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1 Exercises for lectures

The Exercises will solved during the lectures. We will focus on the probabilistic generative models
for classification (also know as the Bayes classifier) because this is a simple model of practical
interest which can be analysed in some detail. In addition to these pen and paper exercises,
those interested may also work with hands-on-data Matlab factor modeling exercises which may
be retrieved here http://www.imm.dtu.dk/Forskning/ISP/Undervisning/02901_2012.aspx .

Exercise 1 - Derive Bayes classifier

The Bayes classifier (or probabilitistic generative approach, see C Bishop, Pattern Recognition
and Machine Learning, Section 4.2) maps an input (co-variate) x to the a probability for a class
Ck, k = 1, . . . ,K using Bayes’ theorem:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
with p(x) =

K�

k�=1

p(x|Ck�)p(Ck�) .

So given the density of the covariates for each class and the prior probabilities of the classes we
can compute class posterior probabilities. We can also write this in terms of the so-called soft-max
function:

p(Ck|x) =
exp(ak)�K

k�=1 exp(ak�)

with ak = log p(x|Ck) + log p(Ck). We will choose Gaussian class-conditional densities:

p(x|Ck) = N (x|µµµk,Σk) ≡
1√

det 2πΣk
exp

�
−1

2
(x−µµµk)

TΣ−1
k x−µµµk)

�
.

Questions:

1. Show that for Σk = Σ we have
ak = wT

k x+ wk0

with wk = Σ−1
k µµµk and wk0 = −µµµT

kΣ
−1µµµk/2 + log p(Ck).

2. Consider two classes K = 2. (Results can easily be generalized.) The decision boundary
is points in x-space where p(C1|x) = p(C2|x) = 0.5. Show that this condition leads to a
linear equation in x and thus a linear decision boundary. The model is also known as linear
discriminant analysis.

3. We now allow different covariances Σk, k = 1, . . . ,K. Show that the decision boundaries
now become quadratic in x. This model is also know as quadratic discriminant analysis.
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Exercise 2 - Maximum likelihood estimation

We will now use maximum likelihood to estimate the parameters θ ≡ {(πk,µµµk,Σk)|k = 1, . . . ,K}
from a training set of input-output pairs (X,T) = {(xn, tn)|n = 1, . . . , N}, where πk = p(Ck)
and tnk is an indicator variable being one if example n belongs to class Ck and zero otherwise.
The model is generative so the likelihood is the joint probability of input and output pairs which
we decompose into the class prior and class-conditional: p(xn, Ck|θ) = p(Ck|θ)p(xn|Ck, θ). As-
suming identically independently distributed data the likelihood for the parameters p(X,T|θ) =
prodnp(xn, tn|θ) with shorthand θ = {(πk,µµµk,Σk)|k = 1, . . . ,K} we have

p(xn, tn|θ) =
�

k

[p(Ck)p(xn|Ck)]tnk =
�

k

[πkN (x|µµµk,Σk)]
tnk .

Note that the indicator variable will select the term in the product corresponding to the class from
which the example is taken.

Questions:

1. Derive the maximum likelihood solution

πk,ML =
Nk

N
with Nk =

N�

n=1

tnk

µµµk,ML =
1

Nk

N�

n=1

tnkxn

Σk,ML =
1

Nk

N�

n=1

tnk(xn −µµµk,ML)(xn −µµµk,ML)
T

by setting the derivative of the log likelihood equal to zero and handling the sum to one
constraint

�
k πk = 1 by a Lagrange multiplier. (If uncomfortable with Lagrange multipliers

then consider K = 2 and π2 = 1 − π1.) This result simply stated says that the maximum
liklihood estimate coincides with the empirical estimate of the three quantities

2. Show that if we again set Σk = Σ we get a maximum likelihood estimate as a weighted
average of the covariances for each class

ΣML =
1

N

K�

k=1

NkΣk,ML =
1

N

N�

n=1

K�

k=1

tnk(xn −µµµk,ML)(xn −µµµk,ML)
T .

Exercise 3 - Spectral decomposition

In order to understand why the maximum likelihood estimate of the covariance matrix in general
will not be robust we can make an eigenvalue decomposition of the empirical covariance matrix
for examples belonging to class k: Σk,ML = UΛUT where the columns of U are the eigenvector of
Σk,ML andΛ is diagonal with the non-negative eigenvalues on the diagonal. At most min(d,Nk−1)
eigenvalues are non-zero. The minus one comes the fact that we have used ‘one degree of freedom’
to estimate µµµk. For the shared covariance case at most min(d,N −K) eigenvalues are non-zero.

Questions:

1. we will now consider the shared covariance case. Show that

ak = wT
k x+ wk0 =

d�

i=1

αik

λi
uT
i x+ wk0 ,

where αik = uT
i µµµk is the projection of the mean on eigenvector i and λi is the corresponding

eigenvalue.
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2. Consider now N < d as in the tumor gene expression classification task. Why is it not
possible to use the maximum likelihood solution as it stands? Can you propose a simple
modification to avoid getting a contribution from the directions with no empirical variance?

Exercise 3 - Calibrating the classifier for N < d

A second related problem of working with high dimensional data is that the probabilistic classifier
is typically not well-calibrated. In a well-calibrated classifier the posterior class probabilities should
coincide with the actual probability of the different outcomes. For the tumor classification task we
observe posterior class probabilities that tend to be quite extreme, that is the class with highest
probability is very close to one. In practice, clinicians expect the task to be difficult and this is also
what our test and cross-validation results show. One source of error is that p(x|Ck) is definitely
not Gaussian and one might also do better with alternative discriminative approaches (modeling
p(Ck|x) directly), however the problem of calibration is probably a quite characteristic feature of
working with N < d and high d.

Questions:

1. We can get some idea about why this happens by inspecting the expression for the posterior
probabilities. Here we consider binary classification, K = 2. Show that

p(C1|x) =
1

1 + exp(−∆a)
with ∆a =

d�

i=1

∆αi

λi
uT
i x+∆w0 .

Express ∆a in terms of α and λ using the basis expansion result: µµµk =
�

i αkiui. Derive
the expression for ∆a when µµµ1 and µµµ2 are expanded by disjoint basis vectors. can we say
something about the order of ∆a as a function of d assuming for simplicity that xTx =
µµµT
kµµµk = 1?

2. This paper http://www.cs.toronto.edu/~radford/selbias-ba.abstract.html discusses
another aspect of working with high dimensional data and feature selection. Describe the
general principle without going into technical details.

Exercise 4 - Structured covariance estimation

The maximum likelihood solution in pPCA for W for M factors (Bishop Section 12.2.1) is

ΣML = WMLW
T
ML + σ2

MLI

WML = UM (ΛM − σ2
MLIM )1/2RM

σ2
ML =

1

d−M

d�

i=m+1

λi ,

where ΛM is submatrix of Λ with the M largest eigenvalues and R is an arbitrary unitary (rota-
tion) matrix, that is RRT = I. Note that σ2

ML is average of the variance in principal directions
not captured by WML.

Questions:

1. Insert the pPCA result and calculate ak for this case. Will this model have a better behavior
for N < d?

2. Discuss ways of selecting M , the number of factors.
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