Definition 6. The treewidth of a graph is the size of largest clique (minus one) in
the best triangulation.

As an illustration, any ordinary tree has treewidth one, whereas the graph in Fig-
ure 3(a) has treewidth two, and the grid in Figure 4 has treewidth three.

For any fixed treewidth k, there are efficient algorithms—meaning polynomial-
time in the graph size—to test whether the graph has treewidth k, and if so, to de-
termine an associated junction tree [10, 3]. However, the complexity of these algo-
rithms grows exponentially in the treewidth k, so they are feasible only for graphs of
bounded treewidth. For a general graph, the problem of finding an optimal triangu-
lation is NP-hard [?, 2]. Despite this negative result, there are a variety of heuristic
algorithms for obtaining “good” triangulations of graph. One of most widely studied

26 Martin J. Wainwright

is the minimum degree or minimum fill heuristic [?, ?], which is based on follow-
ing the elimination ordering obtained by choosing a minimum degree vertex (in the
partially reduced graph) at each step.

5 Basics of parameter estimation

Graphical models and message-passing algorithms: Some introductory lectures 27

Acknowledgements This work was partially supported by NSF grants CCF-0545862, DMS-
0605165 and CCF-0635372, and AFOSR grant 09NL184.

Appendix

A: Basics of graph theory

.....

B: Triangulation and equivalent graph-theoretic properties

In this Appendix, we prove Theorem 2 as part of a more general discussion of trian-
gulation and related graph-theoretic properties. Having already defined the notions
of triangulations and junction tree, let us now define the closely related notions of
decompsable and recursively simplicial. The following notion serves to formalize
the “divide-and-conquer” nature of efficient algorithms:

Definition 7. A graph G = (V,E) is decomposable if either it is complete, or
its vertex set V can be split into the disjoint union of three sets three sets
A∪ B∪S such that (a) A and B are non-empty; (b) the set S separates A and
B in G, and is complete (i.e., (s, t) ∈ E for all s, t ∈ S); and (c) A∪S and B∪S
are also decomposable.

Recall from our discussion of the elimination algorithm in Section 3.1 that when
a vertex is removed from the graph, the algorithm always connects together all of
its neighbors, thereby creating additional edges in the reduced graph. The following
property characterizes when there is an elimination ordering such that no edges are
added by the elimination algorithm.

Definition 8. A vertex is simplicial if its neighbors form a complete subgraph.
A non-empty graph is recursively simplicial if it contains a simplicial vertex,
and when s is removed, any graph that remains is recursively simplicial.

28 Martin J. Wainwright

It should be intuitively clear that these four properties—namely, triangulated,
decomposable, recursively simplicial, and having a junction tree—are related. We
now show that all four properties are actually equivalent:

Theorem 3. The following properties of an undirected graph G are all equiv-
alent:

Property (T): G is triangulated.
Property (D): G is decomposable.
Property (R): G is recursively simplicial.
Property (J): G has a junction tree.

We will prove the sequence of implications (T)⇒ (D)⇒ (R)⇒ (J)⇒ (T).

(T)⇒ (D): We proceed via induction on the graph size m. The claim is trivial for
m = 1, so let us assume it for all graphs with m vertices, and prove that it also holds
for any graph G with m+1 vertices. If G is complete, then it is certainly recursively
simplicial. Moreover, if G has more than one connected component, each of which
is complete, then it is also recursively simplicial. Otherwise, we may assume that at
least one connected component of G is not complete. (Without loss of generality in
the argument to follow, we assume that G has a single connected component which
is not complete.) Since G is not complete, it contains two non-adjacent nodes a,b.
Let S be a minimal set that separates a and b; the set S must be non-empty since G
has a single connected component. Define A as the set of all nodes connected to a
inV\S , and set B :=V\(A∪S). Clearly, S separates A from B in G.

Now need to show that S is complete. If |S | = 1, the claim is trivial. Otherwise,
for any two distinct nodes s, t ∈S, there exist paths (s,a1, . . . ,ai, t) and (s,b1, . . . ,b j, t)
where ak ∈ A, bk ∈ B and i, j ≥ 1. (This follows since S is minimal, so there must
exist paths from a to s and from a to t; otherwise, S would not be minimal.) We
claim that s and t are joined by an edge. If not, take the path from s to t through
A with minimal length, and similarly for B. This pair of paths forms a cycle of
length at least four, which must have a chord. The chord cannot be in A or B, since
this would contradict minimality. It cannot be between nodes in A and B since S
separates these two sets. Therefore, s and t are joined, and S is complete.

Finally, we need to show that A∪ S and B∪ S are also decomposable. But they
are chordal (otherwise G is not chordal) and strictly smaller than V, so the result
follows by induction.

(D)⇒ (R): Proof by induction on graph size m. Trivial for m = 1. To complete the
induction step, we require the follwing lemma:

Graphical models and message-passing algorithms: Some introductory lectures 29

Lemma 3. Every decomposable graph with at least two nodes has at least two sim-
plicial nodes. If the graph is not complete, these nodes can be chosen to be non-
adjacent.

Proof. Proof by induction on graph size m. Trivial for m = 2. Consider a decom-
posable graph with m+ 1 nodes. If the graph is complete, all nodes are simplicial.
Otherwise, decompose the graph into disjoint sets A, B and S . The subgraphs A∪S
and B∪ S are also chordless, and hence we have two simplicial nodes in A∪ S . If
A∪S is not complete, these can be chosen to be non-adjacent. Given that S is com-
plete, one of the nodes can be taken in A. Otherwise, if A∪ S is complete, choose
any node in A. Proceed in a symmetric fashion for B. The simplicial nodes thus
chosen will not be connected, since S separates A and B.

Thus, given a decomposable graph, we can find some simplicial vertex s to re-
move. We need to show that the remaining graph is also decomposable, so as to
apply the induction hypothesis. In particular, we prove that G decomposable implies
that any vertex-induced subgraph G[U] is also decomposable. We prove this induc-
tion on |U |. Trivial for |U | = 1. Trivially true if G is complete; otherwise, break into
A∪S ∪B. Removing a node from S leaves S \{s} complete, and A∪S and B∪S de-
composable by the induction hypothesis. Removing a node from A does not change
B∪S , and either leaves A empty (in which case remainder B∪S is decomposable),
or leaves A∪S decomposable by induction.

(R)⇒ (J): Proof by induction on graph size m. Trivial for m= 1. Let s be a simplicial
vertex, and consider subgraph G′ obtained by removing s. By induction, G′ has a
junction tree T ′, which we will extend to a junction tree T forG. Let C′ be a maximal
clique in T ′ that contains all the neighbors of s; this must exist since s is simplicial.
If C′ is precisely the neighbors of s, then we can add s to C′ so as to obtain T , which
is a junction tree for G.

If not (i.e., if C′ contains the neighbors of s as a proper subset), then we can add
a new clique containing s and its neighbors to T ′, with an edge to C′. Since s is in
no other clique of T and C\{s} is a subset of C′, the tree T ′ is a junction tree for G¿

(J)⇒ (T): Proof by induction on number of nodes M in junction tree. For M = 1,
G is complete and hence triangulated. Consider a junction tree T with M+1 nodes.
For a fixed leaf C of T , let C′ be the unique neighbor of C in T , and let T ′ be the
tree that remains when C is removed.

Step 1: If C ⊆C′, then T ′ is a junction tree for G, and result follows by induction.
Step 2: If C∩C′ ⊂C (in a strict sense), then consider the subgraph G′ formed by

removing the non-empty set R :=C\C′ fromV. We claim that it is chordal. First,
observe that R has an empty intersection with every clique in T ′ (using junction
tree property). (I.e., say R∩D � 0 for some clique node D in T ′. Then there
exists s ∈ C ∩D, but s � C′, with violates running intersection.) Follows that T ′
is a junction tree for G′, and so G′ is chordal (by applying induction hypothesis).

30 Martin J. Wainwright

Step 3: Now claim that G is chordal. Any cycle entirely contained in G′ is chord-
less by induction. If the cycle is entirely within the complete subgraph G[C], it is
also chordless. Any other cycle must intersect R, C∩C′ andV\C. In particular,
it must cross C∩C′ twice, and since this set is complete, it has a chord.

References

1. Aji, S., McEliece, R.: The generalized distributive law. IEEE Trans. Info. Theory 46, 325–343
(2000)

2. Arnborg, S.: Complexity of finding embeddings in a k-tree. SIAM Jour. Alg. Disc. Math 3(2),
277–284 (1987)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree decompositions of small treewidth.
SIAM Journal of Computing 25, 1305–1317 (1996)

4. Bollobás, B.: Graph theory: an introductory course. Springer-Verlag, New York (1979)
5. Dawid, A.P.: Applications of a general propagation algorithm for probabilistic expert systems.

Statistics and Computing 2, 25–36 (1992)
6. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE

Trans. Info. Theory 47(2), 498–519 (2001)
7. van Lint, J.H., Wilson, R.M.: A course in combinatorics. Cambridge University Press, Cam-

bridge (1992)
8. Loeliger, H.A.: An introduction to factor graphs. IEEE Signal Processing Magazine 21, 28–41

(2004)
9. Shafer, G.R., Shenoy, P.P.: Probability propagation. Annals of Mathematics and Artificial

Intelligence 2, 327–352 (1990)
10. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal of Com-
puting 13(3), 566–579 (1984)

11. Verdú, S., Poor, H.V.: Abstract dynamic programming models under commutativity condi-
tions. SIAM J. Control and Optimization 25(4), 990–1006 (1987)

12. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families and variational infer-
ence. Foundations and Trends in Machine Learning 1(1–2), 1—305 (2008)

