

2361-15

School on Large Scale Problems in Machine Learning and Workshop on Common Concepts in Machine Learning and Statistical Physics

20 - 31 August 2012

MACHINE LEARNING IN SYSTEMS BIOLOGY: Bioinformatics for Genomic Medicine

Ole WINTHER

Technical University of Denmark DTU and University of Copenhagen KU Denmark

0 000000 000 0<	Introduction	CUP	How many probes?	Gastric cancer	Outlook
		000			0

Bioinformatics for genomic medicine

Ole Winther

Technical University of Denmark (DTU) & University of Copenhagen (KU)

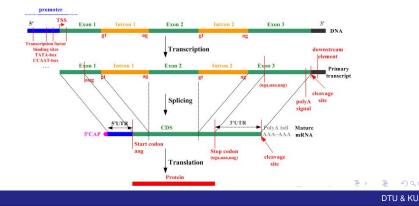
March 28, 2012

(문) (문)

Introduction	CUP	How many probes?	Gastric cancer	Outlook
• • •	000000 000 00		000 0000	0
Motivation				

- Overall motivation use genomic data to improve cancer diagnosis and treatment.
- Multidisciplinary collaboration between Bioinformatics Centre, KU and Genomic Medicine and Oncology, Copenhagen University Hospital (Riget).
- Classification and survival analysis for cancer from gene expression data
- Next steps:
 - Include data from more experimental platforms and
 - modeling more aspects of the diagnostic process therapy selection (personalized medicine)

ヘロト ヘヨト ヘヨト ヘヨト


Introduction	CUP	How many probes?	Gastric cancer	Outlook
o	000000		000	o
o	000		0000	o
Overview				

• Experimental platforms

- Case 1 Cancer of unknown primary origin (CUP)
 - Classification of cancer and outlier detection
 - Large gene expression profiling dataset
- Case 2 Prognosis in gastric cancer
 - Random survival forests
 - using gene sets scores as covariates
- Outlook

Introduction	CUP	How many probes?	Gastric cancer	Outlook
0 0 •	000000 000 00		000 0000	0
Experimental platform				

- mRNA gene expression profiling
 - Microarray 50k genes \$660
- Exome sequencing next generation sequencing
 - 23andme.com/exome 80x coverage of 50M bases \$999
- Additional platforms: Non-coding RNAs and proteomics

Introduction	CUP	How many probes?	Gastric cancer	Outlook
	00000	000	000	0
				0
	00			
Cancer of unknown p	orimary origin (CUP) class	sification		

- Cancer are classified according to their origin.
- CUP a metastasis is located, but not the primary tumor.
- + 2 5% of cancer patients get the CUP diagnosis \sim 20 annually at Riget.
- No primary tumor located in two-third of cases.
- Knowing the origin typically determines treatment.
- Cancer is a very heterogeneous disease improved molecular characterization will lead to identification of more clinical fitting subtypes.

Introduction	CUP	How many probes?	Gastric cancer	Outlook
	00000	000	000	0
	000		0000	0

Cancer of unknown primary origin (CUP) classification

- Aim: Build classifier for major cancer types
- Phase one data collection and normalization:
 - Careful curation of 2400+ expression profiles (samples) downloaded from Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/
 - Training data 1466 samples: 1299 primary tumors and 167 normal tissue (various organs)
 - Test set 641 tumor samples: 391 primary tumors and 250 metastases.
 - 57 CUP samples of which 29 remain unknown after work-up.
- **15 cancer types:** thyroid, lung, stomach, colon/rectum, pancreas, bile duct/gallbladder, liver, kidney, urinary tract, prostate, breast, ovary, endometrium, cervix uteri, testis cancer, a group of malignant melanomas
- Normalization with Robust multi-chip average (RMA) in R/Bioconductor package.

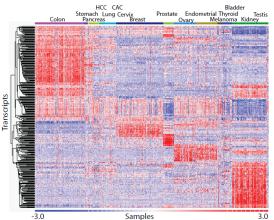
Introduction	CUP	How many probes?	Gastric cancer	Outlook				
	000000			0				
				0				
	00							
Cancer of unknown primary origin (CUP) classification								

- Phase two filtering and training of classifier:
 - 47k+ transcript expression values (Affymetrix U133 Plus 2.0)
 - 20k left after variance filtering
- Two-step training of classifier:
 - Univariate test (F) identification of discriminative probes
 - 2 Train classifier on selected probes
- Optimal p-value cut-off for F-test (= 10⁻¹⁸⁰) found by nested cross-validation

Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000	000	000	
	00			
Cancer of unknown r	rimary origin (CLIP) class	sification		

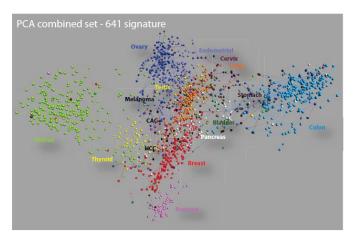
- Initial trials identified linear discriminant analysis (LDA) as the method with lowest error rate
- *c* is the class label and *x* the covariate vector (log fold change in expression values).

$$p(c|x) = \frac{p(x|c)p(c)}{p(x)}$$


$$p(x|c) = \mathcal{N}(x; \mu_c, \Sigma)$$

$$p(x) = \sum_{c} p(x|c)p(c)$$

- Test performance 428 probe classifier: 90% and 83% for primary tumors and known metastases, respectively.
- CUP classifier (merge training and test set, 641 probes) had a LOOCV accuracy of 92% and 87%, respectively.


Introduction	CUP	How many probes?	Gastric cancer	Outlook				
	000000 000		000 0000					
Cancer of unknown primary origin (CUP) classification								

Introduction	CUP 000000 000	How many probes?	Gastric cancer 000 0000	Outlook o o			
 o Cancer of unknown primary origin (CUP) classification 							

Β.

≣ ৩৭ে DTU & KU

Introduction o o		0	UP 00000 00	How mar	ny probes?	0	astric cance		Outlook o
Classification	of CUP	patients							
	ID	Sex/age	Biopsy site	Histology	Path Diag.	Stand of Ref	LDA Pred	Outlier score	
	14.	F/56	LN neck	PDC	Lung	Lung (CD)	Lung	975	
	17.	F/57	LN neck	Adenoc.	Lower GI	Colon (RD)	Colon	746	
	22.	M/55	LN neck	Adenoc.	CUP	Stomach (RD)	Normal	934	
	23.	M/39	LN retro	PDC	CUP	Kidney (RD)	Kidney	1085	
	28.	F/58	Peritoneum	PDA	Ovary	Ovary (RD)	Ovary	810	
	31.	F/40	LN neck	PDA	CUP	Lung (CD)	Stomach	985	
	34	M/74	Skin	PDA	Lung	Lung (RD)	Lung	898	
	39.	M/71	Liver	Adenoc.	CUP	Pancreas (CD)	Pancreas	1097	
	40.	F/44	Liver	Adenoc.	Colon	Colon (RD)	Colon	729	
	44.	F/43	Kidney	Carc.	CUP	Bladder (RD)	Bladder	1286	
	49.	M/60	LN neck	PDA	Kidney	Kidney (RD)	Kidney	1223	
	51.	F/42	LN pelvis	SCC	CUP-SCC	Cervical (RD)	Cervix	828	
	52.	M/53	Liver	PDA	CUP	CCC (RD)	CCC	923	
	53.	M/70	Liver	Adenoc.	Lung	Lung (RD)	Lung	1047	
	57.	M/67	Liver	Adenoc.	CCC	CCC (RD)	HCC	965	
	66.	F/68	Liver	PDA	CUP	CCC (RD)	Cervix	1100	
	70.	M/38	Peritoneum	Adenoc.	Stomach	Stomach (CD)	Colon	842	
	74.	M/62	Leg	Carc.	Adnex tumor	Adnex tumor (RD)	Normal	1010	
	76.	M/64	Liver	Adenoc.	Lower GI	Small intestine (RD)	Colon	912	
	77.	M/59	LN axilla	PDC	CUP	Lung (CD)	Breast	978	
	86.	F/61	LN axilla	Adenoc.	CUP	Lung (RD)	Stomach	1108	
	88.	F/36	Peritoneum	Adenoc.	Ovary	Ovary (RD)	Cervix	1033	
	89.	F/57	Liver	PDA	CCC	CCC (RD)	CCC	916	
	90.	F/71	Peritoneum	Adenoc	Ovary	Ovary (RD)	Ovary	781	
	92.	M/62	Liver	Malignant tumor	Angiosarcoma	Angiosarcoma (RD)	Normal	1097	
	95.	M/45	Peritoneum	PDC	DSRCT	DSRCT (RD)	Breast	1098	
	71+72	M/61	Bone + Kidney	PDC	Kidney	Kidney (RD)	Kidney	1096	
					· · · ·			1277	
	75+87	F/43	Liver	PDA	CCC	CCC (RD)	CCC	925	
								1030	=

Introduction o o o		c C	CUP 000000 000000	How r 000	nany probes?		Gastric cance		Outlook o
Classification	of CUP	patients							i i
			1						
	ID	Sex/age	Biopsy site	Histology	Path Diag.	Stand of Ref	LDA Pred	Outlier score	
	11.	F/58	LN neck	PDA	CUP	CUP (SD)	Ovary	756	
	13.	F/72	Peritoneum	PDA	CUP	CUP (NSD)	Pancreas	1193	
	21.	M/63	LN neck	PDC	CUP	CUP (NSD)	Breast	1108	
	26.	F/67	Skin	PDA	CUP	CUP (NSD)	Breast	971	
	32.	M/53	LN neck	PDSCC	CUP-SCC	CUP (NSD)	Normal	926	
	33.	M/58	Skin	PDA	CUP	CUP (NSD)	Colon	1098	
	41.	M/74	Liver	PDA	Pancreas	CUP (NSD)	Stomach	1040	
	42.	M/56	Liver	Adenoc.	CUP	CUP (NSD)	Pancreas	994	
	43.	F/50	LN retro	PDA	CUP	CUP (NSD)	Stomach	797	
	45.	M/44	Liver	PDC	CUP	CUP (NSD)	Colon	1245	
	46.	F/76	Liver	Adenoc.	CUP	CUP (NSD)	Normal	1027	
	47.	F/59	Liver	Adenoc.	CUP	CUP (SD)	CCC	932	
	48.	F/59	LN neck	PDC	CUP	CUP (NSD)	Ovary	1032	
	54.	F/67	Liver	Adenoc.	CUP	CUP (NSD)	Normal	1068	
	55	F/55	Liver	Adenoc.	CUP	CUP (NSD)	Normal	962	
	58.	F/67	Liver	PDC	CUP	CUP (SD)	CCC	995	
	61.	M/72	Liver	Carc.	HCC	CUP (NSD)	CCC	1102	
	64.	F/65	LN inguien	PDA	CUP	CUP (SD)	Lung	1168	
	65.	M/62	LN neck	PDSCC	CUP-SCC	CUP (NSD)	Breast	929	
	73.	M/43	LN retro	PDC	CUP	CUP (NSD)	Normal	1020	
	78.	F/59	Lung	Adenoc.	Lower GI	CUP (NSD)	Lung	1062	
	80.	F/58	Liver	Adenoc.	CUP	CUP (SD)	CCC	1111	
	81.	F/71	Liver	PDA	CUP	CUP (NSD)	Breast	1212	
	82.	F/56	Bone	Adenoc.	CUP	CUP (NSD)	CCC	1209	
	83.	F/59	Liver	PDA	CUP	CUP (SD)	CCC	1061	
	91.	F/65	LN axilla	Adenoc.	CUP	CUP (SD)	Lung	939	
	93.	M/58	Bone	PDSCC	CUP-SCC	CUP (NSD)	Breast	940	
	94.	F/55	Liver	PDA	CUP	CUP (NSD)	Normal	984	
	50. + 68	M/41	Adr gl	PDC	CUP	CUP (NSD)	Stomach	978	
							Pancreas	1079	E 990

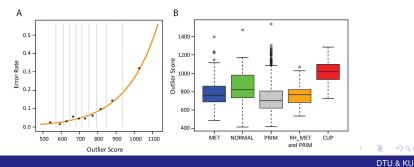
Introduction o o o	CUP ○○○○○○ ○○	How many probes?	Gastric cancer ooo oooo	Outlook o o
Classification of CUP patie	ents			

- CUP classifier not sex-specific, but some cancers are: ovary, cervical and prostate.
- Unlikely events occur like men classified as breast may reflect real biology and limited validity of classification categories.
- Renormalizing class priors *p*(*c*):

$$p(c|x) = \frac{p(x|c)p(c)}{p(x)}$$

$$p_{rm}(c|x) = \frac{p(x|c)p_{rm}(c)}{p_{rm}(x)} = p(c|x)\frac{p(x)}{p_{rm}(x)}\frac{p_{rm}(c)}{p(c)}$$

*p*_{rm}(*c*) = 0 for cancers not appearing (like ovary in men) and renormalize others appropriately.


Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000 000 • 0		000 0000	
Outlier scores				

p(*x*) measure how probable *x* is according to the model - outlier score

$$OS = -\log p(x)$$

• Use quadratic discriminant analysis (QDA)

 $p(x) = \sum_{c} p(x|c)p(c)$ with $p(x|c) = N(x; \mu_c, \Sigma_c)$

Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000		000 0000	
	ŏŏ			
Outlier scores				

- Clinical classifier
- Made with R/Sweave
- Input: expression profile
- Output: class probabilities and outlier score
- Notice huge differences
 on log scale
- Suggests that LDA is not optimal with respect to e.g. Brier score.

Created: Tin Nov 17 11:14:48 2011 R version: R version 2.18:0 (2011-04:13) File name: JVII-86-897-164-8013.JVIm_2-a1.CEL Model file: ../spt.obj.Edata Output date: ./JVI-86-897-164-80-9133_Files_2-a1.CEL Sample gender: mak

Outlier score: -1196.695

Figure 1: Predictions with scaled posterior in log-scale.

	log(pos)
Lung	-2031.39
Colon	-2034.52
Normal	-2041.78
Breast	-2044.51
Pancreas	-2045.78
Stomach	-2058.68
Kidney	-2082.98
Thyroid	-2088.99
Prostate	-2100.13
Melanoma	-2104.17
Cholangiocarcinoma	-2105.28
Bladder,UT	-2114.75
Liver	-2239.06
Testis	-2471.94

Table 1: Predictions with posterior in log-scale.

Introduction o o	CUP 000000 000 00	How many probes? ●oo	Gastric cancer ooo oooo	Outlook o o
Robust estimation of	covariance matrices			
Probabili	stic PCA			

• Probabilistic PCA (Tipping and Bishop, 1999):

$$\begin{aligned} x &= Wz + \epsilon \\ z &\sim \mathcal{N}(z; 0, I) \\ \epsilon &\sim \mathcal{N}(\epsilon; 0, \sigma^2 I) \end{aligned}$$

• Marginalizing z and ϵ

$$p(\boldsymbol{x}|\boldsymbol{W},\sigma^2) = \mathcal{N}(\boldsymbol{x};\boldsymbol{0},\boldsymbol{W}\boldsymbol{W}^T + \sigma^2\boldsymbol{I})$$

DTU & KU

• Structured covariance model.

Introduction o	CUP 000000 000	How many probes? ○●○	Gastric cancer ooo oooo	Outlook o o
Robust estimation of				

• Log likelihood for ${\bf W}$ and σ^2 :

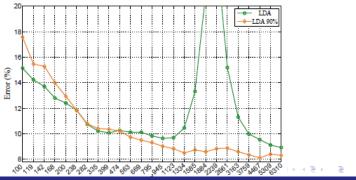
$$\log L(\theta; X) = \sum_{n} \log p(x_{n} | W, \sigma^{2})$$
$$= -\frac{N}{2} \left\{ \log \det 2\pi \Sigma + \operatorname{Tr} \left[\Sigma^{-1} S \right] \right\}$$

- Model covariance: $\Sigma = WW^T + \sigma^2 I$
- Empirical covariance: $S = \frac{1}{n} X^T X$
- Spectral decomposition: $S = U \wedge U^T$, $\Lambda_{ii} \ge \Lambda_{ji}$ for i < j.
- Maximum likelihood solution: *i* = 1,..., *m*

$$w_{i,\mathrm{ml}} = u_i \sqrt{\Lambda_{ii} - \sigma_{\mathrm{ml}}^2} R$$
 and $\sigma_{\mathrm{ml}}^2 = \frac{1}{p - m} \sum_{i=m+1}^p \Lambda_{ii}$

DTU & KU

• *R* arbitrary rotation


Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000	000	000	0
	000		0000	0

Robust estimation of covariance matrices

• Error versus p for fixed "variance explained"

$$1 - \frac{1}{\operatorname{Tr} \Lambda} \sum_{i=m+1}^{p} \Lambda_{ii}$$

• Covariates sorted according to variance.

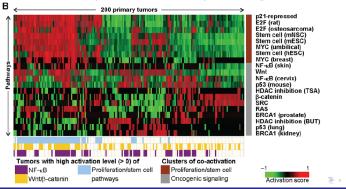
000

.....

CUP 0000000 How many probes?

DTU & KU

Gastric cancer


OPEN CACCESS Freely available online

PLOS GENETICS

Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer

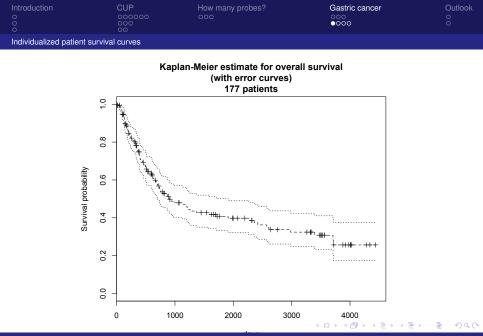
Chia Huey Ool¹, Tatiana Ivanova², Jeanie Wu², Minghui Lee², Iain Beehuat Tan², Jiong Tao²⁴, Lindsay Ward⁵, Jun Hao Koo², Veena Gopalakrishnan², Yansong Zhu², Lai Ling Cheng⁶, Julian Lee², Sum Young Ra³, Hyun Cheol Chung⁷, Kumaretan Ganesan², Jimmy So⁷, Khee Chee Soo⁷, Dennis Lim¹⁰, Weng Hoong Chan¹⁰, Wai Keong Wong¹⁰, David Bowtell¹¹, Khay Guan Yeoh¹², Heike Grabsch², Alex Boussiouts^{11,12}, Datrick Tan^{1,24,15,16}

1 Duke-NUS Graduate Medical School, Singapore, 2 Cellular and Molecular Research, National Cancer Centre, Singapore, 3 Division of Medical Oncology, National Cancer

Introduction o o	CUP 000000 000 00	How many probes?	Gastric cancer ○●○ ○○○○	Outlook o o
Gastric cancer				

- This study inspired us to consider survival analysis and gene expression data.
- Use gene set activation scores instead of gene expression.
- Curated gene sets from Msig database www.broadinstitute.org/gsea/msigdb/ and scoring according to GAGE (Luo et al, 2009):

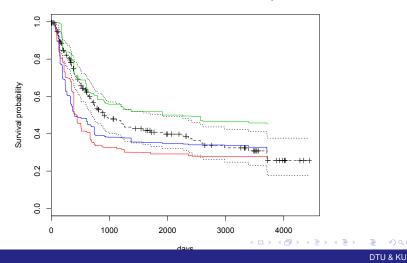
$$t = \frac{m - M}{\sqrt{s^2/n + S^2/n}}$$


DTIL& KII

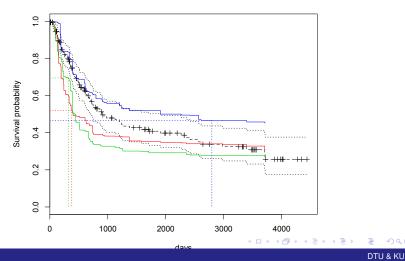
- Instead of using a preselected list of gene sets
- we use unbiased search with random survival forest among all gene sets.

Introduction o o	CUP 000000 000 00	How many probes?	Gastric cancer oo● oooo	Outlook o o
Gastric cancer				

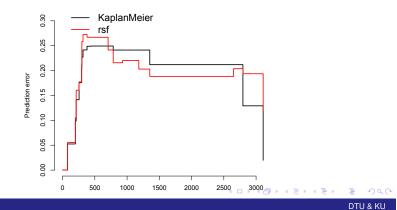
- Random survival forest identifies gene sets which makes biological sense
- according to literature and may be validated by clinicians:


[1] "OHM_EMBRYONIC_CARCINOMA_UP_DN_ud"
[2] "ST_FAS_SIGNALING_PATHWAY_b"
[3] "TONKS_TARGETS_OF_RUNX1 RUNX1T1_FUSION_SUSTAINED_IN_MONOCYTE_UP_DN_ud"
[4] "WEIGEL_OXIDATIVE_STRESS_BY_HNE_AND_H2O2_u"
[5] "BIOCARTA_IL1R_PATHWAY_b"
[6] "SNLDERS_AMPLIFIED_IN_HEAD_AND_NECK_TUMORS_U"
[7] "GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_LIGHTYELLOW_UP_DN_ud"

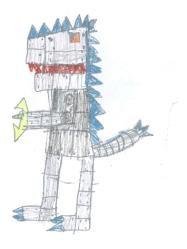
Ole Winther


Introduction	CUP	How many probes?	Gastric cancer	Outlook
			000	Q
	000 00		0000	O
Individualized patient	survival curves			

Predicted individual survival curves for 3 new patients


Introduction	CUP	How many probes?	Gastric cancer	Outlook
				0
			0000	0
	00			
Individualized patient	survival curves			

Predicted individual survival curves for 3 new patients


Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000	000	000	0
			0000	0
	00			
Individualized patient	survival curves			

- Hold-out (19 of 198) Brier scores
- Kaplan Meier 0.201
- RSF 0.195

Introduction	CUP	How many probes?	Gastric cancer	Outlook
	000000 000 00		000 0000	o
Outlook				

- Proof of concept of close collaboration with clinicians
- Next steps towards individualized treatment
 - better models
 - richer genomic data
 - predict response to treatment
- International Genomics Consortium (ICG) and The Cancer Genome Atlas (TCGA) provide unprecedented amount of genomic data, but close collaboration with clinicians necessary to get detailed clinical data.

Introduction	CUP	How many probes?	Gastric cancer	Outlook
o	000000		ooo	○
o	000		oooo	●
Collaborators				

Bioinformatics

- Bogumil Kaczkowski
- Ricardo Henao
- Tomas Martin-Bertelsen
- Anders Krogh

Genomic Medicine, Riget

- Finn Cilius Nielsen
- Lennart Friis-Hansen
- Rehannah Borup

Oncology, Riget

- Gedske Daugaard
- Anne Kirstine Moller